1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
|
// license:GPL-2.0+
// copyright-holders:Couriersud
/*
* nld_bjt.c
*
*/
#include "solver/nld_solver.h"
#include "analog/nld_bjt.h"
#include "nl_setup.h"
NETLIB_NAMESPACE_DEVICES_START()
class diode
{
public:
diode() : m_Is(1e-15), m_VT(0.0258), m_VT_inv(1.0 / m_VT) {}
diode(const nl_double Is, const nl_double n)
{
m_Is = Is;
m_VT = 0.0258 * n;
m_VT_inv = 1.0 / m_VT;
}
void set(const nl_double Is, const nl_double n)
{
m_Is = Is;
m_VT = 0.0258 * n;
m_VT_inv = 1.0 / m_VT;
}
nl_double I(const nl_double V) const { return m_Is * nl_math::exp(V * m_VT_inv) - m_Is; }
nl_double g(const nl_double V) const { return m_Is * m_VT_inv * nl_math::exp(V * m_VT_inv); }
nl_double V(const nl_double I) const { return nl_math::e_log1p(I / m_Is) * m_VT; } // log1p(x)=log(1.0 + x)
nl_double gI(const nl_double I) const { return m_VT_inv * (I + m_Is); }
private:
nl_double m_Is;
nl_double m_VT;
nl_double m_VT_inv;
};
// ----------------------------------------------------------------------------------------
// nld_Q
// ----------------------------------------------------------------------------------------
NETLIB_NAME(Q)::NETLIB_NAME(Q)(const family_t afamily)
: device_t(afamily)
, m_qtype(BJT_NPN) { }
NETLIB_NAME(Q)::~NETLIB_NAME(Q)()
{
}
NETLIB_START(Q)
{
register_param("MODEL", m_model, "");
}
NETLIB_RESET(Q)
{
}
NETLIB_UPDATE(Q)
{
// netlist().solver()->schedule1();
}
// ----------------------------------------------------------------------------------------
// nld_QBJT_switch
// ----------------------------------------------------------------------------------------
NETLIB_START(QBJT_switch)
{
NETLIB_NAME(Q)::start();
register_terminal("B", m_RB.m_P);
register_terminal("E", m_RB.m_N);
register_terminal("C", m_RC.m_P);
register_terminal("_E1", m_RC.m_N);
register_terminal("_B1", m_BC_dummy.m_P);
register_terminal("_C1", m_BC_dummy.m_N);
connect_late(m_RB.m_N, m_RC.m_N);
connect_late(m_RB.m_P, m_BC_dummy.m_P);
connect_late(m_RC.m_P, m_BC_dummy.m_N);
save(NLNAME(m_state_on));
}
NETLIB_RESET(QBJT_switch)
{
NETLIB_NAME(Q)::reset();
m_state_on = 0;
m_RB.set(netlist().gmin(), 0.0, 0.0);
m_RC.set(netlist().gmin(), 0.0, 0.0);
m_BC_dummy.set(netlist().gmin() / 10.0, 0.0, 0.0);
}
NETLIB_UPDATE(QBJT_switch)
{
if (!m_RB.m_P.net().isRailNet())
m_RB.m_P.schedule_solve(); // Basis
else if (!m_RB.m_N.net().isRailNet())
m_RB.m_N.schedule_solve(); // Emitter
else if (!m_RC.m_P.net().isRailNet())
m_RC.m_P.schedule_solve(); // Collector
}
NETLIB_UPDATE_PARAM(QBJT_switch)
{
nl_double IS = m_model.model_value("IS");
nl_double BF = m_model.model_value("BF");
nl_double NF = m_model.model_value("NF");
//nl_double VJE = m_model.dValue("VJE", 0.75);
set_qtype((m_model.model_type() == "NPN") ? BJT_NPN : BJT_PNP);
nl_double alpha = BF / (1.0 + BF);
diode d(IS, NF);
// Assume 5mA Collector current for switch operation
m_V = d.V(0.005 / alpha);
/* Base current is 0.005 / beta
* as a rough estimate, we just scale the conductance down */
