1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
|
// 7zAes.cpp
#include "StdAfx.h"
#include "../../../C/CpuArch.h"
#include "../../../C/Sha256.h"
#include "../../Common/ComTry.h"
#include "../../Common/MyBuffer2.h"
#ifndef Z7_ST
#include "../../Windows/Synchronization.h"
#endif
#include "../Common/StreamUtils.h"
#include "7zAes.h"
#include "MyAes.h"
#ifndef Z7_EXTRACT_ONLY
#include "RandGen.h"
#endif
namespace NCrypto {
namespace N7z {
static const unsigned k_NumCyclesPower_Supported_MAX = 24;
bool CKeyInfo::IsEqualTo(const CKeyInfo &a) const
{
if (SaltSize != a.SaltSize || NumCyclesPower != a.NumCyclesPower)
return false;
for (unsigned i = 0; i < SaltSize; i++)
if (Salt[i] != a.Salt[i])
return false;
return (Password == a.Password);
}
void CKeyInfo::CalcKey()
{
if (NumCyclesPower == 0x3F)
{
unsigned pos;
for (pos = 0; pos < SaltSize; pos++)
Key[pos] = Salt[pos];
for (unsigned i = 0; i < Password.Size() && pos < kKeySize; i++)
Key[pos++] = Password[i];
for (; pos < kKeySize; pos++)
Key[pos] = 0;
}
else
{
const unsigned kUnrPow = 6;
const UInt32 numUnroll = (UInt32)1 << (NumCyclesPower <= kUnrPow ? (unsigned)NumCyclesPower : kUnrPow);
const size_t bufSize = 8 + SaltSize + Password.Size();
const size_t unrollSize = bufSize * numUnroll;
// MY_ALIGN (16)
// CSha256 sha;
CAlignedBuffer sha(sizeof(CSha256) + unrollSize + bufSize * 2);
Byte *buf = sha + sizeof(CSha256);
memcpy(buf, Salt, SaltSize);
memcpy(buf + SaltSize, Password, Password.Size());
memset(buf + bufSize - 8, 0, 8);
Sha256_Init((CSha256 *)(void *)(Byte *)sha);
{
{
Byte *dest = buf;
for (UInt32 i = 1; i < numUnroll; i++)
{
dest += bufSize;
memcpy(dest, buf, bufSize);
}
}
const UInt32 numRounds = (UInt32)1 << NumCyclesPower;
UInt32 r = 0;
do
{
Byte *dest = buf + bufSize - 8;
UInt32 i = r;
r += numUnroll;
do
{
SetUi32(dest, i) i++; dest += bufSize;
// SetUi32(dest, i) i++; dest += bufSize;
}
while (i < r);
Sha256_Update((CSha256 *)(void *)(Byte *)sha, buf, unrollSize);
}
while (r < numRounds);
}
/*
UInt64 numRounds = (UInt64)1 << NumCyclesPower;
do
{
Sha256_Update((CSha256 *)(Byte *)sha, buf, bufSize);
for (unsigned i = 0; i < 8; i++)
if (++(ctr[i]) != 0)
break;
}
while (--numRounds != 0);
*/
Sha256_Final((CSha256 *)(void *)(Byte *)sha, Key);
memset(sha, 0, sha.Size());
}
}
bool CKeyInfoCache::GetKey(CKeyInfo &key)
{
FOR_VECTOR (i, Keys)
{
const CKeyInfo &cached = Keys[i];
if (key.IsEqualTo(cached))
{
for (unsigned j = 0; j < kKeySize; j++)
key.Key[j] = cached.Key[j];
if (i != 0)
Keys.MoveToFront(i);
return true;
}
}
return false;
}
void CKeyInfoCache::FindAndAdd(const CKeyInfo &key)
{
FOR_VECTOR (i, Keys)
{
const CKeyInfo &cached = Keys[i];
if (key.IsEqualTo(cached))
{
if (i != 0)
Keys.MoveToFront(i);
return;
}
}
Add(key);
}
void CKeyInfoCache::Add(const CKeyInfo &key)
{
if (Keys.Size() >= Size)
Keys.DeleteBack();
Keys.Insert(0, key);
}
static CKeyInfoCache g_GlobalKeyCache(32);
#ifndef Z7_ST
static NWindows::NSynchronization::CCriticalSection g_GlobalKeyCacheCriticalSection;
#define MT_LOCK NWindows::NSynchronization::CCriticalSectionLock lock(g_GlobalKeyCacheCriticalSection);
#else
#define MT_LOCK
#endif
CBase::CBase():
_cachedKeys(16),
_ivSize(0)
{
for (unsigned i = 0; i < sizeof(_iv); i++)
_iv[i] = 0;
}
void CBase::PrepareKey()
{
// BCJ2 threads use same password. So we use long lock.
