summaryrefslogtreecommitdiffstatshomepage
path: root/src/lib/netlist/plib/prandom.h
blob: 5aebb9ccca483fc9ddc0e284ec199932515f8969 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// license:GPL-2.0+
// copyright-holders:Couriersud

#ifndef PRANDOM_H_
#define PRANDOM_H_

///
/// \file pmath.h
///

#include "pconfig.h"
#include "ptypes.h"

//#include <algorithm>
//#include <cmath>
//#include <type_traits>
#include <array>

namespace plib
{

	/// \brief Mersenne Twister implementation which is state saveable
	///
	/// This is a Mersenne Twister implementation which is state saveable.
	/// It has been written following this wikipedia entry:
	///
	/// 	https://en.wikipedia.org/wiki/Mersenne_Twister
	///
	/// The implementation has basic support for the interface described here
	///
	/// 	https://en.cppreference.com/w/cpp/numeric/random/mersenne_twister_engine
	///
	/// so that it can be used with the C++11 random environment
	///
	template<typename T,
		std::size_t w, std::size_t N, std::size_t m, std::size_t r,
		T a,
		std::size_t u, T d,
		std::size_t s, T b,
		std::size_t t, T c,
		std::size_t l, T f>
	class mersenne_twister_t
	{
	public:

		mersenne_twister_t()
		: m_p(N)
		{
			seed(5489);
		}

		static constexpr T min() noexcept { return static_cast<T>(0); }
		static constexpr T max() noexcept { return ~T(0) >> (sizeof(T)*8 - w); }

		template <typename ST, typename STR>
		void save_state(ST &st, const STR &name)
		{
			st.save_item(m_p, name, "index");
			st.save_item(m_mt, name, "mt");
		}

		void seed(T val) noexcept
		{
			const T lowest_w(~T(0) >> (sizeof(T)*8 - w));
			m_p = N;
			m_mt[0] = val;
			for (std::size_t i=1; i< N; i++)
				m_mt[i] = (f * (m_mt[i-1] ^ (m_mt[i-1] >> (w-2))) + i) & lowest_w;
		}

		T operator()() noexcept
		{
			const T lowest_w(~T(0) >> (sizeof(T)*8 - w));
			if (m_p >= N)
				twist();

			T y = m_mt[m_p++];
			y = y ^ ((y >> u) & d);
			y = y ^ ((y << s) & b);
			y = y ^ ((y << t) & c);
			y = y ^ (y >> l);

			return y & lowest_w;
		}

		void discard(std::size_t v) noexcept
		{
			if  (v > N - m_p)
			{
				v -= N - m_p;
				twist();
			}
			while (v > N)
			{
				v -= N;
				twist();
			}
			m_p += v;
		}

	private:
		void twist()
		{
			const T lowest_w(~T(0) >> (sizeof(T)*8 - w));
			const T lower_mask((static_cast<T>(1) << r) - 1); // That is, the binary number of r 1's
			const T upper_mask((~lower_mask) & lowest_w);

			for (std::size_t i=0; i<N; i++)
			{
				const T x((m_mt[i] & upper_mask) + (m_mt[(i+1) % N] & lower_mask));
				const T xA((x >> 1) ^ ((x & 1) ? a : 0));
				m_mt[i] = m_mt[(i + m) % N] ^ xA;
			 }
			m_p = 0;
		}

		std::size_t m_p;
		std::array<T, N> m_mt;
	};

	template <typename FT, typename T>
	FT normalize_uniform(T &p, FT m = constants<FT>::one(), FT b = constants<FT>::zero())
	{
		const auto mmin(static_cast<FT>(p.min()));
		const auto mmax(static_cast<FT>(p.max()));
		// -> 0 to a
		return (p() - mmin) / (mmax - mmin) * m - b;
	}

	template<typename FT>
	class uniform_distribution_t
	{
	public:
		uniform_distribution_t(FT dev)
		: m_stddev(dev) { }

		template <typename P>
		FT operator()(P &p) noexcept
		{
			// get -1 to 1
			return normalize_uniform(p, constants<FT>::two(), constants<FT>::one())
				* constants<FT>::sqrt3() * m_stddev;
		}

		template <typename ST, typename STR>
		void save_state(ST &st, const STR &name)
		{
			/* no state to save */
		}

	private:
		FT m_stddev;
	};

	template<typename FT>
	class normal_distribution_t
	{
	public:
		normal_distribution_t(FT dev)
		: m_p(m_buf.size()), m_stddev(dev) { }

		// Donald Knuth, Algorithm P (Polar method)

		template <typename P>
		FT operator()(P &p) noexcept
		{
			if (m_p >= m_buf.size())
				fill(p);
			return m_buf[m_p++];
		}

		template <typename ST, typename STR>
		void save_state(ST &st, const STR &name)
		{
			st.save_item(m_p, name, "m_p");
			st.save_item(m_buf, name, "m_buf");
		}

	private:

		template <typename P>
		void fill(P &p) noexcept
		{
			for (std::size_t i = 0; i < m_buf.size(); i += 2)
			{
				FT s;
				FT v1;
				FT v2;
			    do
			    {
			        v1 = normalize_uniform(p, constants<FT>::two(), constants<FT>::one()); // [-1..1[
			        v2 = normalize_uniform(p, constants<FT>::two(), constants<FT>::one()); // [-1..1[
			        s = v1 * v1 + v2 * v2;
			    } while (s >= constants<FT>::one());
			    if (s == constants<FT>::zero())
			    {
			    	m_buf[i] = s;
			    	m_buf[i+1] = s;
			    }
			    else
			    {
			    	// last value with error for log(s)/s
			    	// double: 1.000000e-305
			    	// float: 9.999999e-37
			    	// FIXME: with 128 bit randoms log(s)/w will fail 1/(2^128) ~ 2.9e-39
			    	const auto m(m_stddev * plib::sqrt(-constants<FT>::two() * plib::log(s)/s));
			    	m_buf[i] = /*mean+*/ m * v1;
			    	m_buf[i+1] = /*mean+*/ m * v2;
			    }
			}
			m_p = 0;
		}

		std::array<FT, 256> m_buf;
		std::size_t m_p;
		FT m_stddev;
	};

	using mt19937_64 = mersenne_twister_t<
		uint_fast64_t,
		64, 312, 156, 31,
		0xb5026f5aa96619e9ULL,
		29, 0x5555555555555555ULL,
		17, 0x71d67fffeda60000ULL,
		37, 0xfff7eee000000000ULL,
		43,
		6364136223846793005ULL>;

} // namespace plib

#endif // PRANDOM_H_