1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
|
// license:BSD-3-Clause
// copyright-holders:Michael Zapf
/*
Texas Instruments/Benchmarq BQ4847 Real-time clock
Although featuring a similar interface, this chip is sufficiently
different from the BQ4842/BQ4852 that a separate implementation
makes sense.
This chip is functionally equivalent to the BQ4845; it does not support
a backup battery. Most datasheets about the BQ4847 are incomplete and
refer to the BQ4845.
Supports 24h/12h and Daylight saving
Supports leap years
No internal memory, only clock registers
Michael Zapf, April 2020
*/
#include "emu.h"
#include "bq4847.h"
#define LOG_WARN (1U << 1) // Warnings
#define LOG_CLOCK (1U << 2) // Clock operation
#define LOG_REG (1U << 3) // Register write
#define LOG_WATCHDOG (1U << 4) // Watchdog
#define LOG_TRANSFER (1U << 5) // Transfer
#define VERBOSE (LOG_GENERAL | LOG_WARN)
#include "logmacro.h"
// device type definition
DEFINE_DEVICE_TYPE(BQ4845, bq4845_device, "bq4845", "Benchmarq BQ4845 RTC")
DEFINE_DEVICE_TYPE(BQ4847, bq4847_device, "bq4847", "Benchmarq BQ4847 RTC")
enum
{
reg_seconds = 0, // 0x00 - 0x59
reg_alarmseconds, // 0xc0 to ignore
reg_minutes, // 0x00 - 0x59
reg_alarmminutes, // 0xc0 to ignore
reg_hours, // 0x00 - 0x23 (24h) or 0x01-0x12 (AM), 0x81-0x92 (PM)
reg_alarmhours, // 0xc0 to ignore
reg_date, // 0x01 - 0x31
reg_alarmdate, // 0xc0 to ignore
reg_days, // 0x01 (sun) - 0x07 (sat)
reg_month, // 0x01 - 0x12
reg_year, // 0x00 - 0x99
reg_rates, // 0 [--WD--] [-------RS---------]
reg_interrupts, // 0 0 0 0 AIE PIE PWRIE ABE 0x00 on powerup
reg_flags, // 0 0 0 0 AF PF PWRF BVF 0x00 after reading
reg_control, // 0 0 0 0 UTI STOP* 24/12* DSE
reg_unused // 0x00
};
enum
{
INTERRUPT_AIE = 0x08,
INTERRUPT_PIE = 0x04,
INTERRUPT_PWRIE = 0x02,
INTERRUPT_ABE = 0x01,
FLAG_AF = 0x08,
FLAG_PF = 0x04,
FLAG_PWRF = 0x02,
FLAG_BVF = 0x01,
CONTROL_UTI = 0x08,
CONTROL_STOP = 0x04,
CONTROL_24 = 0x02,
CONTROL_DSE = 0x01
};
//-------------------------------------------------
// Constructors for basetype
//-------------------------------------------------
bq4847_device::bq4847_device(const machine_config& mconfig, device_type type, const char* tag, device_t* owner, uint32_t clock)
: device_t(mconfig, type, tag, owner, clock),
device_nvram_interface(mconfig, *this),
device_rtc_interface(mconfig, *this),
m_region(*this, DEVICE_SELF),
m_wdo_handler(*this),
m_int_handler(*this),
m_rst_handler(*this),
m_periodic_timer(nullptr),
m_watchdog_timer(nullptr),
m_wdo_state(1),
m_int_state(1),
m_rst_state(1),
m_wdi_state(-1),
m_writing(false)
{
}
bq4847_device::bq4847_device(const machine_config& mconfig, const char* tag, device_t* owner, uint32_t clock)
: bq4847_device(mconfig, BQ4847, tag, owner, clock)
{
}
bq4845_device::bq4845_device(const machine_config& mconfig, const char* tag, device_t* owner, uint32_t clock)
: bq4847_device(mconfig, BQ4845, tag, owner, clock)
{
}
// device_rtc_interface
void bq4847_device::rtc_clock_updated(int year, int month, int day, int day_of_week, int hour, int minute, int second)
{
if ((m_register[reg_control] & CONTROL_STOP) != 0)
{
m_register[reg_hours] = ((m_register[reg_control] & CONTROL_24) != 0) ? convert_to_bcd(hour) :
(((hour % 24) >= 12) ? 0x80 : 0x00) | convert_to_bcd((hour % 12) ? (hour % 12) : 12);
m_register[reg_minutes] = convert_to_bcd(minute);
m_register[reg_seconds] = convert_to_bcd(second);
m_register[reg_year] = convert_to_bcd(year);
m_register[reg_month] = convert_to_bcd(month);
m_register[reg_date] = convert_to_bcd(day);
m_register[reg_days] = convert_to_bcd(day_of_week);
}
// Clear the saved flags (TODO: check that flags set before power down, or during battery backup are lost)
m_register[reg_flags] = 0x00;
// Interrupts must be re-enabled on power-up (TODO: check, datasheet does not explicitly say ABE & PIE are cleared)
m_register[reg_interrupts] = 0x00;
// TODO: check if user buffer is battery backed
// TODO: What if UTI is set?
