summaryrefslogtreecommitdiffstatshomepage
path: root/3rdparty/ymfm/src/ymfm_opz.cpp
blob: adeefd79f1957f35f887e09f4c13e6184fde774d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
// BSD 3-Clause License
//
// Copyright (c) 2021, Aaron Giles
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
//    list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
//    this list of conditions and the following disclaimer in the documentation
//    and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
//    contributors may be used to endorse or promote products derived from
//    this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "ymfm_opz.h"
#include "ymfm_fm.ipp"

#define TEMPORARY_DEBUG_PRINTS (0)

//
// OPZ (aka YM2414)
//
// This chip is not officially documented as far as I know. What I have
// comes from this site:
//
//    http://sr4.sakura.ne.jp/fmsound/opz.html
//
// and from reading the TX81Z operator manual, which describes how a number
// of these new features work.
//
// OPZ appears be bsaically OPM with a bunch of extra features.
//
// For starters, there are two LFO generators. I have presumed that they
// operate identically since identical parameters are offered for each. I
// have also presumed the effects are additive between them. The LFOs on
// the OPZ have an extra "sync" option which apparently causes the LFO to
// reset whenever a key on is received.
//
// At the channel level, there is an additional 8-bit volume control. This
// might work as an addition to total level, or some other way. Completely
// unknown, and unimplemented.
//
// At the operator level, there are a number of extra features. First, there
// are 8 different waveforms to choose from. These are different than the
// waveforms introduced in the OPL2 and later chips.
//
// Second, there is an additional "reverb" stage added to the envelope
// generator, which kicks in when the envelope reaches -18dB. It specifies
// a slower decay rate to produce a sort of faux reverb effect.
//
// The envelope generator also supports a 2-bit shift value, which can be
// used to reduce the effect of the envelope attenuation.
//
// OPZ supports a "fixed frequency" mode for each operator, with a 3-bit
// range and 4-bit frequency value, plus a 1-bit enable. Not sure how that
// works at all, so it's not implemented.
//
// There are also several mystery fields in the operators which I have no
// clue about: "fine" (4 bits), "eg_shift" (2 bits), and "rev" (3 bits).
// eg_shift is some kind of envelope generator effect, but how it works is
// unknown.
//
// Also, according to the site above, the panning controls are changed from
// OPM, with a "mono" bit and only one control bit for the right channel.
// Current implementation is just a guess.
//

namespace ymfm
{

//*********************************************************
//  OPZ REGISTERS
//*********************************************************

//-------------------------------------------------
//  opz_registers - constructor
//-------------------------------------------------

opz_registers::opz_registers() :
	m_lfo_counter{ 0, 0 },
	m_noise_lfsr(1),
	m_noise_counter(0),
	m_noise_state(0),
	m_noise_lfo(0),
	m_lfo_am{ 0, 0 }
{
	// create the waveforms
	for (uint32_t index = 0; index < WAVEFORM_LENGTH; index++)
		m_waveform[0][index] = abs_sin_attenuation(index) | (bitfield(index, 9) << 15);

	// we only have the diagrams to judge from, but suspecting waveform 1 (and
	// derived waveforms) are sin^2, based on OPX description of similar wave-
	// forms; since our sin table is logarithmic, this ends up just being
	// 2*existing value
	uint16_t zeroval = m_waveform[0][0];
	for (uint32_t index = 0; index < WAVEFORM_LENGTH; index++)
		m_waveform[1][index] = std::min<uint16_t>(2 * (m_waveform[0][index] & 0x7fff), zeroval) | (bitfield(index, 9) << 15);

	// remaining waveforms are just derivations of the 2 main ones
	for (uint32_t index = 0; index < WAVEFORM_LENGTH; index++)
	{
		m_waveform[2][index] = bitfield(index, 9) ? zeroval : m_waveform[0][index];
		m_waveform[3][index] = bitfield(index, 9) ? zeroval : m_waveform[1][index];
		m_waveform[4][index] = bitfield(index, 9) ? zeroval : m_waveform[0][index * 2];
		m_waveform[5][index] = bitfield(index, 9) ? zeroval : m_waveform[1][index * 2];
		m_waveform[6][index] = bitfield(index, 9) ? zeroval : m_waveform[0][(index * 2) & 0x1ff];
		m_waveform[7][index] = bitfield(index, 9) ? zeroval : m_waveform[1][(index * 2) & 0x1ff];
	}

