1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
|
// license:BSD-3-Clause
// copyright-holders:R. Belmont
/*
SD Card emulation, SPI interface.
Emulation by R. Belmont
This emulates either an SDHC (SPI_SDCARD) or an SDV2 card (SPI_SDCARDV2). SDHC has a fixed
512 byte block size and the arguments to the read/write commands are block numbers. SDV2
has a variable block size defaulting to 512 and the arguments to the read/write commands
are byte offsets.
The block size set with CMD16 must match the underlying CHD block size if it's not 512.
Adding the native 4-bit-wide SD interface is also possible; this should be broken up into a base
SD Card class with SPI and SD frontends in that case.
Multiple block read/write commands are not supported but would be straightforward to add.
References:
https://www.sdcard.org/downloads/pls/ (Physical Layer Simplified Specification)
REF: tags are referring to the spec form above. 'Physical Layer Simplified Specification v8.00'
http://www.dejazzer.com/ee379/lecture_notes/lec12_sd_card.pdf
https://embdev.net/attachment/39390/TOSHIBA_SD_Card_Specification.pdf
http://elm-chan.org/docs/mmc/mmc_e.html
*/
#include "emu.h"
#include "spi_sdcard.h"
#include "imagedev/harddriv.h"
#include "multibyte.h"
#include <algorithm>
#define LOG_COMMAND (1U << 1)
#define LOG_SPI (1U << 2)
//#define VERBOSE (LOG_GENERAL | LOG_COMMAND)
//#define LOG_OUTPUT_FUNC osd_printf_info
#include "logmacro.h"
namespace {
constexpr u8 DATA_RESPONSE_OK = 0x05;
constexpr u8 DATA_RESPONSE_IO_ERROR = 0x0d;
enum {
CSD_STRUCTURE_V10 = 0x0,
CSD_STRUCTURE_V20 = 0x1,
TAAC_UNIT_1NS = 0x00,
TAAC_UNIT_10NS = 0x01,
TAAC_UNIT_100NS = 0x02,
TAAC_UNIT_1US = 0x03,
TAAC_UNIT_10US = 0x04,
TAAC_UNIT_100US = 0x05,
TAAC_UNIT_1MS = 0x06,
TAAC_UNIT_10MS = 0x07,
TAAC_VALUE_1_0 = 0x08,
TAAC_VALUE_1_2 = 0x10,
TAAC_VALUE_1_3 = 0x18,
TAAC_VALUE_1_5 = 0x20,
TAAC_VALUE_2_0 = 0x28,
TAAC_VALUE_2_5 = 0x30,
TAAC_VALUE_3_0 = 0x38,
TAAC_VALUE_3_5 = 0x40,
TAAC_VALUE_4_0 = 0x48,
TAAC_VALUE_4_5 = 0x50,
TAAC_VALUE_5_0 = 0x58,
TAAC_VALUE_5_5 = 0x60,
TAAC_VALUE_6_0 = 0x68,
TAAC_VALUE_7_0 = 0x70,
TAAC_VALUE_8_0 = 0x78,
TRAN_SPEED_UNIT_100K = 0x00,
TRAN_SPEED_UNIT_1M = 0x01,
TRAN_SPEED_UNIT_10M = 0x02,
TRAN_SPEED_UNIT_100M = 0x03,
TRAN_SPEED_VALUE_1_0 = 0x08,
TRAN_SPEED_VALUE_1_2 = 0x10,
TRAN_SPEED_VALUE_1_3 = 0x18,
TRAN_SPEED_VALUE_1_5 = 0x20,
TRAN_SPEED_VALUE_2_0 = 0x28,
TRAN_SPEED_VALUE_2_5 = 0x30,
TRAN_SPEED_VALUE_3_0 = 0x38,
TRAN_SPEED_VALUE_3_5 = 0x40,
TRAN_SPEED_VALUE_4_0 = 0x48,
TRAN_SPEED_VALUE_4_5 = 0x50,
TRAN_SPEED_VALUE_5_0 = 0x58,
TRAN_SPEED_VALUE_5_5 = 0x60,
TRAN_SPEED_VALUE_6_0 = 0x68,
TRAN_SPEED_VALUE_7_0 = 0x70,
TRAN_SPEED_VALUE_8_0 = 0x78,
VDD_CURR_MIN_0_5MA = 0x00,
VDD_CURR_MIN_1MA = 0x01,
VDD_CURR_MIN_5MA = 0x02,
VDD_CURR_MIN_10MA = 0x03,
VDD_CURR_MIN_25MA = 0x04,
