1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
|
// license:GPL-2.0+
// copyright-holders:Couriersud
#include "plib/pstring.h"
#include "netlist/nl_setup.h"
#include "plib/plists.h"
#include "plib/pmain.h"
#include "plib/ppmf.h"
#include "plib/pstream.h"
#include <cstdio>
// From: https://ffmpeg.org/pipermail/ffmpeg-devel/2007-October/038122.html
// The most compatible way to make a wav header for unknown length is to put
// 0xffffffff in the header. 0 as the RIFF length and 0 as the data chunk length
// is a common agreement in serious recording applications while
// still recording the file. So a playback application can determine that the
// given file is still being recorded. As soon as the recording application
// finishes the ongoing recording, it writes the correct values for RIFF lenth
// and data chunk length to the file.
//
// http://de.wikipedia.org/wiki/RIFF_WAVE
//
class wav_t
{
public:
// XXNOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
wav_t(std::ostream &strm, bool is_seekable, std::size_t sr, std::size_t channels)
: m_f(strm)
, m_stream_is_seekable(is_seekable)
// force "play" to play and warn about eof instead of being silent
, m_fmt(static_cast<std::uint16_t>(channels), static_cast<std::uint32_t>(sr))
, m_data(is_seekable ? 0 : 0xffffffff)
{
write(m_fh);
write(m_fmt);
write(m_data);
}
PCOPYASSIGNMOVE(wav_t, delete)
~wav_t()
{
if (m_stream_is_seekable)
{
m_fh.filelen = m_data.len + sizeof(m_data) + sizeof(m_fh) + sizeof(m_fmt) - 8;
m_f.seekp(0);
write(m_fh);
write(m_fmt);
//data.len = fmt.block_align * n;
write(m_data);
}
}
std::size_t channels() const { return m_fmt.channels; }
std::size_t sample_rate() const { return m_fmt.sample_rate; }
template <typename T>
void write(const T &val)
{
auto ptr(reinterpret_cast<const std::ostream::char_type *>(&val));
m_f.write(ptr, sizeof(T));
}
void write_sample(const int *sample)
{
m_data.len += m_fmt.block_align;
for (std::size_t i = 0; i < channels(); i++)
{
auto ps = static_cast<int16_t>(sample[i]); // 16 bit sample, FIXME: Endianess?
write(ps);
}
}
private:
struct riff_chunk_t
{
std::array<uint8_t, 4> group_id = {{'R','I','F','F'}};
uint32_t filelen = 0;
std::array<uint8_t, 4> rifftype = {{'W','A','V','E'}};
};
struct riff_format_t
{
riff_format_t(uint16_t achannels, uint32_t asample_rate)
{
channels = achannels;
sample_rate = asample_rate;
block_align = channels * ((bits_sample + 7) / 8);
bytes_per_second = sample_rate * block_align;
}
std::array<uint8_t, 4> signature = {{'f','m','t',' '}};
uint32_t fmt_length = 16;
uint16_t format_tag = 0x0001; // PCM
uint16_t channels;
uint32_t sample_rate;
uint32_t bytes_per_second;
uint16_t block_align;
uint16_t bits_sample = 16;
};
struct riff_data_t
{
explicit riff_data_t(uint32_t alen) : len(alen) {}
std::array<uint8_t, 4> signature = {{'d','a','t','a'}};
uint32_t len;
// data follows
};
std::ostream &m_f;
bool m_stream_is_seekable;
riff_chunk_t m_fh;
riff_format_t m_fmt;
riff_data_t m_data;
};
class log_processor
{
public:
using callback_type = plib::pmfp<void, std::size_t, double, double>;
struct elem
{
elem() : t(0), v(0), eof(false), need_more(true) { }
double t;
double v;
bool eof;
bool need_more;
};
log_processor(std::size_t channels, callback_type &cb)
: m_cb(cb)
, m_e(channels)
{ }
bool readmore(std::vector<plib::putf8_reader> &r)
{
bool success = false;
for (std::size_t i = 0; i< r.size(); i++)
{
if (m_e[i].need_more)
{
pstring line;
m_e[i].eof = !r[i].readline(line);
if (!m_e[i].eof)
{
// sscanf is very fast ...