m_gB = 1.0 / (m_V/(0.005 / BF));
//m_gB = d.gI(0.005 / alpha);
if (m_gB < netlist().gmin())
m_gB = netlist().gmin();
m_gC = d.gI(0.005); // very rough estimate
}
NETLIB_UPDATE_TERMINALS(QBJT_switch)
{
const nl_double m = (is_qtype( BJT_NPN) ? 1 : -1);
const int new_state = (m_RB.deltaV() * m > m_V ) ? 1 : 0;
if (m_state_on ^ new_state)
{
const nl_double gb = new_state ? m_gB : netlist().gmin();
const nl_double gc = new_state ? m_gC : netlist().gmin();
const nl_double v = new_state ? m_V * m : 0;
m_RB.set(gb, v, 0.0);
m_RC.set(gc, 0.0, 0.0);
//m_RB.update_dev();
//m_RC.update_dev();
m_state_on = new_state;
}
}
// ----------------------------------------------------------------------------------------
// nld_Q - Ebers Moll
// ----------------------------------------------------------------------------------------
NETLIB_START(QBJT_EB)
{
NETLIB_NAME(Q)::start();
register_terminal("E", m_D_EB.m_P); // Cathode
register_terminal("B", m_D_EB.m_N); // Anode
register_terminal("C", m_D_CB.m_P); // Cathode
register_terminal("_B1", m_D_CB.m_N); // Anode
register_terminal("_E1", m_D_EC.m_P);
register_terminal("_C1", m_D_EC.m_N);
connect_late(m_D_EB.m_P, m_D_EC.m_P);
connect_late(m_D_EB.m_N, m_D_CB.m_N);
connect_late(m_D_CB.m_P, m_D_EC.m_N);
m_gD_BE.save("m_D_BE", *this);
m_gD_BC.save("m_D_BC", *this);
}
NETLIB_UPDATE(QBJT_EB)
{
if (!m_D_EB.m_P.net().isRailNet())
m_D_EB.m_P.schedule_solve(); // Basis
else if (!m_D_EB.m_N.net().isRailNet())
m_D_EB.m_N.schedule_solve(); // Emitter
else
m_D_CB.m_N.schedule_solve(); // Collector
}
NETLIB_RESET(QBJT_EB)
{
NETLIB_NAME(Q)::reset();
}
NETLIB_UPDATE_TERMINALS(QBJT_EB)
{
const nl_double polarity = (qtype() == BJT_NPN ? 1.0 : -1.0);
m_gD_BE.update_diode(-m_D_EB.deltaV() * polarity);
m_gD_BC.update_diode(-m_D_CB.deltaV() * polarity);
const nl_double gee = m_gD_BE.G();
const nl_double gcc = m_gD_BC.G();
const nl_double gec = m_alpha_r * gcc;
const nl_double gce = m_alpha_f * gee;
const nl_double sIe = -m_gD_BE.I() + m_alpha_r * m_gD_BC.I();
const nl_double sIc = m_alpha_f * m_gD_BE.I() - m_gD_BC.I();
const nl_double Ie = (sIe + gee * m_gD_BE.Vd() - gec * m_gD_BC.Vd()) * polarity;
const nl_double Ic = (sIc - gce * m_gD_BE.Vd() + gcc * m_gD_BC.Vd()) * polarity;
m_D_EB.set_mat(gee, gec - gee, gce - gee, gee - gec, Ie, -Ie);
m_D_CB.set_mat(gcc, gce - gcc, gec - gcc, gcc - gce, Ic, -Ic);
m_D_EC.set_mat( 0, -gec, -gce, 0, 0, 0);
}
NETLIB_UPDATE_PARAM(QBJT_EB)
{
nl_double IS = m_model.model_value("IS");
nl_double BF = m_model.model_value("BF");
nl_double NF = m_model.model_value("NF");
nl_double BR = m_model.model_value("BR");
nl_double NR = m_model.model_value("NR");
//nl_double VJE = m_model.dValue("VJE", 0.75);
set_qtype((m_model.model_type() == "NPN") ? BJT_NPN : BJT_PNP);
m_alpha_f = BF / (1.0 + BF);
m_alpha_r = BR / (1.0 + BR);
m_gD_BE.set_param(IS / m_alpha_f, NF, netlist().gmin());
m_gD_BC.set_param(IS / m_alpha_r, NR, netlist().gmin());
}
NETLIB_NAMESPACE_DEVICES_END()
|