VDD_CURR_MIN_35MA = 0x05,
VDD_CURR_MIN_60MA = 0x06,
VDD_CURR_MIN_100MA = 0x07,
VDD_CURR_MAX_1MA = 0x00,
VDD_CURR_MAX_5MA = 0x01,
VDD_CURR_MAX_10MA = 0x02,
VDD_CURR_MAX_25MA = 0x03,
VDD_CURR_MAX_35MA = 0x04,
VDD_CURR_MAX_45MA = 0x05,
VDD_CURR_MAX_80MA = 0x06,
VDD_CURR_MAX_200MA = 0x07
};
} // anonymous namespace
enum spi_sdcard_device::sd_state : u8
{
//REF Table 4-1:Overview of Card States vs. Operation Mode
SD_STATE_IDLE = 0,
SD_STATE_READY,
SD_STATE_IDENT,
SD_STATE_STBY,
SD_STATE_TRAN,
SD_STATE_DATA,
SD_STATE_DATA_MULTI, // synthetical state for this implementation
SD_STATE_RCV,
SD_STATE_PRG,
SD_STATE_DIS,
SD_STATE_INA,
//FIXME Existing states which must be revisited
SD_STATE_WRITE_WAITFE,
SD_STATE_WRITE_DATA
};
ALLOW_SAVE_TYPE(spi_sdcard_device::sd_state);
DEFINE_DEVICE_TYPE(SPI_SDCARD, spi_sdcard_device, "spi_sdcard", "SD Card (SPI interface)")
spi_sdcard_device::spi_sdcard_device(const machine_config &mconfig, const char *tag, device_t *owner, u32 clock) :
spi_sdcard_device(mconfig, SPI_SDCARD, tag, owner, clock)
{
}
spi_sdcard_device::spi_sdcard_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, u32 clock) :
device_t(mconfig, type, tag, owner, clock),
write_miso(*this),
m_image(*this, "image"),
m_preferred_type(SD_TYPE_V2),
m_blksize(512),
m_type(SD_TYPE_V2),
m_state(SD_STATE_IDLE),
m_ss(0), m_in_bit(0), m_clk_state(0),
m_in_latch(0), m_out_latch(0xff), m_cur_bit(0),
m_out_delay(0), m_out_count(0), m_out_ptr(0), m_write_ptr(0), m_xferblk(512), m_blknext(0),
m_crc_off(true),
m_bACMD(false)
{
std::fill(std::begin(m_csd), std::end(m_csd), 0);
std::fill(std::begin(m_cmd), std::end(m_cmd), 0xff);
}
spi_sdcard_device::~spi_sdcard_device()
{
}
void spi_sdcard_device::device_start()
{
m_data = make_unique_clear<u8 []>(2048 + 8);
save_pointer(NAME(m_data), 2048 + 8);
save_item(NAME(m_cmd));
save_item(NAME(m_state));
save_item(NAME(m_ss));
save_item(NAME(m_in_bit));
save_item(NAME(m_clk_state));
save_item(NAME(m_in_latch));
save_item(NAME(m_out_latch));
save_item(NAME(m_cur_bit));
save_item(NAME(m_out_delay));
save_item(NAME(m_out_count));
save_item(NAME(m_out_ptr));
save_item(NAME(m_write_ptr));
save_item(NAME(m_xferblk));
save_item(NAME(m_blknext));
save_item(NAME(m_crc_off));
save_item(NAME(m_bACMD));
}
std::error_condition spi_sdcard_device::image_loaded(device_image_interface &image)
{
// need block size and total blocks to create CSD
auto const info = m_image->get_info();
u64 const total_blocks = u64(info.cylinders) * info.heads * info.sectors;
if (!total_blocks)
{
osd_printf_error("%s: SD Card cannot mount a zero-block image\n", tag());
return image_error::INVALIDIMAGE;
}
// ensure block size can be expressed in the CSD
if ((info.sectorbytes & (info.sectorbytes - 1)) || !info.sectorbytes || (512 > info.sectorbytes) || (2048 < info.sectorbytes))
