1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
|
/***************************************************************************
digfx.c
Device graphics interfaces.
***************************************************************************/
#include "emu.h"
#include "validity.h"
//**************************************************************************
// DEVICE GFX INTERFACE
//**************************************************************************
//-------------------------------------------------
// device_gfx_interface - constructor
//-------------------------------------------------
device_gfx_interface::device_gfx_interface(const machine_config &mconfig, device_t &device,
const gfx_decode_entry *gfxinfo, const char *palette_tag)
: device_interface(device),
m_gfxdecodeinfo(gfxinfo),
m_palette_tag(palette_tag),
m_palette_is_sibling(palette_tag == NULL),
m_decoded(false)
{
}
//-------------------------------------------------
// ~device_gfx_interface - destructor
//-------------------------------------------------
device_gfx_interface::~device_gfx_interface()
{
}
//-------------------------------------------------
// static_set_info: configuration helper to set
// the gfxdecode info used by the device
//-------------------------------------------------
void device_gfx_interface::static_set_info(device_t &device, const gfx_decode_entry *gfxinfo)
{
device_gfx_interface *gfx;
if (!device.interface(gfx))
throw emu_fatalerror("MCFG_GFX_INFO called on device '%s' with no gfx interface\n", device.tag());
gfx->m_gfxdecodeinfo = gfxinfo;
}
//-------------------------------------------------
// static_set_palette: configuration helper to
// set the palette used by the device
//-------------------------------------------------
void device_gfx_interface::static_set_palette(device_t &device, const char *tag)
{
device_gfx_interface *gfx;
if (!device.interface(gfx))
throw emu_fatalerror("MCFG_GFX_PALETTE called on device '%s' with no gfx interface\n", device.tag());
gfx->m_palette_tag = tag;
gfx->m_palette_is_sibling = true;
}
//-------------------------------------------------
// interface_pre_start - make sure all our input
// devices are started
//-------------------------------------------------
void device_gfx_interface::interface_pre_start()
{
if (m_palette_tag == NULL)
fatalerror("No palette specified for device '%s'\n", device().tag());
// find our palette device, either as a sibling device or subdevice
if (m_palette_is_sibling)
m_palette = device().owner()->subdevice<palette_device>(m_palette_tag);
else
m_palette = device().subdevice<palette_device>(m_palette_tag);
if (m_palette == NULL)
fatalerror("Device '%s' specifies nonexistent %sdevice '%s' as palette\n",
device().tag(),
(m_palette_is_sibling ? "sibling " : "sub"),
m_palette_tag);
// if palette device isn't started, wait for it
// if (!m_palette->started())
// throw device_missing_dependencies();
}
//-------------------------------------------------
// interface_post_start - decode gfx, if we
// haven't done so already
//-------------------------------------------------
void device_gfx_interface::interface_post_start()
{
if (!m_decoded)
decode_gfx(m_gfxdecodeinfo);
}
//-------------------------------------------------
// decode_gfx - parse gfx decode info and
// create gfx elements
//-------------------------------------------------
void device_gfx_interface::decode_gfx(const gfx_decode_entry *gfxdecodeinfo)
{
// skip if nothing to do
if (gfxdecodeinfo == NULL)
