1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
|
// BSD 3-Clause License
//
// Copyright (c) 2021, Aaron Giles
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "ymfm_pcm.h"
#include "ymfm_fm.h"
#include "ymfm_fm.ipp"
namespace ymfm
{
//*********************************************************
// PCM REGISTERS
//*********************************************************
//-------------------------------------------------
// reset - reset the register state
//-------------------------------------------------
void pcm_registers::reset()
{
std::fill_n(&m_regdata[0], REGISTERS, 0);
m_regdata[0xf8] = 0x1b;
}
//-------------------------------------------------
// save_restore - save or restore the data
//-------------------------------------------------
void pcm_registers::save_restore(ymfm_saved_state &state)
{
state.save_restore(m_regdata);
}
//-------------------------------------------------
// cache_channel_data - update the cache with
// data from the registers
//-------------------------------------------------
void pcm_registers::cache_channel_data(uint32_t choffs, pcm_cache &cache)
{
// compute step from octave and fnumber; the math here implies
// a .18 fraction but .16 should be perfectly fine
int32_t octave = int8_t(ch_octave(choffs) << 4) >> 4;
uint32_t fnum = ch_fnumber(choffs);
cache.step = ((0x400 | fnum) << (octave + 7)) >> 2;
// total level is computed as a .10 value for interpolation
cache.total_level = ch_total_level(choffs) << 10;
// compute panning values in terms of envelope attenuation
int32_t panpot = int8_t(ch_panpot(choffs) << 4) >> 4;
if (panpot >= 0)
{
cache.pan_left = (panpot == 7) ? 0x3ff : 0x20 * panpot;
cache.pan_right = 0;
}
else if (panpot >= -7)
{
cache.pan_left = 0;
cache.pan_right = (panpot == -7) ? 0x3ff : -0x20 * panpot;
}
else
cache.pan_left = cache.pan_right = 0x3ff;
// determine the LFO stepping value; this how much to add to a running
// x.18 value for the LFO; steps were derived from frequencies in the
// manual and come out very close with these values
static const uint8_t s_lfo_steps[8] = { 1, 12, 19, 25, 31, 35, 37, 42 };
cache.lfo_step = s_lfo_steps[ch_lfo_speed(choffs)];
// AM LFO depth values, derived from the manual; note each has at most
// 2 bits to make the "multiply" easy in hardware
static const uint8_t s_am_depth[8] = { 0, 0x14, 0x20, 0x28, 0x30, 0x40, 0x50, 0x80 };
cache.am_depth = s_am_depth[ch_am_depth(choffs)];
// PM LFO depth values; these are converted from the manual's cents values
// into f-numbers; the computations come out quite cleanly so pretty sure
// these are correct
static const uint8_t s_pm_depth[8] = { 0, 2, 3, 4, 6, 12, 24, 48 };
cache.pm_depth = s_pm_depth[ch_vibrato(choffs)];
// 4-bit sustain level, but 15 means 31 so effectively 5 bits
cache.eg_sustain = ch_sustain_level(choffs);
cache.eg_sustain |= (cache.eg_sustain + 1) & 0x10;
cache.eg_sustain <<= 5;
// compute the key scaling correction factor; 15 means don't do any correction
int32_t correction = ch_rate_correction(choffs);
if (correction == 15)
correction = 0;
else
correction = (octave + correction) * 2 + bitfield(fnum, 9);
// compute the envelope generator rates
cache.eg_rate[EG_ATTACK] = effective_rate(ch_attack_rate(choffs), correction);
cache.eg_rate[EG_DECAY] = effective_rate(ch_decay_rate(choffs), correction);
cache.eg_rate[EG_SUSTAIN] = effective_rate(ch_sustain_rate(choffs), correction);
cache.eg_rate[EG_RELEASE] = effective_rate(ch_release_rate(choffs), correction);
cache.eg_rate[EG_REVERB] = 5;
// if damping is on, override some things; essentially decay at a hardcoded
// rate of 48 until -12db (0x80), then at maximum rate for the rest
if (ch_damp(choffs) != 0)
{
cache.eg_rate[EG_DECAY] = 48;
cache.eg_rate[EG_SUSTAIN] = 63;
cache.eg_rate[EG_RELEASE] = 63;
cache.eg_sustain = 0x80;
}
}
//-------------------------------------------------
// effective_rate - return the effective rate,