	// create the LFO waveforms; AM in the low 8 bits, PM in the upper 8
	// waveforms are adjusted to match the pictures in the application manual
	for (uint32_t index = 0; index < LFO_WAVEFORM_LENGTH; index++)
	{
		// waveform 0 is a sawtooth
		uint8_t am = index ^ 0xff;
		int8_t pm = int8_t(index);
		m_lfo_waveform[0][index] = am | (pm << 8);

		// waveform 1 is a square wave
		am = bitfield(index, 7) ? 0 : 0xff;
		pm = int8_t(am ^ 0x80);
		m_lfo_waveform[1][index] = am | (pm << 8);

		// waveform 2 is a triangle wave
		am = bitfield(index, 7) ? (index << 1) : ((index ^ 0xff) << 1);
		pm = int8_t(bitfield(index, 6) ? am : ~am);
		m_lfo_waveform[2][index] = am | (pm << 8);

		// waveform 3 is noise; it is filled in dynamically
	}
}


//-------------------------------------------------
//  reset - reset to initial state
//-------------------------------------------------

void opz_registers::reset()
{
	std::fill_n(&m_regdata[0], REGISTERS, 0);

	// enable output on both channels by default
	m_regdata[0x30] = m_regdata[0x31] = m_regdata[0x32] = m_regdata[0x33] = 0x01;
	m_regdata[0x34] = m_regdata[0x35] = m_regdata[0x36] = m_regdata[0x37] = 0x01;
}


//-------------------------------------------------
//  save_restore - save or restore the data
//-------------------------------------------------

void opz_registers::save_restore(ymfm_saved_state &state)
{
	state.save_restore(m_lfo_counter);
	state.save_restore(m_lfo_am);
	state.save_restore(m_noise_lfsr);
	state.save_restore(m_noise_counter);
	state.save_restore(m_noise_state);
	state.save_restore(m_noise_lfo);
	state.save_restore(m_regdata);
	state.save_restore(m_phase_substep);
}


//-------------------------------------------------
//  operator_map - return an array of operator
//  indices for each channel; for OPZ this is fixed
//-------------------------------------------------

void opz_registers::operator_map(operator_mapping &dest) const
{
	// Note that the channel index order is 0,2,1,3, so we bitswap the index.
	//
	// This is because the order in the map is:
	//    carrier 1, carrier 2, modulator 1, modulator 2
	//
	// But when wiring up the connections, the more natural order is:
	//    carrier 1, modulator 1, carrier 2, modulator 2
	static const operator_mapping s_fixed_map =
	{ {
		operator_list(  0, 16,  8, 24 ),  // Channel 0 operators
		operator_list(  1, 17,  9, 25 ),  // Channel 1 operators
		operator_list(  2, 18, 10, 26 ),  // Channel 2 operators
		operator_list(  3, 19, 11, 27 ),  // Channel 3 operators
		operator_list(  4, 20, 12, 28 ),  // Channel 4 operators
		operator_list(  5, 21, 13, 29 ),  // Channel 5 operators
		operator_list(  6, 22, 14, 30 ),  // Channel 6 operators
		operator_list(  7, 23, 15, 31 ),  // Channel 7 operators
	} };
	dest = s_fixed_map;
}


//-------------------------------------------------
//  write - handle writes to the register array
//-------------------------------------------------

bool opz_registers::write(uint16_t index, uint8_t data, uint32_t &channel, uint32_t &opmask)
{
	assert(index < REGISTERS);