return;
// local variables to hold mutable copies of gfx layout data
gfx_layout glcopy;
dynamic_array<UINT32> extxoffs(0);
dynamic_array<UINT32> extyoffs(0);
// loop over all elements
for (int curgfx = 0; curgfx < MAX_GFX_ELEMENTS && gfxdecodeinfo[curgfx].gfxlayout != NULL; curgfx++)
{
const gfx_decode_entry &gfx = gfxdecodeinfo[curgfx];
// extract the scale factors and xormask
UINT32 xscale = GFXENTRY_GETXSCALE(gfx.flags);
UINT32 yscale = GFXENTRY_GETYSCALE(gfx.flags);
UINT32 xormask = GFXENTRY_ISREVERSE(gfx.flags) ? 7 : 0;
// resolve the region
UINT32 region_length;
const UINT8 *region_base;
UINT8 region_width;
endianness_t region_endianness;
if (gfx.memory_region != NULL)
{
device_t &basedevice = (GFXENTRY_ISDEVICE(gfx.flags)) ? device() : *device().owner();
if (GFXENTRY_ISRAM(gfx.flags))
{
memory_share *share = basedevice.memshare(gfx.memory_region);
assert(share != NULL);
region_length = 8 * share->bytes();
region_base = reinterpret_cast<UINT8 *>(share->ptr());
region_width = share->width() / 8;
region_endianness = share->endianness();
}
else
{
memory_region *region = basedevice.memregion(gfx.memory_region);
assert(region != NULL);
region_length = 8 * region->bytes();
region_base = region->base();
region_width = region->width();
region_endianness = region->endianness();
}
}
else
{
region_length = 0;
region_base = NULL;
region_width = 1;
region_endianness = ENDIANNESS_NATIVE;
}
if (region_endianness != ENDIANNESS_NATIVE)
{
switch (region_width)
{
case 2:
xormask |= 0x08;
break;
case 4:
xormask |= 0x18;
break;
case 8:
xormask |= 0x38;
break;
}
}
// copy the layout into our temporary variable
memcpy(&glcopy, gfx.gfxlayout, sizeof(gfx_layout));
// copy the X and Y offsets into our temporary arrays
extxoffs.resize(glcopy.width * xscale);
extyoffs.resize(glcopy.height * yscale);
memcpy(&extxoffs[0], (glcopy.extxoffs != NULL) ? glcopy.extxoffs : glcopy.xoffset, glcopy.width * sizeof(UINT32));
memcpy(&extyoffs[0], (glcopy.extyoffs != NULL) ? glcopy.extyoffs : glcopy.yoffset, glcopy.height * sizeof(UINT32));
// always use the extended offsets here
glcopy.extxoffs = extxoffs;
glcopy.extyoffs = extyoffs;
// expand X and Y by the scale factors
if (xscale > 1)
{
glcopy.width *= xscale;
for (int j = glcopy.width - 1; j >= 0; j--)
extxoffs[j] = extxoffs[j / xscale];
}
if (yscale > 1)
{
glcopy.height *= yscale;
for (int j = glcopy.height - 1; j >= 0; j--)
extyoffs[j] = extyoffs[j / yscale];
}
// if the character count is a region fraction, compute the effective total
if (IS_FRAC(glcopy.total))
{
assert(region_length != 0);
glcopy.total = region_length / glcopy.charincrement * FRAC_NUM(glcopy.total) / FRAC_DEN(glcopy.total);
}
// for non-raw graphics, decode the X and Y offsets
if (glcopy.planeoffset[0] != GFX_RAW)
{
// loop over all the planes, converting fractions
for (int j = 0; j < glcopy.planes; j++)
{
UINT32 value1 = glcopy.planeoffset[j];
if (IS_FRAC(value1))
{
assert(region_length != 0);
glcopy.planeoffset[j] = FRAC_OFFSET(value1) + region_length * FRAC_NUM(value1) / FRAC_DEN(value1);
}
}
// loop over all the X/Y offsets, converting fractions
for (int j = 0; j < glcopy.width; j++)
{
UINT32 value2 = extxoffs[j];
if (IS_FRAC(value2))
{
assert(region_length != 0);
extxoffs[j] = FRAC_OFFSET(value2) + region_length * FRAC_NUM(value2) / FRAC_DEN(value2);
}
}
for (int j = 0; j < glcopy.height; j++)
{
UINT32 value3 = extyoffs[j];
if (IS_FRAC(value3))
{
assert(region_length != 0);