// clamping and applying corrections as needed
//-------------------------------------------------
uint32_t pcm_registers::effective_rate(uint32_t raw, uint32_t correction)
{
// raw rates of 0 and 15 just pin to min/max
if (raw == 0)
return 0;
if (raw == 15)
return 63;
// otherwise add the correction and clamp to range
return clamp(raw * 4 + correction, 0, 63);
}
//*********************************************************
// PCM CHANNEL
//*********************************************************
//-------------------------------------------------
// pcm_channel - constructor
//-------------------------------------------------
pcm_channel::pcm_channel(pcm_engine &owner, uint32_t choffs) :
m_choffs(choffs),
m_baseaddr(0),
m_endpos(0),
m_looppos(0),
m_curpos(0),
m_nextpos(0),
m_lfo_counter(0),
m_eg_state(EG_RELEASE),
m_env_attenuation(0x3ff),
m_total_level(0x7f << 10),
m_format(0),
m_key_state(0),
m_regs(owner.regs()),
m_owner(owner)
{
}
//-------------------------------------------------
// reset - reset the channel state
//-------------------------------------------------
void pcm_channel::reset()
{
m_baseaddr = 0;
m_endpos = 0;
m_looppos = 0;
m_curpos = 0;
m_nextpos = 0;
m_lfo_counter = 0;
m_eg_state = EG_RELEASE;
m_env_attenuation = 0x3ff;
m_total_level = 0x7f << 10;
m_format = 0;
m_key_state = 0;
}
//-------------------------------------------------
// save_restore - save or restore the data
//-------------------------------------------------
void pcm_channel::save_restore(ymfm_saved_state &state)
{
state.save_restore(m_baseaddr);
state.save_restore(m_endpos);
state.save_restore(m_looppos);
state.save_restore(m_curpos);
state.save_restore(m_nextpos);
state.save_restore(m_lfo_counter);
state.save_restore(m_eg_state);
state.save_restore(m_env_attenuation);
state.save_restore(m_total_level);
state.save_restore(m_format);
state.save_restore(m_key_state);
}
//-------------------------------------------------
// prepare - prepare for clocking
//-------------------------------------------------
bool pcm_channel::prepare()
{
// cache the data
m_regs.cache_channel_data(m_choffs, m_cache);
// clock the key state
if ((m_key_state & KEY_PENDING) != 0)
{
uint8_t oldstate = m_key_state;
m_key_state = (m_key_state >> 1) & KEY_ON;
if (((oldstate ^ m_key_state) & KEY_ON) != 0)
{
if ((m_key_state & KEY_ON) != 0)
start_attack();
else
start_release();
}
}
// set the total level directly if not interpolating
if (m_regs.ch_level_direct(m_choffs))
m_total_level = m_cache.total_level;
// we're active until we're quiet after the release
return (m_eg_state < EG_RELEASE || m_env_attenuation < EG_QUIET);
}
//-------------------------------------------------
// clock - master clocking function
//-------------------------------------------------
void pcm_channel::clock(uint32_t env_counter)
{
// clock the LFO, which is an x.18 value incremented based on the
// LFO speed value
m_lfo_counter += m_cache.lfo_step;
// clock the envelope
clock_envelope(env_counter);
// determine the step after applying vibrato
uint32_t step = m_cache.step;
if (m_cache.pm_depth != 0)
{
// shift the LFO by 1/4 cycle for PM so that it starts at 0
uint32_t lfo_shifted = m_lfo_counter + (1 << 16);
int32_t lfo_value = bitfield(lfo_shifted, 10, 7);
if (bitfield(lfo_shifted, 17) != 0)
lfo_value ^= 0x7f;
lfo_value -= 0x40;
step += (lfo_value * int32_t(m_cache.pm_depth)) >> 7;
}
// advance the sample step and loop as needed
m_curpos = m_nextpos;
m_nextpos = m_curpos + step;
if (m_nextpos >= m_endpos)
m_nextpos += m_looppos - m_endpos;
// interpolate total level if needed
if (m_total_level != m_cache.total_level)
{
// max->min volume takes 156.4ms, or pretty close to 19/1024 per 44.1kHz sample
// min->max volume is half that, so advance by 38/1024 per sample
if (m_total_level < m_cache.total_level)
m_total_level = std::min<int32_t>(m_total_level + 19, m_cache.total_level);
else