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-vararg)
if (2 != std::sscanf(line.c_str(), "%lf %lf", &m_e[i].t, &m_e[i].v))
fprintf(stderr, "arg: <%s>\n", line.c_str());
m_e[i].need_more = false;
}
}
success |= !m_e[i].eof;
}
return success;
}
void process(std::vector<plib::unique_ptr<std::istream>> &is)
{
std::vector<plib::putf8_reader> readers;
for (auto &i : is)
{
plib::putf8_reader r(std::move(i));
readers.push_back(std::move(r));
}
pstring line;
bool more = readmore(readers);
while (more)
{
double mint = 1e200;
std::size_t mini = 0;
for (std::size_t i = 0; i<readers.size(); i++)
if (!m_e[i].need_more)
{
if (m_e[i].t < mint)
{
mint = m_e[i].t;
mini = i;
}
}
m_e[mini].need_more = true;
m_cb(mini, mint, m_e[mini].v);
more = readmore(readers);
}
}
private:
callback_type m_cb;
std::vector<elem> m_e;
};
struct aggregator
{
using callback_type = plib::pmfp<void, std::size_t, double, double>;
aggregator(std::size_t channels, double quantum, callback_type cb)
: m_channels(channels)
, m_quantum(quantum)
, m_cb(cb)
, ct(0.0)
, lt(0.0)
, outsam(channels, 0.0)
, cursam(channels, 0.0)
{ }
void process(std::size_t chan, double time, double val)
{
while (time >= ct + m_quantum)
{
ct += m_quantum;
for (std::size_t i=0; i< m_channels; i++)
{
outsam[i] += (ct - lt) * cursam[i];
outsam[i] = outsam[i] / m_quantum;
m_cb(i, ct, outsam[i]);
outsam[i] = 0.0;
}
lt = ct;
}
for (std::size_t i=0; i< m_channels; i++)
outsam[i] += (time-lt)*cursam[i];
lt = time;
cursam[chan] = val;
}
private:
std::size_t m_channels;
double m_quantum;
callback_type m_cb;
double ct;
double lt;
std::vector<double> outsam;
std::vector<double> cursam;
};
class wavwriter
{
public:
wavwriter(std::ostream &fo, bool is_seekable, std::size_t channels, std::size_t sample_rate, double ampa)
: mean(channels, 0.0)
, means(channels, 0.0)
, maxsam(channels, -1e9)
, minsam(channels, 1e9)
, m_n(channels, 0)
, m_samples(channels, 0)
, m_last_time(0)
, m_fo(fo)
, m_amp(ampa)
, m_wo(m_fo, is_seekable, sample_rate, channels)
{ }
void process(std::size_t chan, double time, double outsam)
{
if (time > m_last_time)
m_wo.write_sample(m_samples.data());
m_last_time = time;
means[chan] += outsam;
maxsam[chan] = std::max(maxsam[chan], outsam);
minsam[chan] = std::min(minsam[chan], outsam);
m_n[chan]++;
//mean = means / (double) m_n;
mean[chan] += 5.0 / static_cast<double>(m_wo.sample_rate()) * (outsam - mean[chan]);
outsam = (outsam - mean[chan]) * m_amp;
outsam = std::max(-32000.0, outsam);
outsam = std::min(32000.0, outsam);
m_samples[chan] = static_cast<int>(outsam);
}
std::vector<double> mean;
std::vector<double> means;
std::vector<double> maxsam;
std::vector<double> minsam;
std::vector<std::size_t> m_n;
std::vector<int> m_samples;
double m_last_time;
private:
std::ostream &m_fo;
double m_amp;
wav_t m_wo;
};
class vcdwriter
{
public:
enum format_e
{
DIGITAL,
ANALOG
};
vcdwriter(std::ostream &fo, const std::vector<pstring> &channels,
format_e format, double high_level = 2.0, double low_level = 1.0)
: m_channels(channels.size())
, m_last_time(0)
, m_fo(fo)
, m_high_level(high_level)
, m_low_level(low_level)
, m_format(format)
{
for (pstring::value_type c = 64; c < 64+26; c++)
m_ids.emplace_back(pstring(1, c));
write("$date Sat Jan 19 14:14:17 2019\n");
write("$end\n");
write("$version Netlist nlwav 0.1\n");
write("$end\n");
write("$timescale 1 ns\n");
write("$end\n");
std::size_t i = 0;
for (const auto &ch : channels)
{
// $var real 64 N1X1 N1X1 $end
if (format == ANALOG)
write("$var real 64 " + m_ids[i++] + " " + ch + " $end\n");
else if (format == DIGITAL)
write("$var wire 1 " + m_ids[i++] + " " + ch + " $end\n");
}
write("$enddefinitions $end\n");
if (format == ANALOG)
{
write("$dumpvars\n");
//r0.0 N1X1
