1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
// license:BSD-3-Clause
// copyright-holders:Wilbert Pol
/******************************************************************************
Acorn Electron driver
MESS Driver By:
Wilbert Pol
******************************************************************************/
#include "emu.h"
#include "includes/electron.h"
/*
From the ElectrEm site:
Timing is somewhat of a thorny issue on the Electron. It is almost certain the Electron could have been a much faster machine if BBC Micro OS level compatibility had not been not a design requirement.
When accessing the ROM regions, the CPU always runs at 2MHz. When accessing the FC (1 MHz bus) or FD (JIM) pages, the CPU always runs at 1MHz.
The timing for RAM accesses varies depending on the graphics mode, and how many bytes are required to be read by the video circuits per scanline. When accessing RAM in modes 4-6, the CPU is simply moved to a 1MHz clock. This occurs for any RAM access at any point during the frame.
In modes 0-3, if the CPU tries to access RAM at any time during which the video circuits are fetching bytes, it is halted by means of receiving a stopped clock until the video circuits next stop fetching bytes.
Each scanline is drawn in exactly 64us, and of that the video circuits fetch bytes for 40us. In modes 0, 1 and 2, 256 scanlines have pixels on, whereas in mode 3 only 250 scanlines are affected as mode 3 is a 'spaced' mode.
As opposed to one clock generator which changes pace, the 1MHz and 2MHz clocks are always available, so the ULA acts to simply change which clock is piped to the CPU. This means in half of all cases, a further 2MHz cycle is lost waiting for the 2MHz and 1MHz clocks to synchronise during a 2MHz to 1MHz step.
The video circuits run from a constant 2MHz clock, and generate 312 scanlines a frame, one scanline every 128 cycles. This actually gives means the Electron is running at 50.08 frames a second.
Creating a scanline numbering scheme where the first scanline with pixels is scanline 0, in all modes the end of display interrupt is generated at the end of scanline 255, and the RTC interrupt is generated upon the end of scanline 99.
From investigating some code for vertical split modes printed in Electron User volume 7, issue 7 it seems that the exact timing of the end of display interrupt is somewhere between 24 and 40 cycles after the end of pixels. This may coincide with HSYNC. I have no similarly accurate timing for the real time clock interrupt at this time.
Mode changes are 'immediate', so any change in RAM access timing occurs exactly after the write cycle of the changing instruction. Similarly palette changes take effect immediately. VSYNC is not signalled in any way.
*/
void electron_state::video_start()
{
int i;
for( i = 0; i < 256; i++ ) {
m_map4[i] = ( ( i & 0x10 ) >> 3 ) | ( i & 0x01 );
m_map16[i] = ( ( i & 0x40 ) >> 3 ) | ( ( i & 0x10 ) >> 2 ) | ( ( i & 0x04 ) >> 1 ) | ( i & 0x01 );
}
m_scanline_timer = timer_alloc(TIMER_SCANLINE_INTERRUPT);
m_scanline_timer->adjust( machine().first_screen()->time_until_pos(0), 0, machine().first_screen()->scan_period() );
}
inline UINT8 electron_state::read_vram( UINT16 addr )
{
return m_ula.vram[ addr % m_ula.screen_size ];
}
inline void electron_state::electron_plot_pixel(bitmap_ind16 &bitmap, int x, int y, UINT32 color)
{
bitmap.pix16(y, x) = (UINT16)color;
}
UINT32 electron_state::screen_update_electron(screen_device &screen, bitmap_ind16 &bitmap, const rectangle &cliprect)
{
int i;
int x = 0;
int pal[16];
int scanline = screen.vpos();
rectangle r = cliprect;
r.min_y = r.max_y = scanline;
/* set up palette */
switch( m_ula.screen_mode )
{
case 0: case 3: case 4: case 6: case 7: /* 2 colour mode */
pal[0] = m_ula.current_pal[0];
pal[1] = m_ula.current_pal[8];
break;
case 1: case 5: /* 4 colour mode */
pal[0] = m_ula.current_pal[0];
pal[1] = m_ula.current_pal[2];
pal[2] = m_ula.current_pal[8];
pal[3] = m_ula.current_pal[10];
break;
case 2: /* 16 colour mode */
for( i = 0; i < 16; i++ )
pal[i] = m_ula.current_pal[i];
}
/* draw line */
switch( m_ula.screen_mode )
{
case 0:
for( i = 0; i < 80; i++ )
{
UINT8 pattern = read_vram( m_ula.screen_addr + (i << 3) );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>7)& 1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>6)& 1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>5)& 1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>4)& 1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>3)& 1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>2)& 1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>1)& 1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>0)& 1] );
}
m_ula.screen_addr++;
if ( ( scanline & 0x07 ) == 7 )
m_ula.screen_addr += 0x278;
break;
case 1:
for( i = 0; i < 80; i++ )
{
UINT8 pattern = read_vram( m_ula.screen_addr + i * 8 );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>3]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>3]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>2]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>2]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>1]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>1]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>0]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>0]] );
