1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
// Crypto/MyAes.cpp
#include "StdAfx.h"
#include "../../../C/CpuArch.h"
#include "MyAes.h"
namespace NCrypto {
static struct CAesTabInit { CAesTabInit() { AesGenTables();} } g_AesTabInit;
CAesCoder::CAesCoder(
// bool encodeMode,
unsigned keySize
// , bool ctrMode
):
_keyIsSet(false),
// _encodeMode(encodeMode),
// _ctrMode(ctrMode),
_keySize(keySize),
// _ctrPos(0), // _ctrPos =0 will be set in Init()
_aes(AES_NUM_IVMRK_WORDS * 4 + AES_BLOCK_SIZE * 2)
{
// _offset = ((0 - (unsigned)(ptrdiff_t)_aes) & 0xF) / sizeof(UInt32);
memset(_iv, 0, AES_BLOCK_SIZE);
/*
// we can use the following code to test 32-bit overflow case for AES-CTR
for (unsigned i = 0; i < 16; i++) _iv[i] = (Byte)(i + 1);
_iv[0] = 0xFE; _iv[1] = _iv[2] = _iv[3] = 0xFF;
*/
}
Z7_COM7F_IMF(CAesCoder::Init())
{
_ctrPos = 0;
AesCbc_Init(Aes(), _iv);
return _keyIsSet ? S_OK : E_NOTIMPL; // E_FAIL
}
Z7_COM7F_IMF2(UInt32, CAesCoder::Filter(Byte *data, UInt32 size))
{
if (!_keyIsSet)
return 0;
if (size < AES_BLOCK_SIZE)
{
if (size == 0)
return 0;
return AES_BLOCK_SIZE;
}
size >>= 4;
// (data) must be aligned for 16-bytes here
_codeFunc(Aes(), data, size);
return size << 4;
}
Z7_COM7F_IMF(CAesCoder::SetKey(const Byte *data, UInt32 size))
{
if ((size & 0x7) != 0 || size < 16 || size > 32)
return E_INVALIDARG;
if (_keySize != 0 && size != _keySize)
return E_INVALIDARG;
_setKeyFunc(Aes() + 4, data, size);
_keyIsSet = true;
return S_OK;
}
Z7_COM7F_IMF(CAesCoder::SetInitVector(const Byte *data, UInt32 size))
{
if (size != AES_BLOCK_SIZE)
return E_INVALIDARG;
memcpy(_iv, data, size);
/* we allow SetInitVector() call before SetKey() call.
so we ignore possible error in Init() here */
CAesCoder::Init(); // don't call virtual function here !!!
return S_OK;
}
#ifndef Z7_SFX
/*
Z7_COM7F_IMF(CAesCtrCoder::Init())
{
_ctrPos = 0;
return CAesCoder::Init();
}
*/
Z7_COM7F_IMF2(UInt32, CAesCtrCoder::Filter(Byte *data, UInt32 size))
{
if (!_keyIsSet)
return 0;
if (size == 0)
return 0;
if (_ctrPos != 0)
{
/* Optimized caller will not call here */
const Byte *ctr = (Byte *)(Aes() + AES_NUM_IVMRK_WORDS);
unsigned num = 0;
for (unsigned i = _ctrPos; i != AES_BLOCK_SIZE; i++)
{
if (num == size)
{
_ctrPos = i;
return num;
}
data[num++] ^= ctr[i];
}
_ctrPos = 0;
/* if (num < size) {
we can filter more data with _codeFunc().
But it's supposed that the caller can work correctly,
even if we do only partial filtering here.
So we filter data only for current 16-byte block. }
*/
/*
size -= num;
size >>= 4;
// (data) must be aligned for 16-bytes here
_codeFunc(Aes(), data + num, size);
return num + (size << 4);
*/
return num;
}
if (size < AES_BLOCK_SIZE)
{
/* The good optimized caller can call here only in last Filter() call.
But we support also non-optimized callers,
where another Filter() calls are allowed after this call.
*/
Byte *ctr = (Byte *)(Aes() + AES_NUM_IVMRK_WORDS);
memset(ctr, 0, AES_BLOCK_SIZE);
memcpy(ctr, data, size);
_codeFunc(Aes(), ctr, 1);
memcpy(data, ctr, size);
_ctrPos = size;
return size;
}
size >>= 4;
// (data) must be aligned for 16-bytes here
_codeFunc(Aes(), data, size);
return size << 4;
}
#endif // Z7_SFX
#ifndef Z7_EXTRACT_ONLY
#ifdef MY_CPU_X86_OR_AMD64
#define USE_HW_AES
#elif defined(MY_CPU_ARM_OR_ARM64) && defined(MY_CPU_LE)
#if defined(__clang__)
#if (__clang_major__ >= 8) // fix that check
#define USE_HW_AES
#endif
#elif defined(__GNUC__)
#if (__GNUC__ >= 6) // fix that check
#define USE_HW_AES
#endif
#elif defined(_MSC_VER)
#if _MSC_VER >= 1910
#define USE_HW_AES
#endif
#endif
#endif
#ifdef USE_HW_AES
#define SET_AES_FUNC_2(f2) \
if (algo == 2) if (g_Aes_SupportedFunctions_Flags & k_Aes_SupportedFunctions_HW) \
{ f = f2; }
#ifdef MY_CPU_X86_OR_AMD64
#define SET_AES_FUNC_23(f2, f3) \
SET_AES_FUNC_2(f2) \
if (algo == 3) if (g_Aes_SupportedFunctions_Flags & k_Aes_SupportedFunctions_HW_256) \
{ f = f3; }
#else // MY_CPU_X86_OR_AMD64
#define SET_AES_FUNC_23(f2, f3) \
SET_AES_FUNC_2(f2)
#endif // MY_CPU_X86_OR_AMD64
#else // USE_HW_AES
#define SET_AES_FUNC_23(f2, f3)
#endif // USE_HW_AES
#define SET_AES_FUNCS(c, f0, f1, f2, f3) \
bool c::SetFunctions(UInt32 algo) { \
_codeFunc = f0; if (algo < 1) return true; \
AES_CODE_FUNC f = NULL; \
if (algo == 1) { f = f1; } \
SET_AES_FUNC_23(f2, f3) \
if (f) { _codeFunc = f; return true; } \
return false; }
#ifndef Z7_SFX
SET_AES_FUNCS(
CAesCtrCoder,
g_AesCtr_Code,
AesCtr_Code,
AesCtr_Code_HW,
AesCtr_Code_HW_256)
#endif
SET_AES_FUNCS(
CAesCbcEncoder,
g_AesCbc_Encode,
AesCbc_Encode,
AesCbc_Encode_HW,
AesCbc_Encode_HW)
SET_AES_FUNCS(
CAesCbcDecoder,
g_AesCbc_Decode,
AesCbc_Decode,
AesCbc_Decode_HW,
AesCbc_Decode_HW_256)
Z7_COM7F_IMF(CAesCoder::SetCoderProperties(const PROPID *propIDs, const PROPVARIANT *coderProps, UInt32 numProps))
{
UInt32 algo = 0;
for (UInt32 i = 0; i < numProps; i++)
{
if (propIDs[i] == NCoderPropID::kDefaultProp)
{
const PROPVARIANT &prop = coderProps[i];
if (prop.vt != VT_UI4)
return E_INVALIDARG;
if (prop.ulVal > 3)
return E_NOTIMPL;
algo = prop.ulVal;
}
}
if (!SetFunctions(algo))
return E_NOTIMPL;
return S_OK;
}
#endif // Z7_EXTRACT_ONLY
}
|