1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
// license:CC0
// copyright-holders:Couriersud
/*
* opamp.c
*
*/
#include "netlist/devices/net_lib.h"
NETLIST_START(main)
/* Standard stuff */
CLOCK(clk, 1000) // 1000 Hz
SOLVER(Solver, 480000)
PARAM(Solver.ACCURACY, 1e-10)
PARAM(Solver.NR_LOOPS, 30000 )
//PARAM(Solver.CONVERG, 1.0)
PARAM(Solver.GS_LOOPS, 30)
// Tie up +5 to opamps thought it's not currently needed
// Stay compatible
ANALOG_INPUT(V5, 5)
NET_C(op.VCC, V5)
NET_C(op1.VCC, V5)
/* Opamp wired as impedance changer */
SUBMODEL(opamp, op)
NET_C(op.GND, GND)
NET_C(op.PLUS, clk)
NET_C(op.MINUS, op.OUT)
SUBMODEL(opamp, op1)
/* Wired as inverting amplifier connected to output of first opamp */
RES(R1, 100000)
RES(R2, 200000)
NET_C(op1.GND, GND)
NET_C(op1.PLUS, GND)
NET_C(op1.MINUS, R2.2)
NET_C(op1.MINUS, R1.2)
NET_C(op.OUT, R1.1)
NET_C(op1.OUT, R2.1)
RES(RL, 1000)
NET_C(RL.2, GND)
NET_C(RL.1, op1.OUT)
LOG(log_X, op1.OUT)
LOG(log_Y, clk)
NETLIST_END()
NETLIST_START(opamp)
/* Opamp model from
*
* http://www.ecircuitcenter.com/Circuits/opmodel1/opmodel1.htm
*
* Bandwidth 10Mhz
*
*/
/* Terminal definitions for calling netlists */
ALIAS(PLUS, G1.IP) // Positive input
ALIAS(MINUS, G1.IN) // Negative input
ALIAS(OUT, EBUF.OP) // Opamp output ...
ALIAS(GND, EBUF.ON) // GND terminal
ALIAS(VCC, DUMMY.I) // VCC terminal
DUMMY_INPUT(DUMMY)
/* The opamp model */
LVCCS(G1)
PARAM(G1.G, 0.0021)
PARAM(G1.CURLIM, 0.002)
RES(RP1, 1e7)
CAP(CP1, 0.00333e-6)
VCVS(EBUF)
PARAM(EBUF.RO, 50)
PARAM(EBUF.G, 1)
// NET_C(EBUF.ON, GND)
NET_C(G1.ON, GND)
NET_C(RP1.2, GND)
NET_C(CP1.2, GND)
NET_C(EBUF.IN, GND)
NET_C(RP1.1, G1.OP)
NET_C(CP1.1, RP1.1)
NET_C(EBUF.IP, RP1.1)
NETLIST_END()
NETLIST_START(opamp_mod)
/* Opamp model from
*
* http://www.ecircuitcenter.com/Circuits/opmodel1/opmodel1.htm
*
* MB3614 Unit Gain frequency is about 500 kHz and the first pole frequency
* about 5 Hz. We have to keep the Unity Gain Frequency below our sampling
* frequency of 24 Khz.
*
* Simple Opamp Model Calculation
*
* First Pole Frequency 5 Hz
* Unity Gain Frequency 11,000 Hz
* RP 100,000 Ohm
* DC Gain / Aol 2200
* CP 0.318 uF
* KG 0.022
*
*/
/* Terminal definitions for calling netlists */
ALIAS(PLUS, G1.IP) // Positive input
ALIAS(MINUS, G1.IN) // Negative input
ALIAS(OUT, EBUF.OP) // Opamp output ...
AFUNC(fUH, 1, "A0 1.2 -")
AFUNC(fUL, 1, "A0 1.2 +")
ALIAS(VCC, fUH.A0) // VCC terminal
ALIAS(GND, fUL.A0) // VGND terminal
AFUNC(fVREF, 2, "A0 A1 + 0.5 *")
NET_C(fUH.A0, fVREF.A0)
NET_C(fUL.A0, fVREF.A1)
NET_C(EBUF.ON, fVREF)
/* The opamp model */
LVCCS(G1)
PARAM(G1.RI, RES_K(1000))
#if 0
PARAM(G1.G, 0.0022)
RES(RP1, 1e6)
CAP(CP1, 0.0318e-6)
#else
PARAM(G1.G, 0.002)
PARAM(G1.CURLIM, 0.002)
RES(RP1, 9.5e6)
CAP(CP1, 0.0033e-6)
#endif
VCVS(EBUF)
PARAM(EBUF.RO, 50)
PARAM(EBUF.G, 1)
NET_C(G1.ON, fVREF)
NET_C(RP1.2, fVREF)
NET_C(CP1.2, fVREF)
NET_C(EBUF.IN, fVREF)
NET_C(RP1.1, G1.OP)
NET_C(CP1.1, RP1.1)
DIODE(DP,"D(IS=1e-15 N=1)")
DIODE(DN,"D(IS=1e-15 N=1)")
#if 1
NET_C(DP.K, fUH.Q)
NET_C(fUL.Q, DN.A)
NET_C(DP.A, DN.K, RP1.1)
#else
/*
* This doesn't add any performance by decreasing iteration loops.
* To the contrary, it significantly decreases iterations
*/
RES(RH1, 0.1)
RES(RL1, 0.1)
NET_C(DP.K, RH1.1)
NET_C(RH1.2, fUH.Q)
NET_C(fUL.Q, RL1.1)
NET_C(RL1.2, DN.A)
NET_C(DP.A, DN.K, RP1.1)
#endif
NET_C(EBUF.IP, RP1.1)
NETLIST_END()
|