{
osd_printf_error("%s: SD Card cannot use sector size %u (must be a power of 2 from 512 to 2048)\n", tag());
return image_error::INVALIDIMAGE;
}
u8 block_size_exp = 0;
for (auto i = info.sectorbytes; !BIT(i, 0); i >>= 1)
++block_size_exp;
// see how we can express the total block count
u64 total_mant = total_blocks;
u8 total_exp = 0;
while (!BIT(total_mant, 0))
{
total_mant >>= 1;
++total_exp;
}
bool const sd_ok = (2 <= total_exp) && ((1 << 12) >= (total_mant << ((9 < total_exp) ? (total_exp - 9) : 0)));
bool const sdhc_ok = (512 == info.sectorbytes) && (10 <= total_exp) && ((u32(1) << 16) >= (total_mant << (total_exp - 10)));
if (!sd_ok && !sdhc_ok)
{
osd_printf_error("%s: SD Card image size %u blocks of %u bytes is not supported by SD or SDHC\n", tag(), total_blocks, info.sectorbytes);
return image_error::INVALIDIMAGE;
}
try
{
m_sectorbuf.resize(info.sectorbytes);
}
catch (std::bad_alloc const &)
{
osd_printf_error("%s: Error allocating %u-byte SD Card sector buffer\n", tag(), info.sectorbytes);
return std::errc::not_enough_memory;
}
m_blksize = m_xferblk = info.sectorbytes;
m_crc_off = true;
// set up common CSD fields
m_csd[0] = 0x00; // 127: CSD_STRUCTURE:2 (00b) 0:6
m_csd[1] = 0x00; // 119: TAAC:8
m_csd[2] = 0x00; // 111: NSAC:8
m_csd[3] = TRAN_SPEED_UNIT_10M | TRAN_SPEED_VALUE_2_5; // 103: TRAN_SPEED:8 (32h for 25MHz or 5Ah for 50MHz)
m_csd[4] = 0x5b; // 95: CCC:12 (01x110110101b)
m_csd[5] = 0x50; // .. READ_BL_LN:4
m_csd[5] |= block_size_exp;
m_csd[6] = 0x00; // 79: READ_BL_PARTIAL:1 WRITE_BLK_MISALIGN:1 READ_BLK_MISALIGN:1 DSR_IMP:1 0:2 C_SIZE:12
m_csd[7] = 0x00; // ..
m_csd[8] = 0x00; // .. VDD_R_CURR_MIN:3 VDD_R_CURR_MAX:3
m_csd[9] = 0x00; // 55: VDD_W_CURR_MIN:3 VDD_W_CURR_MAX:3 C_SIZE_MUL:3
m_csd[10] = 0x3f; // .. ERASE_BLK_EN:1 SECTOR_SIZE:7
m_csd[11] = 0x80; // .. WP_GRP_SIZE:7
m_csd[12] = 0x04; // 31: WP_GRP_ENABLE:1 0:2 R2W_FACTOR:3 WRITE_BL_LEN:4
m_csd[12] |= BIT(block_size_exp, 2, 2);
m_csd[13] = 0x00; // .. WRITE_BL_PARTIAL:1 0:5
m_csd[13] |= BIT(block_size_exp, 0, 2) << 6;
m_csd[14] = 0x00; // 15: FILE_FORMAT_GRP:1 COPY:1 PERM_WRITE_PROTECT:1 TMP_WRITE_PROTECT:1 FILE_FORMAT:2 WP_UPC:1 0:1
m_csd[15] = 0x01; // 7: CRC7 1:1
if (sdhc_ok && ((SD_TYPE_HC == m_preferred_type) || !sd_ok))
{
u32 const c_size = (total_blocks >> 10) - 1;
osd_printf_verbose(
"%s: SD Card image mounted as SDHC, %u blocks of %u bytes, device size ((%u + 1) << 10) * (1 << %u)\n",
tag(),
total_blocks, info.sectorbytes,
c_size, block_size_exp);
m_type = SD_TYPE_HC;
// set up CSD Version 2.0
m_csd[0] |= CSD_STRUCTURE_V20 << 6; // 127: CSD_STRUCTURE:2 (00b) 0:6
m_csd[1] = TAAC_UNIT_1MS | TAAC_VALUE_1_0; // 119: TAAC:8
m_csd[7] |= BIT(c_size, 16, 6); // .. C_SIZE:22
m_csd[8] |= BIT(c_size, 8, 8); // ..
m_csd[9] |= BIT(c_size, 0, 8); // ..