m_total_level = std::max<int32_t>(m_total_level - 38, m_cache.total_level);
}
}
//-------------------------------------------------
// output - return the computed output value, with
// panning applied
//-------------------------------------------------
void pcm_channel::output(output_data &output) const
{
// early out if the envelope is effectively off
uint32_t envelope = m_env_attenuation;
if (envelope > EG_QUIET)
return;
// add in LFO AM modulation
if (m_cache.am_depth != 0)
{
uint32_t lfo_value = bitfield(m_lfo_counter, 10, 7);
if (bitfield(m_lfo_counter, 17) != 0)
lfo_value ^= 0x7f;
envelope += (lfo_value * m_cache.am_depth) >> 7;
}
// add in the current interpolated total level value, which is a .10
// value shifted left by 2
envelope += m_total_level >> 8;
// add in panning effect and clamp
uint32_t lenv = std::min<uint32_t>(envelope + m_cache.pan_left, 0x3ff);
uint32_t renv = std::min<uint32_t>(envelope + m_cache.pan_right, 0x3ff);
// convert to volume as a .11 fraction
int32_t lvol = attenuation_to_volume(lenv << 2);
int32_t rvol = attenuation_to_volume(renv << 2);
// fetch current sample and add
int16_t sample = fetch_sample();
uint32_t outnum = m_regs.ch_output_channel(m_choffs) * 2;
output.data[outnum + 0] += (lvol * sample) >> 15;
output.data[outnum + 1] += (rvol * sample) >> 15;
}
//-------------------------------------------------
// keyonoff - signal key on/off
//-------------------------------------------------
void pcm_channel::keyonoff(bool on)
{
// mark the key state as pending
m_key_state |= KEY_PENDING | (on ? KEY_PENDING_ON : 0);
// don't log masked channels
if ((m_key_state & (KEY_PENDING_ON | KEY_ON)) == KEY_PENDING_ON && ((debug::GLOBAL_PCM_CHANNEL_MASK >> m_choffs) & 1) != 0)
{
debug::log_keyon("KeyOn PCM-%02d: num=%3d oct=%2d fnum=%03X level=%02X%c ADSR=%X/%X/%X/%X SL=%X",
m_choffs,
m_regs.ch_wave_table_num(m_choffs),
int8_t(m_regs.ch_octave(m_choffs) << 4) >> 4,
m_regs.ch_fnumber(m_choffs),
m_regs.ch_total_level(m_choffs),
m_regs.ch_level_direct(m_choffs) ? '!' : '/',
m_regs.ch_attack_rate(m_choffs),
m_regs.ch_decay_rate(m_choffs),
m_regs.ch_sustain_rate(m_choffs),
m_regs.ch_release_rate(m_choffs),
m_regs.ch_sustain_level(m_choffs));
if (m_regs.ch_rate_correction(m_choffs) != 15)
debug::log_keyon(" RC=%X", m_regs.ch_rate_correction(m_choffs));
if (m_regs.ch_pseudo_reverb(m_choffs) != 0)
debug::log_keyon(" %s", "REV");
if (m_regs.ch_damp(m_choffs) != 0)
debug::log_keyon(" %s", "DAMP");
if (m_regs.ch_vibrato(m_choffs) != 0 || m_regs.ch_am_depth(m_choffs) != 0)
{
if (m_regs.ch_vibrato(m_choffs) != 0)
debug::log_keyon(" VIB=%d", m_regs.ch_vibrato(m_choffs));
if (m_regs.ch_am_depth(m_choffs) != 0)
debug::log_keyon(" AM=%d", m_regs.ch_am_depth(m_choffs));
debug::log_keyon(" LFO=%d", m_regs.ch_lfo_speed(m_choffs));
}
debug::log_keyon("%s", "\n");
}
}
//-------------------------------------------------
// load_wavetable - load a wavetable by fetching
// its data from external memory
//-------------------------------------------------
void pcm_channel::load_wavetable()
{
// determine the address of the wave table header
uint32_t wavnum = m_regs.ch_wave_table_num(m_choffs);
uint32_t wavheader = 12 * wavnum;
// above 384 it may be in a different bank
if (wavnum >= 384)
{
uint32_t bank = m_regs.wave_table_header();
if (bank != 0)
wavheader = 512*1024 * bank + (wavnum - 384) * 12;
}
// fetch the 22-bit base address and 2-bit format
uint8_t byte = read_pcm(wavheader + 0);
m_format = bitfield(byte, 6, 2);
m_baseaddr = bitfield(byte, 0, 6) << 16;
m_baseaddr |= read_pcm(wavheader + 1) << 8;
m_baseaddr |= read_pcm(wavheader + 2) << 0;
// fetch the 16-bit loop position
m_looppos = read_pcm(wavheader + 3) << 8;
m_looppos |= read_pcm(wavheader + 4);
m_looppos <<= 16;
// fetch the 16-bit end position, which is stored as a negative value
// for some reason that is unclear
m_endpos = read_pcm(wavheader + 5) << 8;
m_endpos |= read_pcm(wavheader + 6);