extyoffs[j] = FRAC_OFFSET(value3) + region_length * FRAC_NUM(value3) / FRAC_DEN(value3);
}
}
}
// otherwise, just use the line modulo
else
{
int base = gfx.start;
int end = region_length/8;
int linemod = glcopy.yoffset[0];
while (glcopy.total > 0)
{
int elementbase = base + (glcopy.total - 1) * glcopy.charincrement / 8;
int lastpixelbase = elementbase + glcopy.height * linemod / 8 - 1;
if (lastpixelbase < end)
break;
glcopy.total--;
}
}
// allocate the graphics
m_gfx[curgfx].reset(global_alloc(gfx_element(m_palette, glcopy, (region_base != NULL) ? region_base + gfx.start : NULL, xormask, gfx.total_color_codes, gfx.color_codes_start)));
}
m_decoded = true;
}
//-------------------------------------------------
// interface_validity_check - validate graphics
// decoding configuration
//-------------------------------------------------
void device_gfx_interface::interface_validity_check(validity_checker &valid) const
{
// validate palette tag
if (m_palette_tag == NULL)
osd_printf_error("No palette specified for device '%s'\n", device().tag());
else
{
palette_device *palette;
if (m_palette_is_sibling)
palette = device().owner()->subdevice<palette_device>(m_palette_tag);
else
palette = device().subdevice<palette_device>(m_palette_tag);
if (palette == NULL)
osd_printf_error("Device '%s' specifies nonexistent %sdevice '%s' as palette\n",
device().tag(),
(m_palette_is_sibling ? "sibling " : "sub"),
m_palette_tag);
}
if (!m_gfxdecodeinfo)
return;
// validate graphics decoding entries
for (int gfxnum = 0; gfxnum < MAX_GFX_ELEMENTS && m_gfxdecodeinfo[gfxnum].gfxlayout != NULL; gfxnum++)
{
const gfx_decode_entry &gfx = m_gfxdecodeinfo[gfxnum];
const gfx_layout &layout = *gfx.gfxlayout;
// currently we are unable to validate RAM-based entries
const char *region = gfx.memory_region;
if (region != NULL && GFXENTRY_ISROM(gfx.flags))
{
// resolve the region
astring gfxregion;
if (GFXENTRY_ISDEVICE(gfx.flags))
device().subtag(gfxregion, region);
else
device().owner()->subtag(gfxregion, region);
UINT32 region_length = valid.region_length(gfxregion);
if (region_length == 0)
osd_printf_error("gfx[%d] references nonexistent region '%s'\n", gfxnum, gfxregion.cstr());
// if we have a valid region, and we're not using auto-sizing, check the decode against the region length
else if (!IS_FRAC(layout.total))
{
// determine which plane is at the largest offset
int start = 0;
for (int plane = 0; plane < layout.planes; plane++)
if (layout.planeoffset[plane] > start)
start = layout.planeoffset[plane];
start &= ~(layout.charincrement - 1);
// determine the total length based on this info
int len = layout.total * layout.charincrement;
// do we have enough space in the region to cover the whole decode?
int avail = region_length - (gfx.start & ~(layout.charincrement / 8 - 1));
// if not, this is an error
if ((start + len) / 8 > avail)
osd_printf_error("gfx[%d] extends past allocated memory of region '%s'\n", gfxnum, region);
}
}
int xscale = GFXENTRY_GETXSCALE(gfx.flags);
int yscale = GFXENTRY_GETYSCALE(gfx.flags);
// verify raw decode, which can only be full-region and have no scaling
if (layout.planeoffset[0] == GFX_RAW)
{
if (layout.total != RGN_FRAC(1,1))
osd_printf_error("gfx[%d] with unsupported layout total\n", gfxnum);
if (xscale != 1 || yscale != 1)
osd_printf_error("gfx[%d] with unsupported xscale/yscale\n", gfxnum);
}
// verify traditional decode doesn't have too many planes
else
{
if (layout.planes > MAX_GFX_PLANES)
osd_printf_error("gfx[%d] with invalid planes\n", gfxnum);
}
}
}
|