}
else
{
u8 const c_size_mult = std::min<u8>(total_exp, 9) - 2;
u16 const c_size = (total_blocks >> (c_size_mult + 2)) - 1;
osd_printf_verbose(
"%s: SD Card image mounted as SD, %u blocks of %u bytes, device size ((%u + 1) << (%u + 2)) * (1 << %u)\n",
tag(),
total_blocks, info.sectorbytes,
c_size, c_size_mult, block_size_exp);
m_type = SD_TYPE_V2;
// set up CSD Version 1.0
m_csd[0] |= CSD_STRUCTURE_V10 << 6; // 127: CSD_STRUCTURE:2 (00b) 0:6
m_csd[1] = TAAC_UNIT_1MS | TAAC_VALUE_1_5; // 119: TAAC:8
m_csd[6] |= 0x80; // 79: READ_BL_PARTIAL:1 WRITE_BLK_MISALIGN:1 READ_BLK_MISALIGN:1 DSR_IMP:1 0:2 C_SIZE:12
m_csd[6] |= BIT(c_size, 10, 2);
m_csd[7] |= BIT(c_size, 2, 8); // ..
m_csd[8] |= BIT(c_size, 0, 2) << 6; // .. VDD_R_CURR_MIN:3 VDD_R_CURR_MAX:3
m_csd[8] |= VDD_CURR_MIN_100MA << 3;
m_csd[8] |= VDD_CURR_MAX_80MA;
m_csd[9] |= VDD_CURR_MIN_100MA << 5; // 55: VDD_W_CURR_MIN:3 VDD_W_CURR_MAX:3 C_SIZE_MUL:3
m_csd[9] |= VDD_CURR_MAX_80MA << 2;
m_csd[9] |= BIT(c_size_mult, 1, 2);
m_csd[10] |= BIT(c_size_mult, 0, 1) << 7; // .. ERASE_BLK_EN:1 SECTOR_SIZE:7
m_csd[11] |= 0x3f; // .. WP_GRP_SIZE:7
}
// TODO: calculate CRC7
LOG("Generated CSD %016x%016x\n", get_u64be(&m_csd[0]), get_u64be(&m_csd[8]));
return std::error_condition();
}
void spi_sdcard_device::image_unloaded(device_image_interface &image)
{
std::fill(std::begin(m_csd), std::end(m_csd), 0);
}
void spi_sdcard_device::device_add_mconfig(machine_config &config)
{
HARDDISK(config, m_image).set_interface("sdcard");
m_image->set_device_load(FUNC(spi_sdcard_device::image_loaded));
m_image->set_device_unload(FUNC(spi_sdcard_device::image_unloaded));
}
void spi_sdcard_device::send_data(u16 count, sd_state new_state, u8 delay)
{
m_out_delay = delay;
m_out_ptr = 0;
m_out_count = count;
change_state(new_state);
}
void spi_sdcard_device::spi_clock_w(int state)
{
// only respond if selected, and a clock edge
if (m_ss && state != m_clk_state)
{
// We implement SPI Mode 3 signalling, in which we latch the data on
// rising clock edges, and shift the data on falling clock edges.
// See http://www.dejazzer.com/ee379/lecture_notes/lec12_sd_card.pdf for details
// on the 4 SPI signalling modes. SD Cards can work in either Mode 0 or Mode 3,
// both of which shift on the falling edge and latch on the rising edge but
// have opposite CLK polarity.