m_endpos = -int32_t(m_endpos) << 16;
// remaining data values set registers
m_owner.write(0x80 + m_choffs, read_pcm(wavheader + 7));
m_owner.write(0x98 + m_choffs, read_pcm(wavheader + 8));
m_owner.write(0xb0 + m_choffs, read_pcm(wavheader + 9));
m_owner.write(0xc8 + m_choffs, read_pcm(wavheader + 10));
m_owner.write(0xe0 + m_choffs, read_pcm(wavheader + 11));
// reset the envelope so we don't continue playing mid-sample from previous key ons
m_env_attenuation = 0x3ff;
}
//-------------------------------------------------
// read_pcm - read a byte from the external PCM
// memory interface
//-------------------------------------------------
uint8_t pcm_channel::read_pcm(uint32_t address) const
{
return m_owner.intf().ymfm_external_read(ACCESS_PCM, address);
}
//-------------------------------------------------
// start_attack - start the attack phase
//-------------------------------------------------
void pcm_channel::start_attack()
{
// don't change anything if already in attack state
if (m_eg_state == EG_ATTACK)
return;
m_eg_state = EG_ATTACK;
// reset the LFO if requested
if (m_regs.ch_lfo_reset(m_choffs))
m_lfo_counter = 0;
// if the attack rate == 63 then immediately go to max attenuation
if (m_cache.eg_rate[EG_ATTACK] == 63)
m_env_attenuation = 0;
// reset the positions
m_curpos = m_nextpos = 0;
}
//-------------------------------------------------
// start_release - start the release phase
//-------------------------------------------------
void pcm_channel::start_release()
{
// don't change anything if already in release or reverb state
if (m_eg_state >= EG_RELEASE)
return;
m_eg_state = EG_RELEASE;
}
//-------------------------------------------------
// clock_envelope - clock the envelope generator
//-------------------------------------------------
void pcm_channel::clock_envelope(uint32_t env_counter)
{
// handle attack->decay transitions
if (m_eg_state == EG_ATTACK && m_env_attenuation == 0)
m_eg_state = EG_DECAY;
// handle decay->sustain transitions
if (m_eg_state == EG_DECAY && m_env_attenuation >= m_cache.eg_sustain)
m_eg_state = EG_SUSTAIN;
// fetch the appropriate 6-bit rate value from the cache
uint32_t rate = m_cache.eg_rate[m_eg_state];
// compute the rate shift value; this is the shift needed to
// apply to the env_counter such that it becomes a 5.11 fixed
// point number
uint32_t rate_shift = rate >> 2;
env_counter <<= rate_shift;
// see if the fractional part is 0; if not, it's not time to clock
if (bitfield(env_counter, 0, 11) != 0)
return;
// determine the increment based on the non-fractional part of env_counter
uint32_t relevant_bits = bitfield(env_counter, (rate_shift <= 11) ? 11 : rate_shift, 3);
uint32_t increment = attenuation_increment(rate, relevant_bits);
// attack is the only one that increases
if (m_eg_state == EG_ATTACK)
m_env_attenuation += (~m_env_attenuation * increment) >> 4;
// all other cases are similar
else
{
// apply the increment
m_env_attenuation += increment;
// clamp the final attenuation
if (m_env_attenuation >= 0x400)
m_env_attenuation = 0x3ff;
// transition to reverb at -18dB if enabled
if (m_env_attenuation >= 0xc0 && m_eg_state < EG_REVERB && m_regs.ch_pseudo_reverb(m_choffs))
m_eg_state = EG_REVERB;
}
}
//-------------------------------------------------
// fetch_sample - fetch a sample at the current
// position
//-------------------------------------------------
int16_t pcm_channel::fetch_sample() const
{
uint32_t addr = m_baseaddr;
uint32_t pos = m_curpos >> 16;
// 8-bit PCM: shift up by 8
if (m_format == 0)
return read_pcm(addr + pos) << 8;
// 16-bit PCM: assemble from 2 halves
if (m_format == 2)
{
addr += pos * 2;
return (read_pcm(addr) << 8) | read_pcm(addr + 1);
}
// 12-bit PCM: assemble out of half of 3 bytes
addr += (pos / 2) * 3;
if ((pos & 1) == 0)
return (read_pcm(addr + 0) << 8) | ((read_pcm(addr + 1) << 4) & 0xf0);
else
return (read_pcm(addr + 2) << 8) | ((read_pcm(addr + 1) << 0) & 0xf0);
