1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
|
/*============================================================================
This source file is an extension to the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2b, written for Bochs (x86 achitecture simulator)
floating point emulation.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) the source code for the derivative work includes prominent notice that
the work is derivative, and (2) the source code includes prominent notice with
these four paragraphs for those parts of this code that are retained.
=============================================================================*/
/*============================================================================
* Written for Bochs (x86 achitecture simulator) by
* Stanislav Shwartsman [sshwarts at sourceforge net]
* ==========================================================================*/
#define FLOAT128
#include "../build/MAME/platform.h"
#include "../source/include/internals.h"
#include "../source/include/softfloat.h"
#include "fpu_constant.h"
#include "softfloat-extra.h"
#include "softfloat-helpers.h"
#include "softfloat-specialize.h"
static const extFloat80_t floatx80_one = packFloatx80(0, 0x3fff, uint64_t(0x8000000000000000));
static const extFloat80_t floatx80_ln_2 = packFloatx80(0, 0x3ffe, 0xb17217f7d1cf79acU);
static const extFloat80_t floatx80_log10_2 = packFloatx80(0, 0x3ffd, 0x9a209a84fbcff798U);
static const float128_t float128_one =
packFloat128(uint64_t(0x3fff000000000000), uint64_t(0x0000000000000000));
static const float128_t float128_two =
packFloat128(uint64_t(0x4000000000000000), uint64_t(0x0000000000000000));
static const float128_t float128_ln2inv2 =
packFloat128(uint64_t(0x400071547652b82f), uint64_t(0xe1777d0ffda0d23a));
#define SQRT2_HALF_SIG uint64_t(0xb504f333f9de6484)
extern float128_t OddPoly(float128_t x, const float128_t *arr, int n);
#define L2_ARR_SIZE 9
static float128_t ln_arr[L2_ARR_SIZE] =
{
PACK_FLOAT_128(0x3fff000000000000, 0x0000000000000000), /* 1 */
PACK_FLOAT_128(0x3ffd555555555555, 0x5555555555555555), /* 3 */
PACK_FLOAT_128(0x3ffc999999999999, 0x999999999999999a), /* 5 */
PACK_FLOAT_128(0x3ffc249249249249, 0x2492492492492492), /* 7 */
PACK_FLOAT_128(0x3ffbc71c71c71c71, 0xc71c71c71c71c71c), /* 9 */
PACK_FLOAT_128(0x3ffb745d1745d174, 0x5d1745d1745d1746), /* 11 */
PACK_FLOAT_128(0x3ffb3b13b13b13b1, 0x3b13b13b13b13b14), /* 13 */
PACK_FLOAT_128(0x3ffb111111111111, 0x1111111111111111), /* 15 */
PACK_FLOAT_128(0x3ffae1e1e1e1e1e1, 0xe1e1e1e1e1e1e1e2) /* 17 */
};
static float128_t poly_ln(float128_t x1)
{
/*
//
// 3 5 7 9 11 13 15
// 1+u u u u u u u u
// 1/2 ln --- ~ u + --- + --- + --- + --- + ---- + ---- + ---- =
// 1-u 3 5 7 9 11 13 15
//
// 2 4 6 8 10 12 14
// u u u u u u u
// = u * [ 1 + --- + --- + --- + --- + ---- + ---- + ---- ] =
// 3 5 7 9 11 13 15
//
// 3 3
// -- 4k -- 4k+2
// p(u) = > C * u q(u) = > C * u
// -- 2k -- 2k+1
// k=0 k=0
//
// 1+u 2
// 1/2 ln --- ~ u * [ p(u) + u * q(u) ]
// 1-u
//
*/
return OddPoly(x1, (const float128_t*) ln_arr, L2_ARR_SIZE);
}
/* required sqrt(2)/2 < x < sqrt(2) */
static float128_t poly_l2(float128_t x)
{
/* using float128 for approximation */
float128_t x_p1 = f128_add(x, float128_one);
float128_t x_m1 = f128_sub(x, float128_one);
x = f128_div(x_m1, x_p1);
x = poly_ln(x);
x = f128_mul(x, float128_ln2inv2);
return x;
}
static float128_t poly_l2p1(float128_t x)
{
/* using float128 for approximation */
float128_t x_plus2 = f128_add(x, float128_two);
x = f128_div(x, x_plus2);
x = poly_ln(x);
x = f128_mul(x, float128_ln2inv2);
return x;
}
// =================================================
// FYL2X Compute y * log (x)
// 2
// =================================================
