summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/cpu/sm510/sm510base.h
blob: f699c035b26b9fd4968fd9238921c7b138f31ca2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
// license:BSD-3-Clause
// copyright-holders:hap
/*

  Sharp SM510 MCU family - base/shared

  Don't include this file, include the specific device header instead,
  for example sm510.h

*/

#ifndef MAME_CPU_SM510_SM510BASE_H
#define MAME_CPU_SM510_SM510BASE_H

#pragma once

// I/O ports setup

// when in halt state, any active K input can wake up the CPU,
// driver is required to use set_input_line(SM510_EXT_WAKEUP_LINE, state)
#define SM510_EXT_WAKEUP_LINE 0

// ACL input pin
#define SM510_INPUT_LINE_ACL INPUT_LINE_RESET

// LCD commons
enum
{
	SM510_PORT_SEGA = 0x00,
	SM510_PORT_SEGB = 0x04,
	SM510_PORT_SEGBS = 0x08,
	SM510_PORT_SEGC = 0x0c
};


class sm510_base_device : public cpu_device
{
public:
	// construction/destruction
	sm510_base_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, u32 clock, int stack_levels, int prgwidth, address_map_constructor program, int datawidth, address_map_constructor data)
		: cpu_device(mconfig, type, tag, owner, clock)
		, m_program_config("program", ENDIANNESS_LITTLE, 8, prgwidth, 0, program)
		, m_data_config("data", ENDIANNESS_LITTLE, 8, datawidth, 0, data)
		, m_prgwidth(prgwidth)
		, m_datawidth(datawidth)
		, m_stack_levels(stack_levels)
		, m_r_mask_option(RMASK_DIRECT)
		, m_lcd_ram_a(*this, "lcd_ram_a"), m_lcd_ram_b(*this, "lcd_ram_b"), m_lcd_ram_c(*this, "lcd_ram_c")
		, m_write_segs(*this)
		, m_melody_rom(*this, "melody")
		, m_read_k(*this)
		, m_read_ba(*this), m_read_b(*this)
		, m_write_s(*this)
		, m_write_r(*this)
	{ }

	// For SM510, SM500, SM5A, R port output is selected with a mask option,
	// either from the divider or direct contol. Documented options are:
	// SM510/SM5A: direct control, 2(4096Hz meant for alarm sound)
	// SM500: 14, 11, 3 (divider f1, f4, f12)
	void set_r_mask_option(int bit) { m_r_mask_option = bit; }
	static constexpr int RMASK_DIRECT = -1;

	// 4/8-bit K input port (pull-down)
	auto read_k() { return m_read_k.bind(); }

	// 1-bit BA(aka alpha) input pin (pull-up)
	auto read_ba() { return m_read_ba.bind(); }

	// 1-bit B(beta) input pin (pull-up)
	auto read_b() { return m_read_b.bind(); }

	// 4/8-bit S strobe output port
	auto write_s() { return m_write_s.bind(); }

	// 1/2/4-bit R (buzzer/melody) output port
	// may also be called F(frequency?) or SO(sound out)
	auto write_r() { return m_write_r.bind(); }

	// LCD segment outputs, SM51x: H1-4 as offset(low), a/b/c 1-16 as data d0-d15,
	// bs output is same as above, but only up to 2 bits used.
	// SM500/SM5A/SM530: H1/2 as a0, O group as a1-a4, O data as d0-d3
	auto write_segs() { return m_write_segs.bind(); }

protected:
	// device-level overrides
	virtual void device_start() override;
	virtual void device_reset() override;

	// device_execute_interface overrides
	virtual u64 execute_clocks_to_cycles(u64 clocks) const noexcept override { return (clocks + m_clk_div - 1) / m_clk_div; } // default 2 cycles per machine cycle
	virtual u64 execute_cycles_to_clocks(u64 cycles) const noexcept override { return (cycles * m_clk_div); } // "
	virtual u32 execute_min_cycles() const noexcept override { return 1; }
	virtual u32 execute_max_cycles() const noexcept override { return 3+1; }
	virtual u32 execute_input_lines() const noexcept override { return 1; }
	virtual void execute_set_input(int line, int state) override;
	virtual void execute_run() override;

	virtual void execute_one() { } // -> child class
	virtual bool op_argument() { return false; }