MT_LOCK
bool finded = false;
if (!_cachedKeys.GetKey(_key))
{
finded = g_GlobalKeyCache.GetKey(_key);
if (!finded)
_key.CalcKey();
_cachedKeys.Add(_key);
}
if (!finded)
g_GlobalKeyCache.FindAndAdd(_key);
}
#ifndef Z7_EXTRACT_ONLY
/*
Z7_COM7F_IMF(CEncoder::ResetSalt())
{
_key.SaltSize = 4;
g_RandomGenerator.Generate(_key.Salt, _key.SaltSize);
return S_OK;
}
*/
Z7_COM7F_IMF(CEncoder::ResetInitVector())
{
for (unsigned i = 0; i < sizeof(_iv); i++)
_iv[i] = 0;
_ivSize = 16;
MY_RAND_GEN(_iv, _ivSize);
return S_OK;
}
Z7_COM7F_IMF(CEncoder::WriteCoderProperties(ISequentialOutStream *outStream))
{
Byte props[2 + sizeof(_key.Salt) + sizeof(_iv)];
unsigned propsSize = 1;
props[0] = (Byte)(_key.NumCyclesPower
| (_key.SaltSize == 0 ? 0 : (1 << 7))
| (_ivSize == 0 ? 0 : (1 << 6)));
if (_key.SaltSize != 0 || _ivSize != 0)
{
props[1] = (Byte)(
((_key.SaltSize == 0 ? 0 : _key.SaltSize - 1) << 4)
| (_ivSize == 0 ? 0 : _ivSize - 1));
memcpy(props + 2, _key.Salt, _key.SaltSize);
propsSize = 2 + _key.SaltSize;
memcpy(props + propsSize, _iv, _ivSize);
propsSize += _ivSize;
}
return WriteStream(outStream, props, propsSize);
}
CEncoder::CEncoder()
{
// _key.SaltSize = 4; g_RandomGenerator.Generate(_key.Salt, _key.SaltSize);
// _key.NumCyclesPower = 0x3F;
_key.NumCyclesPower = 19;
_aesFilter = new CAesCbcEncoder(kKeySize);
}
#endif
CDecoder::CDecoder()
{
_aesFilter = new CAesCbcDecoder(kKeySize);
}
Z7_COM7F_IMF(CDecoder::SetDecoderProperties2(const Byte *data, UInt32 size))
{
_key.ClearProps();
_ivSize = 0;
unsigned i;
for (i = 0; i < sizeof(_iv); i++)
_iv[i] = 0;
if (size == 0)
return S_OK;
Byte b0 = data[0];
_key.NumCyclesPower = b0 & 0x3F;
if ((b0 & 0xC0) == 0)
return size == 1 ? S_OK : E_INVALIDARG;
if (size <= 1)
return E_INVALIDARG;
Byte b1 = data[1];
unsigned saltSize = ((b0 >> 7) & 1) + (b1 >> 4);
unsigned ivSize = ((b0 >> 6) & 1) + (b1 & 0x0F);
if (size != 2 + saltSize + ivSize)
return E_INVALIDARG;
_key.SaltSize = saltSize;
data += 2;
for (i = 0; i < saltSize; i++)
_key.Salt[i] = *data++;
for (i = 0; i < ivSize; i++)
_iv[i] = *data++;
return (_key.NumCyclesPower <= k_NumCyclesPower_Supported_MAX
|| _key.NumCyclesPower == 0x3F) ? S_OK : E_NOTIMPL;
}
Z7_COM7F_IMF(CBaseCoder::CryptoSetPassword(const Byte *data, UInt32 size))
{
COM_TRY_BEGIN
_key.Password.Wipe();
_key.Password.CopyFrom(data, (size_t)size);
return S_OK;
COM_TRY_END
}
Z7_COM7F_IMF(CBaseCoder::Init())
{
COM_TRY_BEGIN
PrepareKey();
CMyComPtr<ICryptoProperties> cp;
RINOK(_aesFilter.QueryInterface(IID_ICryptoProperties, &cp))
if (!cp)
return E_FAIL;
RINOK(cp->SetKey(_key.Key, kKeySize))
RINOK(cp->SetInitVector(_iv, sizeof(_iv)))
return _aesFilter->Init();
COM_TRY_END
}
Z7_COM7F_IMF2(UInt32, CBaseCoder::Filter(Byte *data, UInt32 size))
{
return _aesFilter->Filter(data, size);
}
}}
|