std::copy_n(m_register, std::size(m_register), m_userbuffer);
// What about the DSE flag?
}
bool bq4847_device::increment_bcd(uint8_t& bcdnumber, uint8_t limit, uint8_t min)
{
if (bcdnumber >= limit)
{
bcdnumber = min;
return true;
}
else
{
uint8_t dig0 = bcdnumber & 0x0f;
uint8_t dig1 = bcdnumber & 0xf0;
if (dig0 == 9)
{
bcdnumber = dig1 + 0x10;
}
else bcdnumber++;
}
return false;
}
/*
Update cycle, called every second
The BQ RTCs use BCD representation
TODO: We may not be able to use the parent class advance methods, since we
have to work with BCD (even with invalid values). Check this.
*/
TIMER_CALLBACK_MEMBER(bq4847_device::update_callback)
{
// Just for debugging
static const char* dow[7] = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
bool carry = true;
bool newsec = false;
if (carry)
{
carry = increment_bcd(m_register[reg_seconds], 0x59, 0);
newsec = true;
}
if (carry)
carry = increment_bcd(m_register[reg_minutes], 0x59, 0);
if (carry)
carry = advance_hours_bcd();
if (carry)
advance_days_bcd();
LOGMASKED(LOG_CLOCK, "%s 20%02x-%02x-%02x %02x:%02x:%02x\n",
dow[m_register[reg_days] - 1], m_register[reg_year], m_register[reg_month], m_register[reg_date],
m_register[reg_hours], m_register[reg_minutes], m_register[reg_seconds]);
if (newsec)
{
if ((m_register[reg_control] & CONTROL_UTI) == 0)
{
LOGMASKED(LOG_TRANSFER, "Transfer to external regs\n");
for (int i = reg_seconds; i < reg_unused; i++)
{
if (is_clock_register(i)) m_userbuffer[i] = m_register[i];
}
}
if (check_alarm(reg_date, reg_alarmdate) &&
check_alarm(reg_hours, reg_alarmhours) &&
check_alarm(reg_minutes, reg_alarmminutes) &&
check_alarm(reg_seconds, reg_alarmseconds))
{
m_userbuffer[reg_flags] |= FLAG_AF;
update_int();
}
}
}
bool bq4847_device::advance_hours_bcd()
{
bool carry = false;
// Handle DST
if ((m_register[reg_control] & CONTROL_DSE) != 0
&& (m_register[reg_month] == 4) && (m_register[reg_days] == 0) && (m_register[reg_date] < 8) // first Sunday in April
&& (m_register[reg_hours] == 0x01))
m_register[reg_hours] = 0x03;
else
{
// Increment hour unless the DSE bit is set and we are at 1:59 on the last Sunday in October
if ((m_register[reg_control] & CONTROL_DSE) == 0
|| (m_register[reg_month] != 10) || (m_register[reg_days] != 0) || (m_register[reg_date] <= 23) // last Sunday in October
|| (m_register[reg_hours] != 0x01))
{
if ((m_register[reg_control] & CONTROL_24) != 0)
{
// 24h: 0->1->...->23->0(+1)
increment_bcd(m_register[reg_hours], 0xff, 0);
if (m_register[reg_hours] == 0x24)
{
m_register[reg_hours] = 0;
carry = true;
}
}
else
{
// 12h: 12->1->2->...->11->12'->1'->...->11'->12(+1)
increment_bcd(m_register[reg_hours], 0xff, 0);
switch (m_register[reg_hours])
{
case 0x12:
m_register[reg_hours] = 0x92; // 11:59 am -> 12:00 pm
break;
case 0x93:
m_register[reg_hours] = 0x81; // 12:59 pm -> 01:00 pm
break;
case 0x92:
m_register[reg_hours] = 0x12; // 11:59 pm -> 12:00 am
carry = true;
break;
case 0x13:
