summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/cpu/z80/kc82.cpp
blob: 0dcac14e9e2ded5945a0f4b4a0d2f987969ce1de (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
// license:BSD-3-Clause
// copyright-holders:AJR
/***************************************************************************

    Kawasaki Steel (Kawatetsu) KC82 CPU core with MMU

***************************************************************************/

#include "emu.h"
#include "kc82.h"

#define VERBOSE 0
#include "logmacro.h"


//-------------------------------------------------
//  kc82_device - constructor
//-------------------------------------------------

kc82_device::kc82_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, const XTAL &clock, address_map_constructor mem_map, address_map_constructor io_map)
	: z80_device(mconfig, type, tag, owner, clock)
	, m_program_config("program", ENDIANNESS_LITTLE, 8, 20, 0, 16, 10, mem_map)
	, m_opcodes_config("opcodes", ENDIANNESS_LITTLE, 8, 20, 0, 16, 10, mem_map)
	, m_io_config("io", ENDIANNESS_LITTLE, 8, 16, 0, io_map)
{
	std::fill_n(&m_mmu_a[0], 4, 0);
	std::fill_n(&m_mmu_b[0], 5, 0);
	std::fill_n(&m_mmu_base[0], 0x40, 0);
}


//-------------------------------------------------
//  memory_space_config - return a vector of
//  address space configurations for this device
//-------------------------------------------------

device_memory_interface::space_config_vector kc82_device::memory_space_config() const
{
	if (has_space(AS_OPCODES))
	{
		return space_config_vector {
			std::make_pair(AS_PROGRAM, &m_program_config),
			std::make_pair(AS_IO,      &m_io_config),
			std::make_pair(AS_OPCODES, &m_opcodes_config)
		};
	}
	else
	{
		return space_config_vector {
			std::make_pair(AS_PROGRAM, &m_program_config),
			std::make_pair(AS_IO,      &m_io_config)
		};
	}
}


//-------------------------------------------------
//  device_start - device-specific startup
//-------------------------------------------------

void kc82_device::device_start()
{
	z80_device::device_start();

	for (int n = 1; n <= 4; n++)
	{
		state_add(KC82_B1 + n - 1, string_format("B%d", n).c_str(), m_mmu_b[n],
			[this, n](u8 data) { m_mmu_b[n] = data; mmu_remap_pages(); }
		).mask(0x3f);
		if (n != 4)
			state_add(KC82_A1 + n - 1, string_format("A%d", n).c_str(), m_mmu_a[n],
				[this, n](u16 data) { m_mmu_a[n] = data; mmu_remap_pages(); }
			).mask(0x3ff);
	}

	save_item(NAME(m_mmu_a));
	save_item(NAME(m_mmu_b));
}


//-------------------------------------------------
//  device_reset - device-specific reset
//-------------------------------------------------

void kc82_device::device_reset()
{
	z80_device::device_reset();

	std::fill_n(&m_mmu_a[1], 3, 0);
	std::fill_n(&m_mmu_b[1], 4, 0x3f);
	std::fill_n(&m_mmu_base[0], 0x40, 0);
}


//-------------------------------------------------
//  device_post_load - called after loading a
//  saved state
//-------------------------------------------------

void kc82_device::device_post_load()
{
	z80_device::device_post_load();

	mmu_remap_pages();
}


//**************************************************************************
//  KC82 MMU
//**************************************************************************

//-------------------------------------------------
//  mmu_remap_pages - recalculate base addresses
//  for memory pages
//-------------------------------------------------

void kc82_device::mmu_remap_pages()
{
	int n = 4;
	u32 base = 0xf0000; // A4 is fixed
	for (u8 i = 0x3f; i != 0; --i)
	{
		while (n != 0 && m_mmu_b[n] >= i)
		{
			--n;
			base = u32(m_mmu_a[n]) << 10;
		}
		if (m_mmu_base[i] != base)
		{
			u32 old_mapping = ((i << 10) + base) & 0xffc00;
			u32 new_mapping = ((i << 10) + m_mmu_base[i]) & 0xffc00;
			LOG("%s: MMU: %04X-%04XH => %05X-%05XH (was %05X-%05XH)\n",
				machine().describe_context(),
				i << 10, (i << 10) | 0x3ff,
				old_mapping, old_mapping | 0x3ff,
				new_mapping, new_mapping | 0x3ff);
		}
		m_mmu_base[i] = base;
	}
}


//-------------------------------------------------
//  mmu_r - read MMU register
//-------------------------------------------------

u8 kc82_device::mmu_r(offs_t offset)
{
	int n = (offset >> 1) + 1;
	if (BIT(offset, 0))
	{
		// read base register BRn
		return n == 4 ? 0xf0 : (m_mmu_a[n] & 0x3fc) >> 2;
	}
	else
	{
		// read boundary/base register BBRn
		return (n == 4 ? 0 : (m_mmu_a[n] & 0x003) << 6) | m_mmu_b[n];
	}
}


//-------------------------------------------------
//  mmu_w - write to MMU register
//-------------------------------------------------

void kc82_device::mmu_w(offs_t offset, u8 data)
{
	int n = (offset >> 1) + 1;
	if (BIT(offset, 0))
	{
		// write to base register BRn
		if (n != 4)
			m_mmu_a[n] = u16(data) << 2 | (m_mmu_a[n] & 0x003);
		else if (data != 0xf0)
			logerror("%s: Attempt to write %02X to upper 8 bits of A4\n", machine().describe_context(), data);
	}
	else
	{
		// write to boundary/base register BBRn
		m_mmu_b[n] = data & 0x3f;
		if (n != 4)
			m_mmu_a[n] = (m_mmu_a[n] & 0x3fc) | (data & 0xc0) >> 6;
		else if ((data & 0xc0) != 0)
			logerror("%s: Attempt to write %d to lower 2 bits of A4\n", machine().describe_context(), (data & 0xc0) >> 6);
	}
	mmu_remap_pages();
}


//-------------------------------------------------
//  memory_translate - translate from logical to
//  physical addresses
//-------------------------------------------------

bool kc82_device::memory_translate(int spacenum, int intention, offs_t &address)
{
	if (spacenum == AS_PROGRAM || spacenum == AS_OPCODES)
		address = (address + m_mmu_base[(address & 0xfc00) >> 10]) & 0xfffff;
	return true;
}


//-------------------------------------------------
//  rm - read one byte from memory
//-------------------------------------------------

u8 kc82_device::rm(u16 addr)
{
	return m_data.read_byte(addr + m_mmu_base[addr >> 10]);
}


//-------------------------------------------------
//  wm - write one byte to memory
//-------------------------------------------------

void kc82_device::wm(u16 addr, u8 value)
{
	m_data.write_byte(addr + m_mmu_base[addr >> 10], value);
}


//-------------------------------------------------
//  rop - read opcode
//-------------------------------------------------

u8 kc82_device::rop()
{
	u32 pc = m_pc.w.l + m_mmu_base[m_pc.b.h >> 2];
	m_pc.w.l++;
	// no refresh
	return m_opcodes.read_byte(pc);
}


//-------------------------------------------------
//  arg - read 8-bit argument
//-------------------------------------------------

u8 kc82_device::arg()
{
	u32 pc = m_pc.w.l + m_mmu_base[m_pc.b.h >> 2];
	m_pc.w.l++;
	return m_args.read_byte(pc);
}


//-------------------------------------------------
//  arg16 - read 16-bit argument
//-------------------------------------------------

u16 kc82_device::arg16()
{
	u16 d16 = arg();
	d16 |= u16(arg()) << 8;
	return d16;
}