	// device_memory_interface overrides
	virtual space_config_vector memory_space_config() const override;

	address_space_config m_program_config;
	address_space_config m_data_config;
	address_space *m_program;
	address_space *m_data;

	virtual void reset_vector() { do_branch(3, 7, 0); }
	virtual void wakeup_vector() { do_branch(1, 0, 0); } // after halt

	int m_prgwidth;
	int m_datawidth;
	int m_prgmask;
	int m_datamask;

	u16 m_pc, m_prev_pc;
	u16 m_op, m_prev_op;
	u8 m_param;
	int m_stack_levels;
	u16 m_stack[4]; // max 4
	int m_icount;

	u8 m_acc;
	u8 m_bl;
	u8 m_bm;
	u8 m_bmask;
	u8 m_c;
	bool m_skip;
	u8 m_w;
	u8 m_r;
	u8 m_r_out;
	int m_r_mask_option;
	bool m_ext_wakeup;
	bool m_halt;
	int m_clk_div;

	// lcd driver
	optional_shared_ptr<u8> m_lcd_ram_a, m_lcd_ram_b, m_lcd_ram_c;
	devcb_write16 m_write_segs;
	emu_timer *m_lcd_timer;
	u8 m_l;
	u8 m_x;
	u8 m_y;
	u8 m_bp;
	bool m_bc;

	u16 get_lcd_row(int column, u8* ram);
	virtual void lcd_update();
	TIMER_CALLBACK_MEMBER(lcd_timer_cb);
	virtual void init_lcd_driver();

	// melody controller
	optional_region_ptr<u8> m_melody_rom;
	u8 m_melody_rd;
	u8 m_melody_step_count;
	u8 m_melody_duty_count;
	u8 m_melody_duty_index;
	u8 m_melody_address;

	virtual void clock_melody() { }
	virtual void init_melody() { }

	// divider
	emu_timer *m_div_timer;
	u16 m_div;
	u8 m_gamma;

	virtual void init_divider();
	virtual TIMER_CALLBACK_MEMBER(div_timer_cb);

	// other i/o handlers
	devcb_read8 m_read_k;
	devcb_read_line m_read_ba;
	devcb_read_line m_read_b;
	devcb_write8 m_write_s;
	devcb_write8 m_write_r;

	// misc internal helpers
	virtual void increment_pc();
	virtual void update_w_latch() { }
	void do_interrupt();

	virtual u8 ram_r();
	virtual void ram_w(u8 data);
	void pop_stack();
	void push_stack();
	virtual void do_branch(u8 pu, u8 pm, u8 pl);
	u8 bitmask(u16 param);

	// opcode handlers
	virtual void op_lb();
	virtual void op_lbl();
	virtual void op_sbm();
	virtual void op_exbla();
	virtual void op_incb();
	virtual void op_decb();

	virtual void op_atpl();
	virtual void op_rtn0();
	virtual void op_rtn1();
	virtual void op_tl();
	virtual void op_tml();
	virtual void op_tm();
	virtual void op_t();

	virtual void op_exc();
	virtual void op_bdc();
	virtual void op_exci();
	virtual void op_excd();
	virtual void op_lda();
	virtual void op_lax();
	virtual void op_ptw();
	virtual void op_wr();
	virtual void op_ws();

	virtual void op_kta();
	virtual void op_atbp();
	virtual void op_atx();
	virtual void op_atl();
	virtual void op_atfc();
	virtual void op_atr();

	virtual void op_add();
	virtual void op_add11();
	virtual void op_adx();
	virtual void op_coma();
	virtual void op_rot();
	virtual void op_rc();
	virtual void op_sc();

	virtual void op_tb();
	virtual void op_tc();
	virtual void op_tam();
	virtual void op_tmi();
	virtual void op_ta0();
	virtual void op_tabl();
	virtual void op_tis();
	virtual void op_tal();
	virtual void op_tf1();
	virtual void op_tf4();

	virtual void op_rm();
	virtual void op_sm();

	virtual void op_pre();
	virtual void op_sme();
	virtual void op_rme();
	virtual void op_tmel();

	virtual void op_skip();
	virtual void op_cend();
	virtual void op_idiv();
	virtual void op_dta();
	virtual void op_clklo();
	virtual void op_clkhi();

	void op_illegal();
};

#endif // MAME_CPU_SM510_SM510BASE_H