1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
// license:BSD-3-Clause
// copyright-holders:Aaron Giles
/***************************************************************************
memarray.c
Generic memory array accessor helper.
***************************************************************************/
#include "emu.h"
//**************************************************************************
// MEMORY ARRAY HELPER
//**************************************************************************
//-------------------------------------------------
// memory_array - constructor
//-------------------------------------------------
memory_array::memory_array()
: m_base(NULL),
m_bytes(0),
m_membits(0),
m_endianness(ENDIANNESS_LITTLE),
m_bytes_per_entry(0),
m_reader(NULL),
m_writer(NULL)
{
}
//-------------------------------------------------
// set - configure the parameters
//-------------------------------------------------
void memory_array::set(void *base, UINT32 bytes, int membits, endianness_t endianness, int bpe)
{
// validate inputs
assert(base != NULL);
assert(bytes > 0);
assert(membits == 8 || membits == 16 || membits == 32 || membits == 64);
assert(bpe == 1 || bpe == 2 || bpe == 4);
// populate direct data
m_base = base;
m_bytes = bytes;
m_membits = membits;
m_endianness = endianness;
m_bytes_per_entry = bpe;
// derive data
switch (bpe*1000 + membits*10 + endianness)
{
case 1*1000 + 8*10 + ENDIANNESS_LITTLE: m_reader = &memory_array::read8_from_8; m_writer = &memory_array::write8_to_8; break;
case 1*1000 + 8*10 + ENDIANNESS_BIG: m_reader = &memory_array::read8_from_8; m_writer = &memory_array::write8_to_8; break;
case 1*1000 + 16*10 + ENDIANNESS_LITTLE: m_reader = &memory_array::read8_from_16le; m_writer = &memory_array::write8_to_16le; break;
case 1*1000 + 16*10 + ENDIANNESS_BIG: m_reader = &memory_array::read8_from_16be; m_writer = &memory_array::write8_to_16be; break;
case 1*1000 + 32*10 + ENDIANNESS_LITTLE: m_reader = &memory_array::read8_from_32le; m_writer = &memory_array::write8_to_32le; break;
case 1*1000 + 32*10 + ENDIANNESS_BIG: m_reader = &memory_array::read8_from_32be; m_writer = &memory_array::write8_to_32be; break;
case 1*1000 + 64*10 + ENDIANNESS_LITTLE: m_reader = &memory_array::read8_from_64le; m_writer = &memory_array::write8_to_64le; break;
case 1*1000 + 64*10 + ENDIANNESS_BIG: m_reader = &memory_array::read8_from_64be; m_writer = &memory_array::write8_to_64be; break;
case 2*1000 + 8*10 + ENDIANNESS_LITTLE: m_reader = &memory_array::read16_from_8le; m_writer = &memory_array::write16_to_8le; break;
case 2*1000 + 8*10 + ENDIANNESS_BIG: m_reader = &memory_array::read16_from_8be; m_writer = &memory_array::write16_to_8be; break;
case 2*1000 + 16*10 + ENDIANNESS_LITTLE: m_reader = &memory_array::read16_from_16; m_writer = &memory_array::write16_to_16; break;
case 2*1000 + 16*10 + ENDIANNESS_BIG: m_reader = &memory_array::read16_from_16; m_writer = &memory_array::write16_to_16; break;
case 2*1000 + 32*10 + ENDIANNESS_LITTLE: m_reader = &memory_array::read16_from_32le; m_writer = &memory_array::write16_to_32le; break;
case 2*1000 + 32*10 + ENDIANNESS_BIG: m_reader = &memory_array::read16_from_32be; m_writer = &memory_array::write16_to_32be; break;
case 2*1000 + 64*10 + ENDIANNESS_LITTLE: m_reader = &memory_array::read16_from_64le; m_writer = &memory_array::write16_to_64le; break;
case 2*1000 + 64*10 + ENDIANNESS_BIG: m_reader = &memory_array::read16_from_64be; m_writer = &memory_array::write16_to_64be; break;
case 4*1000 + 8*10 + ENDIANNESS_LITTLE: m_reader = &memory_array::read32_from_8le; m_writer = &memory_array::write32_to_8le; break;