for (i = 0; i < channels.size(); i++)
write("r0.0 " + m_ids[i] + "\n");
write("$end\n");
}
}
void process(std::size_t chan, double time, double outsam)
{
if (time > m_last_time)
{
write("#" + plib::to_string(static_cast<std::int64_t>(m_last_time * 1e9)) + " ");
write(m_buf + "\n");
m_buf = "";
m_last_time = time;
}
if (m_format == ANALOG)
m_buf += "r" + plib::to_string(outsam)+ " " + m_ids[chan] + " ";
else
{
if (outsam >= m_high_level)
m_buf += "1" + m_ids[chan] + " ";
else if (outsam <= m_low_level)
m_buf += "0" + m_ids[chan] + " ";
}
}
private:
void write(const pstring &line)
{
m_fo.write(line.c_str(), static_cast<std::streamsize>(plib::strlen(line.c_str())));
}
std::size_t m_channels;
double m_last_time;
std::ostream &m_fo;
std::vector<pstring> m_ids;
pstring m_buf;
double m_high_level;
double m_low_level;
format_e m_format;
};
class tabwriter
{
public:
enum format_e
{
DIGITAL,
ANALOG
};
tabwriter(std::ostream &fo, const std::vector<pstring> &channels,
double start, double inc, std::size_t samples)
: m_last_time(0)
, m_next_time(start)
, m_fo(fo)
, m_inc(inc)
, m_samples(samples)
, m_buf(channels.size())
, m_n(0)
{
}
void process(std::size_t chan, double time, double outsam)
{
if (time > m_last_time)
{
if (m_n < m_samples)
{
while (m_next_time < time && m_n < m_samples)
{
pstring o;
for (auto &e : m_buf)
{
o += pstring(",") + plib::to_string(e); // FIXME: locale!!
}
write(o.substr(1) + "\n");
m_n++;
m_next_time += m_inc;
}
}
m_last_time = time;
}
m_buf[chan] = outsam;
}
private:
void write(const pstring &line)
{
m_fo.write(line.c_str(), static_cast<std::streamsize>(plib::strlen(line.c_str())));
}
double m_last_time;
double m_next_time;
std::ostream &m_fo;
std::vector<pstring> m_ids;
double m_inc;
std::size_t m_samples;
std::vector<double> m_buf;
std::size_t m_n;
};
class nlwav_app : public plib::app
{
public:
nlwav_app() :
plib::app(),
opt_fmt(*this, "f", "format", 0, std::vector<pstring>({"wav","vcda","vcdd", "tab"}),
"output format. Available options are wav|vcda|vcdd|tab."
" wav : multichannel wav output"
" vcda : analog VCD output"
" vcdd : digital VCD output"
" tab : sampled output"
" Digital signals are created using the --high and --low options"
),
opt_out(*this, "o", "output", "-", "output file"),
opt_grp1(*this, "wav options", "These options apply to wav output only"),
opt_rate(*this, "r", "rate", 48000, "sample rate of output file"),
opt_amp(*this, "a", "amp", 10000.0, "amplification after mean correction"),
opt_grp2(*this, "vcdd options", "These options apply to vcdd output only"),
opt_high(*this, "u", "high", 2.0, "minimum input for high level"),
opt_low(*this, "l", "low", 1.0, "maximum input for low level"),
opt_grp3(*this, "tab options", "These options apply to sampled output only"),
opt_start(*this, "s", "start", 0.0, "time when sampling starts"),
opt_inc(*this, "i", "increment", 0.001, "time between samples"),
opt_samples(*this, "n", "samples", 1000000,"number of samples"),
opt_grp4(*this, "General options", "These options always apply"),
opt_verb(*this, "v", "verbose", "be verbose - this produces lots of output"),
opt_quiet(*this,"q", "quiet", "be quiet - no warnings"),
opt_args(*this, "input file(s)"),
opt_version(*this, "", "version", "display version and exit"),
opt_help(*this, "h", "help", "display help and exit"),
opt_ex1(*this, "./nlwav -f vcdd -o x.vcd log_V*",
"convert all files starting with \"log_V\" into a digital vcd file"),
opt_ex2(*this, "./nlwav -f wav -o x.wav log_V*",
"convert all files starting with \"log_V\" into a multichannel wav file"),
opt_ex3(*this, "./nlwav -f tab -o x.tab -s 0.0000005 -i 0.000001 -n 256 log_BLUE.log",
"convert file log_BLUE.log to sampled output. First sample at 500ns "
"followed by 255 samples every micro-second.")