}
//*********************************************************
// PCM ENGINE
//*********************************************************
//-------------------------------------------------
// pcm_engine - constructor
//-------------------------------------------------
pcm_engine::pcm_engine(ymfm_interface &intf) :
m_intf(intf),
m_env_counter(0),
m_modified_channels(ALL_CHANNELS),
m_active_channels(ALL_CHANNELS)
{
// create the channels
for (int chnum = 0; chnum < CHANNELS; chnum++)
m_channel[chnum] = std::make_unique<pcm_channel>(*this, chnum);
}
//-------------------------------------------------
// reset - reset the engine state
//-------------------------------------------------
void pcm_engine::reset()
{
// reset register state
m_regs.reset();
// reset each channel
for (auto &chan : m_channel)
chan->reset();
}
//-------------------------------------------------
// save_restore - save or restore the data
//-------------------------------------------------
void pcm_engine::save_restore(ymfm_saved_state &state)
{
// save our data
state.save_restore(m_env_counter);
// save channel state
for (int chnum = 0; chnum < CHANNELS; chnum++)
m_channel[chnum]->save_restore(state);
}
//-------------------------------------------------
// clock - master clocking function
//-------------------------------------------------
void pcm_engine::clock(uint32_t chanmask)
{
// if something was modified, prepare
// also prepare every 4k samples to catch ending notes
if (m_modified_channels != 0 || m_prepare_count++ >= 4096)
{
// call each channel to prepare
m_active_channels = 0;
for (int chnum = 0; chnum < CHANNELS; chnum++)
if (bitfield(chanmask, chnum))
if (m_channel[chnum]->prepare())
m_active_channels |= 1 << chnum;
// reset the modified channels and prepare count
m_modified_channels = m_prepare_count = 0;
}
// increment the envelope counter; the envelope generator
// only clocks every other sample in order to make the PCM
// envelopes line up with the FM envelopes (after taking into
// account the different FM sampling rate)
m_env_counter++;
// now update the state of all the channels and operators
for (int chnum = 0; chnum < CHANNELS; chnum++)
if (bitfield(chanmask, chnum))
m_channel[chnum]->clock(m_env_counter >> 1);
}
//-------------------------------------------------
// update - master update function
//-------------------------------------------------
void pcm_engine::output(output_data &output, uint32_t chanmask)
{
// mask out some channels for debug purposes
chanmask &= debug::GLOBAL_PCM_CHANNEL_MASK;
// compute the output of each channel
for (int chnum = 0; chnum < CHANNELS; chnum++)
if (bitfield(chanmask, chnum))
m_channel[chnum]->output(output);
}
//-------------------------------------------------
// read - handle reads from the PCM registers
//-------------------------------------------------
uint8_t pcm_engine::read(uint32_t regnum)
{
// handle reads from the data register
if (regnum == 0x06 && m_regs.memory_access_mode() != 0)
return m_intf.ymfm_external_read(ACCESS_PCM, m_regs.memory_address_autoinc());
return m_regs.read(regnum);
}
//-------------------------------------------------
// write - handle writes to the PCM registers
//-------------------------------------------------
void pcm_engine::write(uint32_t regnum, uint8_t data)
{
// handle reads to the data register
if (regnum == 0x06 && m_regs.memory_access_mode() != 0)
{
m_intf.ymfm_external_write(ACCESS_PCM, m_regs.memory_address_autoinc(), data);
return;
}
// for now just mark all channels as modified
m_modified_channels = ALL_CHANNELS;
// most writes are passive, consumed only when needed
m_regs.write(regnum, data);
// however, process keyons immediately
if (regnum >= 0x68 && regnum <= 0x7f)
m_channel[regnum - 0x68]->keyonoff(bitfield(data, 7));
// and also wavetable writes
else if (regnum >= 0x08 && regnum <= 0x1f)
m_channel[regnum - 0x08]->load_wavetable();
}
}
|