	// special mappings:
	//   0x16 -> 0x188 if bit 7 is set
	//   0x19 -> 0x189 if bit 7 is set
	//   0x38..0x3F -> 0x180..0x187 if bit 7 is set
	//   0x40..0x5F -> 0x100..0x11F if bit 7 is set
	//   0xC0..0xDF -> 0x120..0x13F if bit 5 is set
	if (index == 0x17 && bitfield(data, 7) != 0)
		m_regdata[0x188] = data;
	else if (index == 0x19 && bitfield(data, 7) != 0)
		m_regdata[0x189] = data;
	else if ((index & 0xf8) == 0x38 && bitfield(data, 7) != 0)
		m_regdata[0x180 + (index & 7)] = data;
	else if ((index & 0xe0) == 0x40 && bitfield(data, 7) != 0)
		m_regdata[0x100 + (index & 0x1f)] = data;
	else if ((index & 0xe0) == 0xc0 && bitfield(data, 5) != 0)
		m_regdata[0x120 + (index & 0x1f)] = data;
	else if (index < 0x100)
		m_regdata[index] = data;

	// preset writes restore some values from a preset memory; not sure
	// how this really works but the TX81Z will overwrite the sustain level/
	// release rate register and the envelope shift/reverb rate register to
	// dampen sound, then write the preset number to register 8 to restore them
	if (index == 0x08)
	{
		int chan = bitfield(data, 0, 3);
		if (TEMPORARY_DEBUG_PRINTS)
			printf("Loading preset %d\n", chan);
		m_regdata[0xe0 + chan + 0] = m_regdata[0x140 + chan + 0];
		m_regdata[0xe0 + chan + 8] = m_regdata[0x140 + chan + 8];
		m_regdata[0xe0 + chan + 16] = m_regdata[0x140 + chan + 16];
		m_regdata[0xe0 + chan + 24] = m_regdata[0x140 + chan + 24];
		m_regdata[0x120 + chan + 0] = m_regdata[0x160 + chan + 0];
		m_regdata[0x120 + chan + 8] = m_regdata[0x160 + chan + 8];
		m_regdata[0x120 + chan + 16] = m_regdata[0x160 + chan + 16];
		m_regdata[0x120 + chan + 24] = m_regdata[0x160 + chan + 24];
	}

	// store the presets under some unknown condition; the pattern of writes
	// when setting a new preset is:
	//
	//   08 (0-7), 80-9F, A0-BF, C0-DF, C0-DF (alt), 20-27, 40-5F, 40-5F (alt),
	//   C0-DF (alt -- again?), 38-3F, 1B, 18, E0-FF
	//
	// So it writes 0-7 to 08 to either reset all presets or to indicate
	// that we're going to be loading them. Immediately after all the writes
	// above, the very next write will be temporary values to blow away the
	// values loaded into E0-FF, so somehow it also knows that anything after
	// that point is not part of the preset.
	//
	// For now, try using the 40-5F (alt) writes as flags that presets are
	// being loaded until the E0-FF writes happen.
	bool is_setting_preset = (bitfield(m_regdata[0x100 + (index & 0x1f)], 7) != 0);
	if (is_setting_preset)
	{
		if ((index & 0xe0) == 0xe0)
		{
			m_regdata[0x140 + (index & 0x1f)] = data;
			m_regdata[0x100 + (index & 0x1f)] &= 0x7f;
		}
		else if ((index & 0xe0) == 0xc0 && bitfield(data, 5) != 0)
			m_regdata[0x160 + (index & 0x1f)] = data;
	}

	// handle writes to the key on index
	if ((index & 0xf8) == 0x20 && bitfield(index, 0, 3) == bitfield(m_regdata[0x08], 0, 3))
	{
		channel = bitfield(index, 0, 3);
		opmask = ch_key_on(channel) ? 0xf : 0;

		// according to the TX81Z manual, the sync option causes the LFOs
		// to reset at each note on
		if (opmask != 0)
		{
			if (lfo_sync())
				m_lfo_counter[0] = 0;
			if (lfo2_sync())
				m_lfo_counter[1] = 0;
		}
		return true;
	}
	return false;
}


