1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
|
// license:GPL-2.0+
// copyright-holders:Couriersud
/*
* nld_system.c
*
*/
#include "../solver/nld_solver.h"
#include "../solver/nld_matrix_solver.h"
#include "nlid_system.h"
namespace netlist
{
namespace devices
{
// ----------------------------------------------------------------------------------------
// netlistparams
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// clock
// ----------------------------------------------------------------------------------------
NETLIB_UPDATE_PARAM(clock)
{
m_inc = netlist_time::from_double(1.0 / (m_freq() * 2.0));
}
NETLIB_UPDATE(clock)
{
m_Q.push(!m_feedback(), m_inc);
}
// ----------------------------------------------------------------------------------------
// extclock
// ----------------------------------------------------------------------------------------
NETLIB_RESET(extclock)
{
m_cnt = 0;
m_off = netlist_time::from_double(m_offset());
//m_Q.initial(0);
}
NETLIB_UPDATE(extclock)
{
m_Q.push((m_cnt & 1) ^ 1, m_inc[m_cnt] + m_off);
m_off = netlist_time::zero();
if (++m_cnt >= m_size)
m_cnt = 0;
}
// -----------------------------------------------------------------------------
// nld_res_sw
// -----------------------------------------------------------------------------
NETLIB_RESET(res_sw)
{
m_last_state = 0;
m_R.set_R(m_ROFF());
}
NETLIB_UPDATE(res_sw)
{
const netlist_sig_t state = m_I();
if (state != m_last_state)
{
m_last_state = state;
const nl_double R = state ? m_RON() : m_ROFF();
// We only need to update the net first if this is a time stepping net
if ((0)) // m_R->m_P.net().as_analog().solver()->is_timestep())
{
m_R.update();
m_R.set_R(R);
m_R.m_P.schedule_solve_after(NLTIME_FROM_NS(1));
}
else
{
m_R.set_R(R);
m_R.m_P.schedule_solve_after(NLTIME_FROM_NS(1));
//m_R->update();
}
}
}
/* -----------------------------------------------------------------------------
* nld_function
* ----------------------------------------------------------------------------- */
NETLIB_RESET(function)
{
//m_Q.initial(0.0);
}
NETLIB_UPDATE(function)
{
for (std::size_t i=0; i < static_cast<unsigned>(m_N()); i++)
{
m_vals[i] = (*m_I[i])();
}
m_Q.push(m_compiled.evaluate(m_vals));
}
NETLIB_DEVICE_IMPL(dummy_input, "DUMMY_INPUT", "")
NETLIB_DEVICE_IMPL(frontier, "FRONTIER_DEV", "+I,+G,+Q")
NETLIB_DEVICE_IMPL(function, "AFUNC", "N,FUNC")
NETLIB_DEVICE_IMPL(analog_input, "ANALOG_INPUT", "IN")
NETLIB_DEVICE_IMPL(clock, "CLOCK", "FREQ")
NETLIB_DEVICE_IMPL(extclock, "EXTCLOCK", "FREQ,PATTERN")
NETLIB_DEVICE_IMPL(res_sw, "RES_SWITCH", "+IN,+P1,+P2")
NETLIB_DEVICE_IMPL(mainclock, "MAINCLOCK", "FREQ")
NETLIB_DEVICE_IMPL(gnd, "GND", "")
NETLIB_DEVICE_IMPL(netlistparams, "PARAMETER", "")
NETLIB_DEVICE_IMPL(logic_input, "LOGIC_INPUT", "IN,FAMILY")
NETLIB_DEVICE_IMPL_ALIAS(logic_input_ttl, logic_input, "TTL_INPUT", "IN")
} //namespace devices
} // namespace netlist
|