//
// Uses the following identities:
//
// 1. ----------------------------------------------------------
// ln(x)
// log (x) = -------, ln (x*y) = ln(x) + ln(y)
// 2 ln(2)
//
// 2. ----------------------------------------------------------
// 1+u x-1
// ln (x) = ln -----, when u = -----
// 1-u x+1
//
// 3. ----------------------------------------------------------
// 3 5 7 2n+1
// 1+u u u u u
// ln ----- = 2 [ u + --- + --- + --- + ... + ------ + ... ]
// 1-u 3 5 7 2n+1
//
extFloat80_t extFloat80_fyl2x(extFloat80_t a, extFloat80_t b)
{
// handle unsupported extended double-precision floating encodings
if (extF80_isUnsupported(a) || extF80_isUnsupported(b)) {
invalid:
softfloat_exceptionFlags |= softfloat_flag_invalid;
return floatx80_default_nan;
}
uint64_t aSig = extF80_fraction(a);
int32_t aExp = extF80_exp(a);
int aSign = extF80_sign(a);
uint64_t bSig = extF80_fraction(b);
int32_t bExp = extF80_exp(b);
int bSign = extF80_sign(b);
int zSign = bSign ^ 1;
if (aExp == 0x7FFF) {
if ((aSig<<1) || ((bExp == 0x7FFF) && (bSig<<1))) {
const uint128 nan = softfloat_propagateNaNExtF80UI(a.signExp, aSig, b.signExp, bSig);
extFloat80_t rv;
rv.signExp = nan.v64;
rv.signif = nan.v0;
return rv;
}
if (aSign) goto invalid;
else {
if (! bExp) {
if (! bSig) goto invalid;
softfloat_exceptionFlags |= softfloat_flag_invalid; // actually denormal
}
return packFloatx80(bSign, 0x7FFF, uint64_t(0x8000000000000000));
}
}
if (bExp == 0x7FFF) {
if (bSig << 1) {
const uint128 nan = softfloat_propagateNaNExtF80UI(a.signExp, aSig, b.signExp, bSig);
extFloat80_t rv;
rv.signExp = nan.v64;
rv.signif = nan.v0;
return rv;
}
if (aSign && (uint64_t)(aExp | aSig)) goto invalid;
if (aSig && ! aExp)
softfloat_exceptionFlags |= softfloat_flag_invalid; // actually denormal
if (aExp < 0x3FFF)
{
return packFloatx80(zSign, 0x7FFF, uint64_t(0x8000000000000000));
}
if (aExp == 0x3FFF && ! (aSig<<1)) goto invalid;
return packFloatx80(bSign, 0x7FFF, uint64_t(0x8000000000000000));
}
if (! aExp) {
if (! aSig) {
if ((bExp | bSig) == 0) goto invalid;
softfloat_exceptionFlags |= softfloat_flag_invalid; // divide by zero
return packFloatx80(zSign, 0x7FFF, uint64_t(0x8000000000000000));
}
if (aSign) goto invalid;
softfloat_exceptionFlags |= softfloat_flag_invalid; // actually denormal
struct exp32_sig64 normExpSig = softfloat_normSubnormalExtF80Sig(aSig);
aExp = normExpSig.exp + 1;
aSig = normExpSig.sig;
}
if (aSign) goto invalid;
if (! bExp) {
if (! bSig) {
if (aExp < 0x3FFF) return packFloatx80(zSign, 0, 0);
return packFloatx80(bSign, 0, 0);
}
softfloat_exceptionFlags |= softfloat_flag_invalid; // actually denormal
struct exp32_sig64 normExpSig = softfloat_normSubnormalExtF80Sig(bSig);
bExp = normExpSig.exp + 1;
bSig = normExpSig.sig;
}
if (aExp == 0x3FFF && ! (aSig<<1))
return packFloatx80(bSign, 0, 0);
softfloat_exceptionFlags |= softfloat_flag_inexact;
int ExpDiff = aExp - 0x3FFF;
aExp = 0;
if (aSig >= SQRT2_HALF_SIG) {
ExpDiff++;
aExp--;
}
/* ******************************** */
/* using float128 for approximation */
/* ******************************** */
float128_t b128 = softfloat_normRoundPackToF128(bSign, bExp-0x10, bSig, 0);
uint64_t zSig0, zSig1;
shortShift128Right(aSig<<1, 0, 16, &zSig0, &zSig1);
float128_t x = packFloat128(0, aExp+0x3FFF, zSig0, zSig1);
x = poly_l2(x);
x = f128_add(x, i32_to_f128(ExpDiff));
x = f128_mul(x, b128);
return f128_to_extF80(x);
}
// =================================================
// FYL2XP1 Compute y * log (x + 1)
// 2
// =================================================
//
// Uses the following identities:
//
// 1. ----------------------------------------------------------
// ln(x)
// log (x) = -------
// 2 ln(2)
//
// 2. ----------------------------------------------------------