//-------------------------------------------------
//  clock_noise_and_lfo - clock the noise and LFO,
//  handling clock division, depth, and waveform
//  computations
//-------------------------------------------------

int32_t opz_registers::clock_noise_and_lfo()
{
	// base noise frequency is measured at 2x 1/2 FM frequency; this
	// means each tick counts as two steps against the noise counter
	uint32_t freq = noise_frequency();
	for (int rep = 0; rep < 2; rep++)
	{
		// evidence seems to suggest the LFSR is clocked continually and just
		// sampled at the noise frequency for output purposes; note that the
		// low 8 bits are the most recent 8 bits of history while bits 8-24
		// contain the 17 bit LFSR state
		m_noise_lfsr <<= 1;
		m_noise_lfsr |= bitfield(m_noise_lfsr, 17) ^ bitfield(m_noise_lfsr, 14) ^ 1;

		// compare against the frequency and latch when we exceed it
		if (m_noise_counter++ >= freq)
		{
			m_noise_counter = 0;
			m_noise_state = bitfield(m_noise_lfsr, 17);
		}
	}

	// treat the rate as a 4.4 floating-point step value with implied
	// leading 1; this matches exactly the frequencies in the application
	// manual, though it might not be implemented exactly this way on chip
	uint32_t rate0 = lfo_rate();
	uint32_t rate1 = lfo2_rate();
	m_lfo_counter[0] += (0x10 | bitfield(rate0, 0, 4)) << bitfield(rate0, 4, 4);
	m_lfo_counter[1] += (0x10 | bitfield(rate1, 0, 4)) << bitfield(rate1, 4, 4);
	uint32_t lfo0 = bitfield(m_lfo_counter[0], 22, 8);
	uint32_t lfo1 = bitfield(m_lfo_counter[1], 22, 8);

	// fill in the noise entry 1 ahead of our current position; this
	// ensures the current value remains stable for a full LFO clock
	// and effectively latches the running value when the LFO advances
	uint32_t lfo_noise = bitfield(m_noise_lfsr, 17, 8);
	m_lfo_waveform[3][(lfo0 + 1) & 0xff] = lfo_noise | (lfo_noise << 8);
	m_lfo_waveform[3][(lfo1 + 1) & 0xff] = lfo_noise | (lfo_noise << 8);

	// fetch the AM/PM values based on the waveform; AM is unsigned and
	// encoded in the low 8 bits, while PM signed and encoded in the upper
	// 8 bits
	int32_t ampm0 = m_lfo_waveform[lfo_waveform()][lfo0];
	int32_t ampm1 = m_lfo_waveform[lfo2_waveform()][lfo1];

	// apply depth to the AM values and store for later
	m_lfo_am[0] = ((ampm0 & 0xff) * lfo_am_depth()) >> 7;
	m_lfo_am[1] = ((ampm1 & 0xff) * lfo2_am_depth()) >> 7;

	// apply depth to the PM values and return them combined into two
	int32_t pm0 = ((ampm0 >> 8) * int32_t(lfo_pm_depth())) >> 7;
	int32_t pm1 = ((ampm1 >> 8) * int32_t(lfo2_pm_depth())) >> 7;
	return (pm0 & 0xff) | (pm1 << 8);
}


//-------------------------------------------------
//  lfo_am_offset - return the AM offset from LFO
//  for the given channel
//-------------------------------------------------

uint32_t opz_registers::lfo_am_offset(uint32_t choffs) const
{
	// not sure how this works for real, but just adding the two
	// AM LFOs together
	uint32_t result = 0;

	// shift value for AM sensitivity is [*, 0, 1, 2],
	// mapping to values of [0, 23.9, 47.8, and 95.6dB]
	uint32_t am_sensitivity = ch_lfo_am_sens(choffs);
	if (am_sensitivity != 0)
		result = m_lfo_am[0] << (am_sensitivity - 1);

	// QUESTION: see OPN note below for the dB range mapping; it applies
	// here as well