case 4*1000 + 8*10 + ENDIANNESS_BIG: m_reader = &memory_array::read32_from_8be; m_writer = &memory_array::write32_to_8be; break;
case 4*1000 + 16*10 + ENDIANNESS_LITTLE: m_reader = &memory_array::read32_from_16le; m_writer = &memory_array::write32_to_16le; break;
case 4*1000 + 16*10 + ENDIANNESS_BIG: m_reader = &memory_array::read32_from_16be; m_writer = &memory_array::write32_to_16be; break;
case 4*1000 + 32*10 + ENDIANNESS_LITTLE: m_reader = &memory_array::read32_from_32; m_writer = &memory_array::write32_to_32; break;
case 4*1000 + 32*10 + ENDIANNESS_BIG: m_reader = &memory_array::read32_from_32; m_writer = &memory_array::write32_to_32; break;
case 4*1000 + 64*10 + ENDIANNESS_LITTLE: m_reader = &memory_array::read32_from_64le; m_writer = &memory_array::write32_to_64le; break;
case 4*1000 + 64*10 + ENDIANNESS_BIG: m_reader = &memory_array::read32_from_64be; m_writer = &memory_array::write32_to_64be; break;
default: throw emu_fatalerror("Illegal memory bits/bus width combo in memory_array");
}
}
//-------------------------------------------------
// set - additional setter variants
//-------------------------------------------------
void memory_array::set(const address_space &space, void *base, UINT32 bytes, int bpe)
{
set(base, bytes, space.data_width(), space.endianness(), bpe);
}
void memory_array::set(const memory_share &share, int bpe)
{
set(share.ptr(), share.bytes(), share.width(), share.endianness(), bpe);
}
void memory_array::set(const memory_array &helper)
{
set(helper.base(), helper.bytes(), helper.membits(), helper.endianness(), helper.bytes_per_entry());
}
//-------------------------------------------------
// read8_from_*/write8_to_* - entry read/write
// heleprs for 1 byte-per-entry
//-------------------------------------------------
UINT32 memory_array::read8_from_8(int index) { return reinterpret_cast<UINT8 *>(m_base)[index]; }
void memory_array::write8_to_8(int index, UINT32 data) { reinterpret_cast<UINT8 *>(m_base)[index] = data; }
UINT32 memory_array::read8_from_16le(int index) { return reinterpret_cast<UINT8 *>(m_base)[BYTE_XOR_LE(index)]; }
void memory_array::write8_to_16le(int index, UINT32 data) { reinterpret_cast<UINT8 *>(m_base)[BYTE_XOR_LE(index)] = data; }
UINT32 memory_array::read8_from_16be(int index) { return reinterpret_cast<UINT8 *>(m_base)[BYTE_XOR_BE(index)]; }
void memory_array::write8_to_16be(int index, UINT32 data) { reinterpret_cast<UINT8 *>(m_base)[BYTE_XOR_BE(index)] = data; }
UINT32 memory_array::read8_from_32le(int index) { return reinterpret_cast<UINT8 *>(m_base)[BYTE4_XOR_BE(index)]; }
void memory_array::write8_to_32le(int index, UINT32 data) { reinterpret_cast<UINT8 *>(m_base)[BYTE4_XOR_BE(index)] = data; }
UINT32 memory_array::read8_from_32be(int index) { return reinterpret_cast<UINT8 *>(m_base)[BYTE4_XOR_BE(index)]; }
void memory_array::write8_to_32be(int index, UINT32 data) { reinterpret_cast<UINT8 *>(m_base)[BYTE4_XOR_BE(index)] = data; }
UINT32 memory_array::read8_from_64le(int index) { return reinterpret_cast<UINT8 *>(m_base)[BYTE8_XOR_BE(index)]; }
void memory_array::write8_to_64le(int index, UINT32 data) { reinterpret_cast<UINT8 *>(m_base)[BYTE8_XOR_BE(index)] = data; }
UINT32 memory_array::read8_from_64be(int index) { return reinterpret_cast<UINT8 *>(m_base)[BYTE8_XOR_BE(index)]; }
void memory_array::write8_to_64be(int index, UINT32 data) { reinterpret_cast<UINT8 *>(m_base)[BYTE8_XOR_BE(index)] = data; }
//-------------------------------------------------
// read16_from_*/write16_to_* - entry read/write
// heleprs for 2 bytes-per-entry