if (state)
latch_in();
else
shift_out();
}
m_clk_state = state;
}
void spi_sdcard_device::spi_ss_w(int state)
{
if (!m_ss && state)
{
LOGMASKED(LOG_SPI, "SDCARD: selected\n");
std::fill(std::begin(m_cmd), std::end(m_cmd), 0xff);
m_state = SD_STATE_IDLE;
m_in_latch = 0;
m_cur_bit = 0;
m_out_latch = 0xff;
m_out_delay = 0;
m_out_count = 0;
}
else if (m_ss && !state)
{
LOGMASKED(LOG_SPI, "SDCARD: deselected\n");
}
m_ss = state;
}
void spi_sdcard_device::latch_in()
{
m_in_latch &= ~0x01;
m_in_latch |= m_in_bit;
LOGMASKED(LOG_SPI, "\tsdcard: L %02x (%d) (out %02x)\n", m_in_latch, m_cur_bit, m_out_latch);
m_cur_bit++;
if (m_cur_bit == 8)
{
LOGMASKED(LOG_SPI, "SDCARD: got %02x\n", m_in_latch);
if (m_state == SD_STATE_WRITE_WAITFE)
{
if (m_in_latch == 0xfe)
{
m_state = SD_STATE_WRITE_DATA;
m_out_latch = 0xff;
m_write_ptr = 0;
}
}
else if (m_state == SD_STATE_WRITE_DATA)
{
m_data[m_write_ptr++] = m_in_latch;
if (m_write_ptr == (m_xferblk + 2))
{
LOG("writing LBA %x, data %02x %02x %02x %02x\n", m_blknext, m_data[0], m_data[1], m_data[2], m_data[3]);
// TODO: this is supposed to be a CRC response, the actual write will take some time
if (m_image->write(m_blknext, &m_data[0]))
{
m_data[0] = DATA_RESPONSE_OK;
}
else
{
m_data[0] = DATA_RESPONSE_IO_ERROR;
}
m_data[1] = 0x01;
send_data(2, SD_STATE_IDLE, 0); // zero delay - must immediately follow the data
}
}
else // receive CMD
{
std::memmove(m_cmd, m_cmd + 1, 5);
m_cmd[5] = m_in_latch;
if (m_state == SD_STATE_DATA_MULTI)
{
do_command();
if (m_state == SD_STATE_DATA_MULTI && m_out_count == 0)
{
// FIXME: support multi-block read when transfer size is smaller than block size
m_data[0] = 0xfe; // data token
m_image->read(m_blknext++, &m_data[1]);
util::crc16_t crc16 = util::crc16_creator::simple(&m_data[1], m_blksize);
put_u16be(&m_data[m_blksize + 1], crc16);
LOG("reading LBA %x: [0] %02x %02x .. [%d] %02x %02x [crc16] %04x\n", m_blknext - 1, m_data[1], m_data[2], m_blksize - 2, m_data[m_blksize - 1], m_data[m_blksize], crc16);
send_data(1 + m_blksize + 2, SD_STATE_DATA_MULTI);
}
}
else if ((m_state == SD_STATE_IDLE) || (((m_cmd[0] & 0x70) == 0x40) || (m_out_count == 0))) // CMD0 - GO_IDLE_STATE
{
do_command();
}
}
}
}
void spi_sdcard_device::shift_out()
{
m_in_latch <<= 1;
m_out_latch <<= 1;
m_out_latch |= 1;
LOGMASKED(LOG_SPI, "\tsdcard: S %02x %02x (%d)\n", m_in_latch, m_out_latch, m_cur_bit);
m_cur_bit &= 0x07;
if (m_cur_bit == 0)
{
if (m_out_ptr < m_out_delay)
{
m_out_ptr++;
}
else if (m_out_count > 0)
{
m_out_latch = m_data[m_out_ptr - m_out_delay];
m_out_ptr++;
LOGMASKED(LOG_SPI, "SDCARD: latching %02x (start of shift)\n", m_out_latch);
m_out_count--;
}
}
write_miso(BIT(m_out_latch, 7));
}
void spi_sdcard_device::do_command()
{
if (((m_cmd[0] & 0xc0) == 0x40) && ((m_cmd[5] & 1) || m_crc_off))
{
LOGMASKED(LOG_COMMAND, "SDCARD: cmd %02d %02x %02x %02x %02x %02x\n", m_cmd[0] & 0x3f, m_cmd[1], m_cmd[2], m_cmd[3], m_cmd[4], m_cmd[5]);
bool clean_cmd = true;
switch (m_cmd[0] & 0x3f)
{
case 0: // CMD0 - GO_IDLE_STATE
if (m_image->exists())
{
m_data[0] = 0x01;
send_data(1, SD_STATE_IDLE);
}
else
{
m_data[0] = 0x00;
send_data(1, SD_STATE_INA);
}
break;
case 1: // CMD1 - SEND_OP_COND
m_data[0] = 0x00;
send_data(1, SD_STATE_READY);
break;
case 8: // CMD8 - SEND_IF_COND (SD v2 only)
m_data[0] = 0x01;
m_data[1] = 0;
m_data[2] = 0;
m_data[3] = 0x01;
m_data[4] = 0xaa;
send_data(5, SD_STATE_IDLE);
break;
case 9: // CMD9 - SEND_CSD
m_data[0] = 0x00;
m_data[1] = 0xff;
m_data[2] = 0xfe;