	// raw LFO AM value on OPZ is 0-FF, which is already a factor of 2
	// larger than the OPN below, putting our staring point at 2x theirs;
	// this works out since our minimum is 2x their maximum
	uint32_t am_sensitivity2 = ch_lfo2_am_sens(choffs);
	if (am_sensitivity2 != 0)
		result += m_lfo_am[1] << (am_sensitivity2 - 1);

	return result;
}


//-------------------------------------------------
//  cache_operator_data - fill the operator cache
//  with prefetched data
//-------------------------------------------------

void opz_registers::cache_operator_data(uint32_t choffs, uint32_t opoffs, opdata_cache &cache)
{
	// TODO: how does fixed frequency mode work? appears to be enabled by
	// op_fix_mode(), and controlled by op_fix_range(), op_fix_frequency()

	// TODO: what is op_rev()?

	// set up the easy stuff
	cache.waveform = &m_waveform[op_waveform(opoffs)][0];

	// get frequency from the channel
	uint32_t block_freq = cache.block_freq = ch_block_freq(choffs);

	// compute the keycode: block_freq is:
	//
	//     BBBCCCCFFFFFF
	//     ^^^^^
	//
	// the 5-bit keycode is just the top 5 bits (block + top 2 bits
	// of the key code)
	uint32_t keycode = bitfield(block_freq, 8, 5);

	// detune adjustment
	cache.detune = detune_adjustment(op_detune(opoffs), keycode);

	// multiple value, as an x.4 value (0 means 0.5)
	// the "fine" control provides the fractional bits
	cache.multiple = op_multiple(opoffs) << 4;
	if (cache.multiple == 0)
		cache.multiple = 0x08;
	cache.multiple |= op_fine(opoffs);

	// phase step, or PHASE_STEP_DYNAMIC if PM is active; this depends on
	// block_freq, detune, and multiple, so compute it after we've done those;
	// note that fix frequency mode is also treated as dynamic
	if (!op_fix_mode(opoffs) && (lfo_pm_depth() == 0 || ch_lfo_pm_sens(choffs) == 0) && (lfo2_pm_depth() == 0 || ch_lfo2_pm_sens(choffs) == 0))
		cache.phase_step = compute_phase_step(choffs, opoffs, cache, 0);
	else
		cache.phase_step = opdata_cache::PHASE_STEP_DYNAMIC;

	// total level, scaled by 8
	// TODO: how does ch_volume() fit into this?
	cache.total_level = op_total_level(opoffs) << 3;

	// 4-bit sustain level, but 15 means 31 so effectively 5 bits
	cache.eg_sustain = op_sustain_level(opoffs);
	cache.eg_sustain |= (cache.eg_sustain + 1) & 0x10;
	cache.eg_sustain <<= 5;

	// determine KSR adjustment for enevlope rates
	uint32_t ksrval = keycode >> (op_ksr(opoffs) ^ 3);
	cache.eg_rate[EG_ATTACK] = effective_rate(op_attack_rate(opoffs) * 2, ksrval);
	cache.eg_rate[EG_DECAY] = effective_rate(op_decay_rate(opoffs) * 2, ksrval);
	cache.eg_rate[EG_SUSTAIN] = effective_rate(op_sustain_rate(opoffs) * 2, ksrval);
	cache.eg_rate[EG_RELEASE] = effective_rate(op_release_rate(opoffs) * 4 + 2, ksrval);
	cache.eg_rate[EG_REVERB] = cache.eg_rate[EG_RELEASE];
	uint32_t reverb = op_reverb_rate(opoffs);
	if (reverb != 0)
		cache.eg_rate[EG_REVERB] = std::min<uint32_t>(effective_rate(reverb * 4 + 2, ksrval), cache.eg_rate[EG_REVERB]);

	// set the envelope shift; TX81Z manual says operator 1 shift is fixed at "off"
	cache.eg_shift = ((opoffs & 0x18) == 0) ? 0 : op_eg_shift(opoffs);
}