{}
int execute() override;
pstring usage() override;
private:
void convert_wav(std::ostream &ostrm);
void convert_vcd(std::ostream &ostrm, vcdwriter::format_e format);
void convert_tab(std::ostream &ostrm);
void convert(const pstring &outname);
plib::option_str_limit<unsigned> opt_fmt;
plib::option_str opt_out;
plib::option_group opt_grp1;
plib::option_num<std::size_t> opt_rate;
plib::option_num<double> opt_amp;
plib::option_group opt_grp2;
plib::option_num<double> opt_high;
plib::option_num<double> opt_low;
plib::option_group opt_grp3;
plib::option_num<double> opt_start;
plib::option_num<double> opt_inc;
plib::option_num<std::size_t> opt_samples;
plib::option_group opt_grp4;
plib::option_bool opt_verb;
plib::option_bool opt_quiet;
plib::option_args opt_args;
plib::option_bool opt_version;
plib::option_bool opt_help;
plib::option_example opt_ex1;
plib::option_example opt_ex2;
plib::option_example opt_ex3;
std::vector<plib::unique_ptr<std::istream>> m_instrms;
};
void nlwav_app::convert_wav(std::ostream &ostrm)
{
double dt = plib::reciprocal(static_cast<double>(opt_rate()));
plib::unique_ptr<wavwriter> wo = plib::make_unique<wavwriter>(ostrm, opt_out() != "-", m_instrms.size(), opt_rate(), opt_amp());
plib::unique_ptr<aggregator> ago = plib::make_unique<aggregator>(m_instrms.size(), dt, aggregator::callback_type(&wavwriter::process, wo.get()));
aggregator::callback_type agcb = log_processor::callback_type(&aggregator::process, ago.get());
log_processor lp(m_instrms.size(), agcb);
lp.process(m_instrms);
if (!opt_quiet())
{
#if 0
perr("Mean (low freq filter): {}\n", wo->mean);
perr("Mean (static): {}\n", wo->means / static_cast<double>(wo->m_n));
perr("Amp + {}\n", 32000.0 / (wo->maxsam - wo->mean));
perr("Amp - {}\n", -32000.0 / (wo->minsam - wo->mean));
#endif
}
}
void nlwav_app::convert_vcd(std::ostream &ostrm, vcdwriter::format_e format)
{
plib::unique_ptr<vcdwriter> wo = plib::make_unique<vcdwriter>(ostrm, opt_args(),
format, opt_high(), opt_low());
log_processor::callback_type agcb = log_processor::callback_type(&vcdwriter::process, wo.get());
log_processor lp(m_instrms.size(), agcb);
lp.process(m_instrms);
if (!opt_quiet())
{
#if 0
perr("Mean (low freq filter): {}\n", wo->mean);
perr("Mean (static): {}\n", wo->means / static_cast<double>(wo->m_n));
perr("Amp + {}\n", 32000.0 / (wo->maxsam - wo->mean));
perr("Amp - {}\n", -32000.0 / (wo->minsam - wo->mean));
#endif
}
}
void nlwav_app::convert_tab(std::ostream &ostrm)
{
auto wo = plib::make_unique<tabwriter>(ostrm, opt_args(),
opt_start(), opt_inc(), opt_samples());
log_processor::callback_type agcb = log_processor::callback_type(&tabwriter::process, wo.get());
log_processor lp(m_instrms.size(), agcb);
lp.process(m_instrms);
}
pstring nlwav_app::usage()
{
return help("Convert netlist log files into wav files.\n",
"nlwav [OPTION] ... [FILE] ...");
}
template <typename F>
static void open_ostream_and_exec(pstring fname, bool binary, F func)
{
if (fname != "-")
{
// FIXME: binary depends on format!