std::copy(std::begin(m_csd), std::end(m_csd), &m_data[3]);
send_data(3 + std::size(m_csd), SD_STATE_STBY);
break;
case 10: // CMD10 - SEND_CID
m_data[0] = 0x00; // initial R1 response
m_data[1] = 0xff; // throwaway byte before data transfer
m_data[2] = 0xfe; // data token
m_data[3] = 'M'; // Manufacturer ID - we'll use M for MAME
m_data[4] = 'M'; // OEM ID - MD for MAMEdev
m_data[5] = 'D';
m_data[6] = 'M'; // Product Name - "MCARD"
m_data[7] = 'C';
m_data[8] = 'A';
m_data[9] = 'R';
m_data[10] = 'D';
m_data[11] = 0x10; // Product Revision in BCD (1.0)
{
u32 uSerial = 0x12345678;
put_u32be(&m_data[12], uSerial); // PSN - Product Serial Number
}
m_data[16] = 0x01; // MDT - Manufacturing Date
m_data[17] = 0x59; // 0x15 9 = 2021, September
m_data[18] = 0x00; // CRC7, bit 0 is always 0
{
util::crc16_t crc16 = util::crc16_creator::simple(&m_data[3], 16);
put_u16be(&m_data[19], crc16);
}
send_data(3 + 16 + 2, SD_STATE_STBY);
break;
case 12: // CMD12 - STOP_TRANSMISSION
m_data[0] = 0;
send_data(1, (m_state == SD_STATE_RCV) ? SD_STATE_PRG : SD_STATE_TRAN);
break;
case 13: // CMD13 - SEND_STATUS
m_data[0] = 0; // TODO
m_data[1] = 0;
send_data(2, SD_STATE_STBY);
break;
case 16: // CMD16 - SET_BLOCKLEN
if (m_image->exists())
{
u16 const blocklen = get_u16be(&m_cmd[3]);
if (blocklen && ((m_type == SD_TYPE_V2) || (blocklen == m_blksize)) && (blocklen <= m_blksize))
{
m_xferblk = blocklen;
m_data[0] = 0x00;
}
else
{
m_data[0] = 0x40; // parameter error
}
}
else
{
m_data[0] = 0xff; // show an error
}
send_data(1, SD_STATE_TRAN);
break;
case 17: // CMD17 - READ_SINGLE_BLOCK
if (m_image->exists())
{
m_data[0] = 0x00; // initial R1 response
// data token occurs some time after the R1 response. A2SD expects at least 1
// byte of space between R1 and the data packet.
m_data[1] = 0xff;
m_data[2] = 0xfe; // data token
u32 blk = get_u32be(&m_cmd[1]);
if ((m_type == SD_TYPE_V2) && ((blk / m_blksize) != ((blk + (m_xferblk - 1)) / m_blksize)))
{
LOG("rejecting read of %u bytes at %u that crosses %u-byte block boundary\n", m_xferblk, blk, m_blksize);
m_data[0] = 0x40; // parameter error
send_data(1, SD_STATE_TRAN);
}
else if (m_xferblk == m_blksize)
{
// optimise for reading an entire block
if (m_type == SD_TYPE_V2)
{
blk /= m_blksize;
}
m_image->read(blk, &m_data[3]);
util::crc16_t crc16 = util::crc16_creator::simple(&m_data[3], m_xferblk);
put_u16be(&m_data[m_xferblk + 3], crc16);
LOG("reading LBA %x: [0] %02x %02x .. [%d] %02x %02x [crc16] %04x\n", blk, m_data[3], m_data[4], m_xferblk - 2, m_data[m_xferblk + 1], m_data[m_xferblk + 2], crc16);
send_data(3 + m_xferblk + 2, SD_STATE_DATA);
}
else
{
assert(m_type == SD_TYPE_V2);
m_image->read(blk / m_blksize, &m_sectorbuf[0]);
std::copy_n(&m_sectorbuf[blk % m_blksize], m_xferblk, &m_data[3]);
util::crc16_t crc16 = util::crc16_creator::simple(&m_data[3], m_xferblk);
put_u16be(&m_data[m_xferblk + 3], crc16);
LOG("reading LBA %x+%x: [0] %02x %02x .. [%d] %02x %02x [crc16] %04x\n", blk / m_blksize, blk % m_blksize, m_data[3], m_data[4], m_xferblk - 2, m_data[m_xferblk + 1], m_data[m_xferblk + 2], crc16);
send_data(3 + m_xferblk + 2, SD_STATE_DATA);
}
}
else
{
m_data[0] = 0xff; // show an error
send_data(1, SD_STATE_TRAN);
}
break;
case 18: // CMD18 - CMD_READ_MULTIPLE_BLOCK
if (m_image->exists())
{
if (m_xferblk == m_blksize)
{
m_data[0] = 0x00; // initial R1 response
// data token occurs some time after the R1 response. A2SD
// expects at least 1 byte of space between R1 and the data
// packet.
