1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
|
// license:BSD-3-Clause
// copyright-holders:Wilbert Pol, Nathan Woods
/***************************************************************************
Intel 8253/8254
Programmable Interval Timer
As uPD71054C (8MHz), uPD71054C-10 (10MHz) - it is a clone of Intel 82C54
also available in 28-pin QFP and 44-pin PLCC (many pins NC)
_____ _____
D7 1 |* \_/ | 24 VCC
D6 2 | | 23 _WR
D5 3 | | 22 _RD
D4 4 | | 21 _CS
D3 5 | | 20 A1
D2 6 | 8253 | 19 A0
D1 7 | 8254 | 18 CLK2
D0 8 | | 17 OUT2
CLK0 9 | | 16 GATE2
OUT0 10 | | 15 CLK1
GATE0 11 | | 14 GATE1
GND 12 |_____________| 13 OUT1
***************************************************************************/
#ifndef MAME_MACHINE_PIT8253_H
#define MAME_MACHINE_PIT8253_H
#pragma once
enum class pit_type
{
I8254,
I8253,
FE2010
};
class pit_counter_device : public device_t
{
friend class pit8253_device;
friend class pit8254_device;
enum
{
TID_UPDATE = 1,
TID_CONTROL,
TID_COUNT,
TID_GATE
};
public:
// construction/destruction
pit_counter_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock);
protected:
// device-level overrides
virtual void device_start() override;
virtual void device_reset() override;
virtual void device_timer(emu_timer &timer, device_timer_id id, int param) override;
private:
inline uint32_t adjusted_count() const;
inline void adjust_timer(attotime target);
void decrease_counter_value(int64_t cycles);
void load_counter_value();
void set_output(int output);
void simulate(int64_t elapsed_cycles);
void update();
uint16_t masked_value() const;
uint8_t read();
void load_count(uint16_t newcount);
void readback(int command);
void control_w(uint8_t data) { synchronize(TID_CONTROL, data); }
void control_w_deferred(uint8_t data);
void count_w(uint8_t data) { synchronize(TID_COUNT, data); }
void count_w_deferred(uint8_t data);
void gate_w(int state) { synchronize(TID_GATE, state); }
void gate_w_deferred(int state);
void set_clock_signal(int state);
void set_clockin(double new_clockin);
// internal state
int m_index; // index number of the timer
double m_clockin; // input clock frequency in Hz
attotime m_clock_period; // precomputed input clock period
int m_clock_signal; // clock signal when clockin is 0
attotime m_last_updated; // time when last updated
attotime m_next_update; // time of next update
emu_timer *m_updatetimer; // MAME timer to process updates
uint16_t m_value; // current counter value ("CE" in Intel docs)
uint16_t m_latch; // latched counter value ("OL" in Intel docs)
uint16_t m_count; // new counter value ("CR" in Intel docs)
uint8_t m_control; // 6-bit control byte
uint8_t m_status; // status byte - 8254 only
uint8_t m_lowcount; // LSB of new counter value for 16-bit writes
bool m_rmsb; // true = Next read is MSB of 16-bit value
bool m_wmsb; // true = Next write is MSB of 16-bit value
int m_output; // 0 = low, 1 = high
int m_gate; // gate input (0 = low, 1 = high)
int m_latched_count; // number of bytes of count latched
int m_latched_status; // 1 = status latched (8254 only)
int m_null_count; // 1 = mode control or count written, 0 = count loaded
int m_phase; // see phase definition tables in simulate2(), below
};
DECLARE_DEVICE_TYPE(PIT_COUNTER, pit_counter_device)
class pit8253_device : public device_t
{
friend class pit_counter_device;
public:
// construction/destruction
pit8253_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock = 0);
// configuration helpers
template <unsigned N> void set_clk(double clk) { m_clk[N] = clk; }
template <unsigned N> void set_clk(const XTAL &xtal) { set_clk<N>(xtal.dvalue()); }
template <unsigned N> auto out_handler() { return m_out_handler[N].bind(); }
uint8_t read(offs_t offset);
void write(offs_t offset, uint8_t data);
WRITE_LINE_MEMBER(write_gate0) { m_counter[0]->gate_w(state); }
WRITE_LINE_MEMBER(write_gate1) { m_counter[1]->gate_w(state); }
WRITE_LINE_MEMBER(write_gate2) { m_counter[2]->gate_w(state); }
/* In the 8253/8254 the CLKx input lines can be attached to a regular clock
signal. Another option is to use the output from one timer as the input
clock to another timer.
The functions below should supply both functionalities. If the signal is
a regular clock signal, use the pit8253_set_clockin function. If the
CLKx input signal is the output of the different source, set the new_clockin
to 0 with pit8253_set_clockin and call pit8253_clkX_w to change
the state of the input CLKx signal.
*/
WRITE_LINE_MEMBER(write_clk0) { m_counter[0]->set_clock_signal(state); }
WRITE_LINE_MEMBER(write_clk1) { m_counter[1]->set_clock_signal(state); }
WRITE_LINE_MEMBER(write_clk2) { m_counter[2]->set_clock_signal(state); }
void set_clockin(int timer, double new_clockin) { m_counter[timer]->set_clockin(new_clockin); }
protected:
pit8253_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, uint32_t clock, pit_type chip_type);
// device-level overrides
virtual void device_add_mconfig(machine_config &config) override;
virtual void device_resolve_objects() override;
virtual void device_start() override;
virtual void readback_command(uint8_t data);
double m_clk[3];
devcb_write_line::array<3> m_out_handler;
required_device_array<pit_counter_device, 3> m_counter;
pit_type m_type;
};
DECLARE_DEVICE_TYPE(PIT8253, pit8253_device)
class pit8254_device : public pit8253_device
{
public:
pit8254_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock = 0);
protected:
virtual void readback_command(uint8_t data) override;
};
DECLARE_DEVICE_TYPE(PIT8254, pit8254_device)
class fe2010_pit_device : public pit8253_device
{
public:
fe2010_pit_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock = 0);
};
DECLARE_DEVICE_TYPE(FE2010_PIT, fe2010_pit_device)
#endif // MAME_MACHINE_PIT8253_H
|