m_register[reg_hours] = 0x01; // 12:59 am -> 01:00 am
break;
}
}
}
}
return carry;
}
void bq4847_device::advance_days_bcd()
{
bool carry = false;
// BCD-encoded numbers
static const int days_in_month_table[12] =
{
0x31, 0x28, 0x31, 0x30, 0x31, 0x30,
0x31, 0x31, 0x30, 0x31, 0x30, 0x31
};
uint8_t month = bcd_to_integer(m_register[reg_month]);
if (month > 12) month = 12;
uint8_t days = days_in_month_table[month - 1];
// Leap years are indeed handled (but the year is only 2-digit)
if ((month == 2) && ((bcd_to_integer(m_register[reg_year]) % 4) == 0))
days = 0x29;
increment_bcd(m_register[reg_days], 7, 1); // Increment the day-of-week (without carry)
carry = increment_bcd(m_register[reg_date], days, 1);
if (carry)
{
increment_bcd(m_register[reg_month], 0xff, 1);
if (m_register[reg_month] == 0x13)
{
m_register[reg_month] = 0x01;
increment_bcd(m_register[reg_year], 0xff, 0);
}
}
}
bool bq4847_device::check_alarm(int now, int alarm)
{
return (m_register[alarm] & 0xc0) == 0xc0 || (m_register[alarm] == m_register[now]);
}
uint8_t bq4847_device::read(offs_t address)
{
int regnum = address & 0x0f;
uint8_t value = m_userbuffer[regnum];
if (regnum == reg_flags)
{
value &= 0x7f;
m_userbuffer[reg_flags] = 0x00;
update_int();
}
else if (regnum >= reg_interrupts && regnum <= reg_control)
value &= 0xf;
else if (regnum == reg_unused)
value = 0; // Reg 15 is locked to 0 in BQ4847
LOGMASKED(LOG_REG, "Reg %d -> %02x\n", regnum, value);
return value;
}
void bq4847_device::write(offs_t address, uint8_t data)
{
int regnum = address & 0x0f;
LOGMASKED(LOG_REG, "Reg %d <- %02x\n", regnum, data);
if (regnum == reg_flags)
{
LOGMASKED(LOG_WARN, "Ignoring write attempt to flag bit register (%02x)\n", data);
return;
}
bool uti_set = (m_register[reg_control] & CONTROL_UTI) != 0;
m_userbuffer[regnum] = data;
// If inhibit is not set, any write to the time/date registers
// is immediately set
if (uti_set && is_clock_register(regnum))
m_writing = true;
else
m_register[regnum] = m_userbuffer[regnum];
if (regnum == reg_rates)
{
set_watchdog_timer();
set_periodic_timer();
}
else if (regnum == reg_control)
{
bool uti_set_now = (m_register[reg_control] & CONTROL_UTI) != 0;
LOGMASKED(LOG_TRANSFER, "Update transfer %s\n", uti_set_now ? "inhibit" : "enable");
// After we have written to the registers, transfer to the internal regs
if (uti_set && !uti_set_now && m_writing)
{
LOGMASKED(LOG_TRANSFER, "Transfer to internal regs\n");
for (int i = reg_seconds; i < reg_unused; i++)
{
if (is_clock_register(i)) m_register[i] = m_userbuffer[i];
}
m_writing = false;
}
}
}
bool bq4847_device::is_clock_register(int regnum)
{
return (regnum == reg_seconds || regnum == reg_minutes || regnum == reg_hours ||
regnum == reg_date || regnum == reg_days || regnum == reg_month
|| regnum == reg_year);
}
void bq4847_device::set_periodic_timer()
{
uint8_t rs = m_register[reg_rates] & 0x0f;
attotime period = rs ? clocks_to_attotime(1 << (rs - 1)) : attotime::never;
if (m_periodic_timer)