auto outstrm(std::ofstream(plib::filesystem::u8path(fname),
binary ? (std::ios::out | std::ios::binary) : std::ios::out));
if (outstrm.fail())
throw plib::file_open_e(fname);
outstrm.imbue(std::locale::classic());
func(outstrm);
}
else
{
std::cout.imbue(std::locale::classic());
func(std::cout);
}
}
void nlwav_app::convert(const pstring &outname)
{
switch (opt_fmt())
{
case 0:
open_ostream_and_exec(outname, true, [this](std::ostream &ostrm) { convert_wav(ostrm); });
break;
case 1:
open_ostream_and_exec(outname, false, [this](std::ostream &ostrm) { convert_vcd(ostrm, vcdwriter::ANALOG); });
break;
case 2:
open_ostream_and_exec(outname, false, [this](std::ostream &ostrm) { convert_vcd(ostrm, vcdwriter::DIGITAL); });
break;
case 3:
open_ostream_and_exec(outname, false, [this](std::ostream &ostrm) { convert_tab(ostrm); });
break;
default:
// tease compiler - can't happen
break;
}
}
int nlwav_app::execute()
{
if (opt_help())
{
pout(usage());
return 0;
}
if (opt_version())
{
pout(
"nlwav (netlist) 0.1\n"
"Copyright (C) 2020 Couriersud\n"
"License GPLv2+: GNU GPL version 2 or later <http://gnu.org/licenses/gpl.html>.\n"
"This is free software: you are free to change and redistribute it.\n"
"There is NO WARRANTY, to the extent permitted by law.\n\n"
"Written by Couriersud.\n");
return 0;
}
for (const auto &oi: opt_args())
{
plib::unique_ptr<std::istream> fin;
if (oi == "-")
{
auto temp(plib::make_unique<std::stringstream>());
plib::copystream(*temp, std::cin);
fin = std::move(temp);
}
else
fin = plib::make_unique<std::ifstream>(plib::filesystem::u8path(oi));
fin->imbue(std::locale::classic());
m_instrms.push_back(std::move(fin));
}
convert(opt_out());
return 0;
}
PMAIN(nlwav_app)
//
// Der Daten-Abschnitt enth??lt die Abtastwerte:
// Offset L??nge Inhalt Beschreibung
// 36 (0x24) 4 'data' Header-Signatur
// 40 (0x28) 4 <length> L??nge des Datenblocks, max. <Dateigr????e>?????????44
//
// 0 (0x00) char 4 'RIFF'
// 4 (0x04) unsigned 4 <Dateigr????e>?????????8
// 8 (0x08) char 4 'WAVE'
//
// Der fmt-Abschnitt (24 Byte) beschreibt das Format der einzelnen Abtastwerte:
// Offset L??nge Inhalt Beschreibung
// 12 (0x0C) 4 'fmt ' Header-Signatur (folgendes Leerzeichen beachten)
// 16 (0x10) 4 <fmt length> L??nge des restlichen fmt-Headers (16 Bytes)
// 20 (0x14) 2 <format tag> Datenformat der Abtastwerte (siehe separate Tabelle weiter unten)
// 22 (0x16) 2 <channels> Anzahl der Kan??le: 1 = mono, 2 = stereo; mittlerweile sind auch mehr als 2 Kan??le (z. B. f??r Raumklang) m??glich.[2]
// 24 (0x18) 4 <sample rate> Samples pro Sekunde je Kanal (z. B. 44100)
// 28 (0x1C) 4 <bytes/second> Abtastrate????????Frame-Gr????e
// 32 (0x20) 2 <block align> Frame-Gr????e = <Anzahl der Kan??le>????????((<Bits/Sample (eines Kanals)>???+???7)???/???8) (Division ohne Rest)
// 34 (0x22) 2 <bits/sample> Anzahl der Datenbits pro Samplewert je Kanal (z. B. 12)
//
|