//-------------------------------------------------
//  compute_phase_step - compute the phase step
//-------------------------------------------------

uint32_t opz_registers::compute_phase_step(uint32_t choffs, uint32_t opoffs, opdata_cache const &cache, int32_t lfo_raw_pm)
{
	// OPZ has a fixed frequency mode; it is unclear whether the
	// detune and multiple parameters affect things

	uint32_t phase_step;
	if (op_fix_mode(opoffs))
	{
		// the baseline frequency in hz comes from the fix frequency and fine
		// registers, which can specify values 8-255Hz in 1Hz increments; that
		// value is then shifted up by the 3-bit range
		uint32_t freq = op_fix_frequency(opoffs) << 4;
		if (freq == 0)
			freq = 8;
		freq |= op_fine(opoffs);
		freq <<= op_fix_range(opoffs);

		// there is not enough resolution in the plain phase step to track the
		// full range of frequencies, so we keep a per-operator sub step with an
		// additional 12 bits of resolution; this calculation gives us, for
		// example, a frequency of 8.0009Hz when 8Hz is requested
		uint32_t substep = m_phase_substep[opoffs];
		substep += 75 * freq;
		phase_step = substep >> 12;
		m_phase_substep[opoffs] = substep & 0xfff;

		// detune/multiple occupy the same space as fix_range/fix_frequency so
		// don't apply them in addition
		return phase_step;
	}
	else
	{
		// start with coarse detune delta; table uses cents value from
		// manual, converted into 1/64ths
		static const int16_t s_detune2_delta[4] = { 0, (600*64+50)/100, (781*64+50)/100, (950*64+50)/100 };
		int32_t delta = s_detune2_delta[op_detune2(opoffs)];

		// add in the PM deltas
		uint32_t pm_sensitivity = ch_lfo_pm_sens(choffs);
		if (pm_sensitivity != 0)
		{
			// raw PM value is -127..128 which is +/- 200 cents
			// manual gives these magnitudes in cents:
			//    0, +/-5, +/-10, +/-20, +/-50, +/-100, +/-400, +/-700
			// this roughly corresponds to shifting the 200-cent value:
			//    0  >> 5,  >> 4,  >> 3,  >> 2,  >> 1,   << 1,   << 2
			if (pm_sensitivity < 6)
				delta += int8_t(lfo_raw_pm) >> (6 - pm_sensitivity);
			else
				delta += int8_t(lfo_raw_pm) << (pm_sensitivity - 5);
		}
		uint32_t pm_sensitivity2 = ch_lfo2_pm_sens(choffs);
		if (pm_sensitivity2 != 0)
		{
			// raw PM value is -127..128 which is +/- 200 cents
			// manual gives these magnitudes in cents:
			//    0, +/-5, +/-10, +/-20, +/-50, +/-100, +/-400, +/-700
			// this roughly corresponds to shifting the 200-cent value:
			//    0  >> 5,  >> 4,  >> 3,  >> 2,  >> 1,   << 1,   << 2
			if (pm_sensitivity2 < 6)
				delta += int8_t(lfo_raw_pm >> 8) >> (6 - pm_sensitivity2);
			else
				delta += int8_t(lfo_raw_pm >> 8) << (pm_sensitivity2 - 5);
		}

		// apply delta and convert to a frequency number; this translation is
		// the same as OPM so just re-use that helper
		phase_step = opm_key_code_to_phase_step(cache.block_freq, delta);

		// apply detune based on the keycode
		phase_step += cache.detune;

		// apply frequency multiplier (which is cached as an x.4 value)
		return (phase_step * cache.multiple) >> 4;
	}
}