// 1+u x
// ln (x+1) = ln -----, when u = -----
// 1-u x+2
//
// 3. ----------------------------------------------------------
// 3 5 7 2n+1
// 1+u u u u u
// ln ----- = 2 [ u + --- + --- + --- + ... + ------ + ... ]
// 1-u 3 5 7 2n+1
//
extFloat80_t extFloat80_fyl2xp1(extFloat80_t a, extFloat80_t b)
{
int32_t aExp, bExp;
uint64_t aSig, bSig, zSig0, zSig1, zSig2;
int aSign, bSign;
// handle unsupported extended double-precision floating encodings
if (extF80_isUnsupported(a) || extF80_isUnsupported(b)) {
invalid:
softfloat_exceptionFlags |= softfloat_flag_invalid;
return floatx80_default_nan;
}
aSig = extF80_fraction(a);
aExp = extF80_exp(a);
aSign = extF80_sign(a);
bSig = extF80_fraction(b);
bExp = extF80_exp(b);
bSign = extF80_sign(b);
int zSign = aSign ^ bSign;
if (aExp == 0x7FFF) {
if ((aSig<<1) != 0 || ((bExp == 0x7FFF) && (bSig<<1) != 0)) {
const uint128 nan = softfloat_propagateNaNExtF80UI(a.signExp, aSig, b.signExp, bSig);
extFloat80_t rv;
rv.signExp = nan.v64;
rv.signif = nan.v0;
return rv;
}
if (aSign) goto invalid;
else {
if (! bExp) {
if (! bSig) goto invalid;
softfloat_exceptionFlags |= softfloat_flag_invalid; // actually denormal
}
return packFloatx80(bSign, 0x7FFF, uint64_t(0x8000000000000000));
}
}
if (bExp == 0x7FFF)
{
if (bSig << 1) {
const uint128 nan = softfloat_propagateNaNExtF80UI(a.signExp, aSig, b.signExp, bSig);
extFloat80_t rv;
rv.signExp = nan.v64;
rv.signif = nan.v0;
return rv;
}
if (! aExp) {
if (! aSig) goto invalid;
softfloat_exceptionFlags |= softfloat_flag_invalid; // actually denormal
}
return packFloatx80(zSign, 0x7FFF, uint64_t(0x8000000000000000));
}
if (! aExp) {
if (! aSig) {
if (bSig && ! bExp)
softfloat_exceptionFlags |= softfloat_flag_invalid; // actually denormal
return packFloatx80(zSign, 0, 0);
}
softfloat_exceptionFlags |= softfloat_flag_invalid; // actually denormal
struct exp32_sig64 normExpSig = softfloat_normSubnormalExtF80Sig(aSig);
aExp = normExpSig.exp + 1;
aSig = normExpSig.sig;
}
if (! bExp) {
if (! bSig) return packFloatx80(zSign, 0, 0);
softfloat_exceptionFlags |= softfloat_flag_invalid; // actually denormal
struct exp32_sig64 normExpSig = softfloat_normSubnormalExtF80Sig(bSig);
bExp = normExpSig.exp + 1;
bSig = normExpSig.sig;
}
softfloat_exceptionFlags |= softfloat_flag_inexact;
if (aSign && aExp >= 0x3FFF)
return a;
if (aExp >= 0x3FFC) // big argument
{
return extFloat80_fyl2x(extF80_add(a, floatx80_one), b);
}
// handle tiny argument
if (aExp < FLOATX80_EXP_BIAS-70)
{
// first order approximation, return (a*b)/ln(2)
int32_t zExp = aExp + FLOAT_LN2INV_EXP - 0x3FFE;
mul128By64To192(FLOAT_LN2INV_HI, FLOAT_LN2INV_LO, aSig, &zSig0, &zSig1, &zSig2);
if (0 < (int64_t) zSig0) {
shortShift128Left(zSig0, zSig1, 1, &zSig0, &zSig1);
--zExp;
}
zExp = zExp + bExp - 0x3FFE;
mul128By64To192(zSig0, zSig1, bSig, &zSig0, &zSig1, &zSig2);
if (0 < (int64_t) zSig0) {
shortShift128Left(zSig0, zSig1, 1, &zSig0, &zSig1);
--zExp;
}
return softfloat_roundPackToExtF80(aSign ^ bSign, zExp, zSig0, zSig1, 80);
}
/* ******************************** */
/* using float128 for approximation */
/* ******************************** */
float128_t b128 = softfloat_normRoundPackToF128(bSign, bExp-0x10, bSig, 0);
shortShift128Right(aSig<<1, 0, 16, &zSig0, &zSig1);
float128_t x = packFloat128(aSign, aExp, zSig0, zSig1);
x = poly_l2p1(x);
x = f128_mul(x, b128);
return f128_to_extF80(x);
}
extFloat80_t extFloat80_lognp1(extFloat80_t a)
{
return extFloat80_fyl2x(a, floatx80_ln_2);
}
extFloat80_t extFloat80_logn(extFloat80_t a)
{
return extFloat80_fyl2x(a, floatx80_ln_2);
}
extFloat80_t extFloat80_log2(extFloat80_t a)
{
return extFloat80_fyl2x(a, floatx80_one);
}
extFloat80_t extFloat80_log10(extFloat80_t a)
{
return extFloat80_fyl2x(a, floatx80_log10_2);
}
|