}
m_ula.screen_addr++;
if ( ( scanline & 0x07 ) == 7 )
m_ula.screen_addr += 0x278;
break;
case 2:
for( i = 0; i < 80; i++ )
{
UINT8 pattern = read_vram( m_ula.screen_addr + i * 8 );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map16[pattern>>1]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map16[pattern>>1]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map16[pattern>>1]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map16[pattern>>1]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map16[pattern>>0]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map16[pattern>>0]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map16[pattern>>0]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map16[pattern>>0]] );
}
m_ula.screen_addr++;
if ( ( scanline & 0x07 ) == 7 )
m_ula.screen_addr += 0x278;
break;
case 3:
if ( ( scanline > 249 ) || ( scanline % 10 >= 8 ) )
bitmap.fill(7, r );
else
{
for( i = 0; i < 80; i++ )
{
UINT8 pattern = read_vram( m_ula.screen_addr + i * 8 );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>7)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>6)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>5)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>4)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>3)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>2)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>1)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>0)&1] );
}
m_ula.screen_addr++;
}
if ( scanline % 10 == 9 )
m_ula.screen_addr += 0x278;
break;
case 4:
case 7:
for( i = 0; i < 40; i++ )
{
UINT8 pattern = read_vram( m_ula.screen_addr + i * 8 );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>7)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>7)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>6)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>6)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>5)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>5)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>4)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>4)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>3)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>3)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>2)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>2)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>1)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>1)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>0)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>0)&1] );
}
m_ula.screen_addr++;
if ( ( scanline & 0x07 ) == 7 )
m_ula.screen_addr += 0x138;
break;
case 5:
for( i = 0; i < 40; i++ )
{
UINT8 pattern = read_vram( m_ula.screen_addr + i * 8 );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>3]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>3]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>3]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>3]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>2]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>2]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>2]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>2]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>1]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>1]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>1]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>1]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>0]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>0]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>0]] );
electron_plot_pixel( bitmap, x++, scanline, pal[m_map4[pattern>>0]] );
}
m_ula.screen_addr++;
if ( ( scanline & 0x07 ) == 7 )
m_ula.screen_addr += 0x138;
break;
case 6:
if ( ( scanline > 249 ) || ( scanline % 10 >= 8 ) )
bitmap.fill(7, r );
else
{
for( i = 0; i < 40; i++ )
{
UINT8 pattern = read_vram( m_ula.screen_addr + i * 8 );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>7)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>7)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>6)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>6)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>5)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>5)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>4)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>4)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>3)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>3)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>2)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>2)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>1)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>1)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>0)&1] );
electron_plot_pixel( bitmap, x++, scanline, pal[(pattern>>0)&1] );
}
m_ula.screen_addr++;
if ( ( scanline % 10 ) == 7 )
m_ula.screen_addr += 0x138;
}
break;
}
return 0;
}
TIMER_CALLBACK_MEMBER(electron_state::electron_scanline_interrupt)
{
switch (machine().first_screen()->vpos())
{
case 43:
electron_interrupt_handler( INT_SET, INT_RTC );
break;
case 199:
electron_interrupt_handler( INT_SET, INT_DISPLAY_END );
break;
case 0:
m_ula.screen_addr = m_ula.screen_start - m_ula.screen_base;
break;
}
}
|