//-------------------------------------------------
//  log_keyon - log a key-on event
//-------------------------------------------------

std::string opz_registers::log_keyon(uint32_t choffs, uint32_t opoffs)
{
	uint32_t chnum = choffs;
	uint32_t opnum = opoffs;

	char buffer[256];
	char *end = &buffer[0];

	end += sprintf(end, "%u.%02u", chnum, opnum);

	if (op_fix_mode(opoffs))
		end += sprintf(end, " fixfreq=%X fine=%X shift=%X", op_fix_frequency(opoffs), op_fine(opoffs), op_fix_range(opoffs));
	else
		end += sprintf(end, " freq=%04X dt2=%u fine=%X", ch_block_freq(choffs), op_detune2(opoffs), op_fine(opoffs));

	end += sprintf(end, " dt=%u fb=%u alg=%X mul=%X tl=%02X ksr=%u adsr=%02X/%02X/%02X/%X sl=%X out=%c%c",
		op_detune(opoffs),
		ch_feedback(choffs),
		ch_algorithm(choffs),
		op_multiple(opoffs),
		op_total_level(opoffs),
		op_ksr(opoffs),
		op_attack_rate(opoffs),
		op_decay_rate(opoffs),
		op_sustain_rate(opoffs),
		op_release_rate(opoffs),
		op_sustain_level(opoffs),
		ch_output_0(choffs) ? 'L' : '-',
		ch_output_1(choffs) ? 'R' : '-');

	if (op_eg_shift(opoffs) != 0)
		end += sprintf(end, " egshift=%u", op_eg_shift(opoffs));

	bool am = (lfo_am_depth() != 0 && ch_lfo_am_sens(choffs) != 0 && op_lfo_am_enable(opoffs) != 0);
	if (am)
		end += sprintf(end, " am=%u/%02X", ch_lfo_am_sens(choffs), lfo_am_depth());
	bool pm = (lfo_pm_depth() != 0 && ch_lfo_pm_sens(choffs) != 0);
	if (pm)
		end += sprintf(end, " pm=%u/%02X", ch_lfo_pm_sens(choffs), lfo_pm_depth());
	if (am || pm)
		end += sprintf(end, " lfo=%02X/%c", lfo_rate(), "WQTN"[lfo_waveform()]);

	bool am2 = (lfo2_am_depth() != 0 && ch_lfo2_am_sens(choffs) != 0 && op_lfo_am_enable(opoffs) != 0);
	if (am2)
		end += sprintf(end, " am2=%u/%02X", ch_lfo2_am_sens(choffs), lfo2_am_depth());
	bool pm2 = (lfo2_pm_depth() != 0 && ch_lfo2_pm_sens(choffs) != 0);
	if (pm2)
		end += sprintf(end, " pm2=%u/%02X", ch_lfo2_pm_sens(choffs), lfo2_pm_depth());
	if (am2 || pm2)
		end += sprintf(end, " lfo2=%02X/%c", lfo2_rate(), "WQTN"[lfo2_waveform()]);

	if (op_reverb_rate(opoffs) != 0)
		end += sprintf(end, " rev=%u", op_reverb_rate(opoffs));
	if (op_waveform(opoffs) != 0)
		end += sprintf(end, " wf=%u", op_waveform(opoffs));
	if (noise_enable() && opoffs == 31)
		end += sprintf(end, " noise=1");

	return buffer;
}



//*********************************************************
//  YM2414
//*********************************************************

//-------------------------------------------------
//  ym2414 - constructor
//-------------------------------------------------

ym2414::ym2414(ymfm_interface &intf) :
	m_address(0),
	m_fm(intf)
{
}


//-------------------------------------------------
//  reset - reset the system
//-------------------------------------------------

void ym2414::reset()
{
	// reset the engines
	m_fm.reset();
}


//-------------------------------------------------
//  save_restore - save or restore the data
//-------------------------------------------------

void ym2414::save_restore(ymfm_saved_state &state)
{
	m_fm.save_restore(state);
	state.save_restore(m_address);
}


//-------------------------------------------------
//  read_status - read the status register
//-------------------------------------------------

uint8_t ym2414::read_status()
{
	uint8_t result = m_fm.status();
	if (m_fm.intf().ymfm_is_busy())
		result |= fm_engine::STATUS_BUSY;
	return result;
}