m_blknext = get_u32be(&m_cmd[1]);
if (m_type == SD_TYPE_V2)
{
m_blknext /= m_xferblk;
}
send_data(1, SD_STATE_DATA_MULTI);
}
else
{
// FIXME: support multi-block read when transfer size is smaller than block size
m_data[0] = 0x40; // parameter error
send_data(1, SD_STATE_TRAN);
}
}
else
{
m_data[0] = 0xff; // show an error
send_data(1, SD_STATE_TRAN);
}
break;
case 24: // CMD24 - WRITE_BLOCK
if (m_xferblk != m_blksize)
{
// partial block write not supported
LOG("rejecting write of %u bytes that is not a full %u-byte block\n", m_xferblk, m_blksize);
m_data[0] = 0x40; // parameter error
send_data(1, SD_STATE_TRAN);
}
else
{
m_blknext = get_u32be(&m_cmd[1]);
if ((m_type == SD_TYPE_V2) && (m_blknext % m_blksize))
{
// misaligned write not supported
LOG("rejecting write of %u bytes at %u that crosses %u-byte block boundary\n", m_xferblk, m_blknext, m_blksize);
m_data[0] = 0x40; // parameter error
send_data(1, SD_STATE_TRAN);
}
else
{
if (m_type == SD_TYPE_V2)
{
m_blknext /= m_xferblk;
}
m_data[0] = 0;
send_data(1, SD_STATE_WRITE_WAITFE);
}
}
break;
case 41:
if (m_bACMD) // ACMD41 - SD_SEND_OP_COND
{
m_data[0] = 0;
send_data(1, SD_STATE_READY); // + SD_STATE_IDLE
}
else // CMD41 - illegal
{
m_data[0] = 0xff;
send_data(1, SD_STATE_INA);
}
break;
case 55: // CMD55 - APP_CMD
m_data[0] = 0x01;
send_data(1, SD_STATE_IDLE);
break;
case 58: // CMD58 - READ_OCR
m_data[0] = 0;
m_data[1] = 0x80; // Busy Status: 1b - Initialization Complete
m_data[1] |= (m_type == SD_TYPE_V2) ? 0 : 0x40; // Card Capacity Status: 0b - SDCS, 1b SDHC, SDXC
m_data[2] = 0;
m_data[3] = 0;
m_data[4] = 0;
send_data(5, SD_STATE_DATA);
break;
case 59: // CMD59 - CRC_ON_OFF
m_crc_off = !BIT(m_cmd[4], 0);
m_data[0] = 0;
send_data(1, SD_STATE_STBY);
break;
default:
LOGMASKED(LOG_COMMAND, "SDCARD: Unsupported CMD%02d\n", m_cmd[0] & 0x3f);
clean_cmd = false;
break;
}
// if this is command 55, that's a prefix indicating the next command is an "app command" or "ACMD"
m_bACMD = (m_cmd[0] & 0x3f) == 55;
if (clean_cmd)
memset(m_cmd, 0xff, 6);
}
}
void spi_sdcard_device::change_state(sd_state new_state)
{
// TODO validate if transition is valid using refs below.
// REF Figure 4-13:SD Memory Card State Diagram (Transition Mode)
// REF Table 4-35:Card State Transition Table
m_state = new_state;
}
|