m_periodic_timer->adjust(period, 0, period);
}
void bq4847_device::set_watchdog_timer(int rst_state)
{
if (m_rst_state == rst_state)
{
int wd = (m_register[reg_rates] & 0x70) >> 4;
u32 t = (wd == 7) ? 16384 : (wd == 0) ? 8192 : 64 << wd;
if (m_rst_state) t *= 6;
attotime timeout = m_wdi_state >= 0 ? clocks_to_attotime(t) : attotime::never;
if (m_watchdog_timer)
m_watchdog_timer->adjust(timeout);
}
}
void bq4847_device::set_wdo(int state)
{
if (m_wdo_state != state)
{
m_wdo_state = state;
m_wdo_handler(m_wdo_state);
}
}
void bq4847_device::write_wdi(int state)
{
if (m_wdi_state != state)
{
m_wdi_state = state;
set_wdo(1);
set_watchdog_timer();
}
}
TIMER_CALLBACK_MEMBER(bq4847_device::periodic_callback)
{
m_userbuffer[reg_flags] |= FLAG_PF;
update_int();
}
TIMER_CALLBACK_MEMBER(bq4847_device::watchdog_callback)
{
m_rst_state = !m_rst_state;
set_watchdog_timer(m_rst_state); // force timer update during reset
m_rst_handler(m_rst_state);
if (!m_rst_state)
set_wdo(0);
LOGMASKED(LOG_WATCHDOG, "wdo %s rst %s\n", !m_wdo_state ? "asserted" : "cleared", !m_rst_state ? "asserted" : "cleared");
}
void bq4847_device::update_int()
{
// TODO: check what happens if reg_interrupts is changed after the flag is set.
int int_state = !(m_register[reg_interrupts] & m_userbuffer[reg_flags] & (FLAG_AF | FLAG_PF | FLAG_PWRF));
if (m_int_state != int_state)
{
m_int_state = int_state;
m_int_handler(m_int_state);
}
}
// device_t
void bq4847_device::device_start()
{
m_update_timer = timer_alloc(FUNC(bq4847_device::update_callback), this);
m_periodic_timer = timer_alloc(FUNC(bq4847_device::periodic_callback), this);
m_watchdog_timer = timer_alloc(FUNC(bq4847_device::watchdog_callback), this);
m_wdo_handler(m_wdo_state);
m_int_handler(m_int_state);
m_rst_handler(m_rst_state);
save_pointer(NAME(m_userbuffer), 16);
save_pointer(NAME(m_register), 16);
save_item(NAME(m_wdo_state));
save_item(NAME(m_int_state));
save_item(NAME(m_rst_state));
save_item(NAME(m_wdi_state));
save_item(NAME(m_writing));
}
void bq4847_device::device_reset()
{
device_clock_changed();
}
void bq4847_device::device_clock_changed()
{
m_update_timer->adjust(clocks_to_attotime(32768), 0, clocks_to_attotime(32768));
set_watchdog_timer();
set_periodic_timer();
}
// device_nvram_interface
void bq4847_device::nvram_default()
{
if (m_region.found())
{
if (m_region->bytes() != std::size(m_register))
fatalerror("%s incorrect region size", tag());
std::copy_n(m_region->base(), std::size(m_register), m_register);
}
else
{
std::fill_n(m_register, std::size(m_register), 0);
m_register[reg_control] = CONTROL_STOP | CONTROL_24;
}
}
bool bq4847_device::nvram_read(util::read_stream& file)
{
size_t actual;
return !file.read(m_register, std::size(m_register), actual) && actual == std::size(m_register);
}
bool bq4847_device::nvram_write(util::write_stream& file)
{
size_t actual;
return !file.write(m_register, std::size(m_register), actual) && actual == std::size(m_register);
}
|