//-------------------------------------------------
UINT32 memory_array::read16_from_8le(int index) { return read8_from_8(index*2) | (read8_from_8(index*2+1) << 8); }
void memory_array::write16_to_8le(int index, UINT32 data) { write8_to_8(index*2, data); write8_to_8(index*2+1, data >> 8); }
UINT32 memory_array::read16_from_8be(int index) { return (read8_from_8(index*2) << 8) | read8_from_8(index*2+1); }
void memory_array::write16_to_8be(int index, UINT32 data) { write8_to_8(index*2, data >> 8); write8_to_8(index*2+1, data); }
UINT32 memory_array::read16_from_16(int index) { return reinterpret_cast<UINT16 *>(m_base)[index]; }
void memory_array::write16_to_16(int index, UINT32 data) { reinterpret_cast<UINT16 *>(m_base)[index] = data; }
UINT32 memory_array::read16_from_32le(int index) { return reinterpret_cast<UINT16 *>(m_base)[BYTE_XOR_LE(index)]; }
void memory_array::write16_to_32le(int index, UINT32 data) { reinterpret_cast<UINT16 *>(m_base)[BYTE_XOR_LE(index)] = data; }
UINT32 memory_array::read16_from_32be(int index) { return reinterpret_cast<UINT16 *>(m_base)[BYTE_XOR_BE(index)]; }
void memory_array::write16_to_32be(int index, UINT32 data) { reinterpret_cast<UINT16 *>(m_base)[BYTE_XOR_BE(index)] = data; }
UINT32 memory_array::read16_from_64le(int index) { return reinterpret_cast<UINT16 *>(m_base)[BYTE4_XOR_LE(index)]; }
void memory_array::write16_to_64le(int index, UINT32 data) { reinterpret_cast<UINT16 *>(m_base)[BYTE4_XOR_LE(index)] = data; }
UINT32 memory_array::read16_from_64be(int index) { return reinterpret_cast<UINT16 *>(m_base)[BYTE4_XOR_BE(index)]; }
void memory_array::write16_to_64be(int index, UINT32 data) { reinterpret_cast<UINT16 *>(m_base)[BYTE4_XOR_BE(index)] = data; }
//-------------------------------------------------
// read32_from_*/write32_to_* - entry read/write
// heleprs for 4 bytes-per-entry
//-------------------------------------------------
UINT32 memory_array::read32_from_8le(int index) { return read16_from_8le(index*2) | (read16_from_8le(index*2+1) << 16); }
void memory_array::write32_to_8le(int index, UINT32 data) { write16_to_8le(index*2, data); write16_to_8le(index*2+1, data >> 16); }
UINT32 memory_array::read32_from_8be(int index) { return (read16_from_8be(index*2) << 16) | read16_from_8be(index*2+1); }
void memory_array::write32_to_8be(int index, UINT32 data) { write16_to_8be(index*2, data >> 16); write16_to_8be(index*2+1, data); }
UINT32 memory_array::read32_from_16le(int index) { return read16_from_16(index*2) | (read16_from_16(index*2+1) << 16); }
void memory_array::write32_to_16le(int index, UINT32 data) { write16_to_16(index*2, data); write16_to_16(index*2+1, data >> 16); }
UINT32 memory_array::read32_from_16be(int index) { return (read16_from_16(index*2) << 16) | read16_from_16(index*2+1); }
void memory_array::write32_to_16be(int index, UINT32 data) { write16_to_16(index*2, data >> 16); write16_to_16(index*2+1, data); }
UINT32 memory_array::read32_from_32(int index) { return reinterpret_cast<UINT32 *>(m_base)[index]; }
void memory_array::write32_to_32(int index, UINT32 data) { reinterpret_cast<UINT32 *>(m_base)[index] = data; }
UINT32 memory_array::read32_from_64le(int index) { return reinterpret_cast<UINT32 *>(m_base)[BYTE_XOR_LE(index)]; }
void memory_array::write32_to_64le(int index, UINT32 data) { reinterpret_cast<UINT32 *>(m_base)[BYTE_XOR_LE(index)] = data; }
UINT32 memory_array::read32_from_64be(int index) { return reinterpret_cast<UINT32 *>(m_base)[BYTE_XOR_BE(index)]; }
void memory_array::write32_to_64be(int index, UINT32 data) { reinterpret_cast<UINT32 *>(m_base)[BYTE_XOR_BE(index)] = data; }
|