//-------------------------------------------------
//  read - handle a read from the device
//-------------------------------------------------

uint8_t ym2414::read(uint32_t offset)
{
	uint8_t result = 0xff;
	switch (offset & 1)
	{
		case 0: // data port (unused)
			debug::log_unexpected_read_write("Unexpected read from YM2414 offset %d\n", offset & 3);
			break;

		case 1: // status port, YM2203 compatible
			result = read_status();
			break;
	}
	return result;
}


//-------------------------------------------------
//  write_address - handle a write to the address
//  register
//-------------------------------------------------

void ym2414::write_address(uint8_t data)
{
	// just set the address
	m_address = data;
}


//-------------------------------------------------
//  write - handle a write to the register
//  interface
//-------------------------------------------------

void ym2414::write_data(uint8_t data)
{
	// write the FM register
	m_fm.write(m_address, data);
	if (TEMPORARY_DEBUG_PRINTS)
	{
		switch (m_address & 0xe0)
		{
			case 0x00:
				printf("CTL %02X = %02X\n", m_address, data);
				break;

			case 0x20:
				switch (m_address & 0xf8)
				{
					case 0x20:	printf("R/FBL/ALG %d = %02X\n", m_address & 7, data);	break;
					case 0x28:	printf("KC %d = %02X\n", m_address & 7, data);	break;
					case 0x30:	printf("KF/M %d = %02X\n", m_address & 7, data);	break;
					case 0x38:	printf("PMS/AMS %d = %02X\n", m_address & 7, data); break;
				}
				break;

			case 0x40:
				if (bitfield(data, 7) == 0)
					printf("DT1/MUL %d.%d = %02X\n", m_address & 7, (m_address >> 3) & 3, data);
				else
					printf("OW/FINE %d.%d = %02X\n", m_address & 7, (m_address >> 3) & 3, data);
				break;

			case 0x60:
				printf("TL %d.%d = %02X\n", m_address & 7, (m_address >> 3) & 3, data);
				break;

			case 0x80:
				printf("KRS/FIX/AR %d.%d = %02X\n", m_address & 7, (m_address >> 3) & 3, data);
				break;

			case 0xa0:
				printf("A/D1R %d.%d = %02X\n", m_address & 7, (m_address >> 3) & 3, data);
				break;

			case 0xc0:
				if (bitfield(data, 5) == 0)
					printf("DT2/D2R %d.%d = %02X\n", m_address & 7, (m_address >> 3) & 3, data);
				else
					printf("EGS/REV %d.%d = %02X\n", m_address & 7, (m_address >> 3) & 3, data);
				break;

			case 0xe0:
				printf("D1L/RR %d.%d = %02X\n", m_address & 7, (m_address >> 3) & 3, data);
				break;
		}
	}

	// special cases
	if (m_address == 0x1b)
	{
		// writes to register 0x1B send the upper 2 bits to the output lines
		m_fm.intf().ymfm_external_write(ACCESS_IO, 0, data >> 6);
	}

	// mark busy for a bit
	m_fm.intf().ymfm_set_busy_end(32 * m_fm.clock_prescale());
}


//-------------------------------------------------
//  write - handle a write to the register
//  interface
//-------------------------------------------------

void ym2414::write(uint32_t offset, uint8_t data)
{
	switch (offset & 1)
	{
		case 0: // address port
			write_address(data);
			break;

		case 1: // data port
			write_data(data);
			break;
	}
}


//-------------------------------------------------
//  generate - generate one sample of sound
//-------------------------------------------------

void ym2414::generate(output_data *output, uint32_t numsamples)
{
	for (uint32_t samp = 0; samp < numsamples; samp++, output++)
	{
		// clock the system
		m_fm.clock(fm_engine::ALL_CHANNELS);

		// update the FM content; YM2414 is full 14-bit with no intermediate clipping
		m_fm.output(output->clear(), 0, 32767, fm_engine::ALL_CHANNELS);

		// unsure about YM2414 outputs; assume it is like YM2151
		output->roundtrip_fp();
	}
}

}