summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/cpu/m68000/m68kfpu.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/devices/cpu/m68000/m68kfpu.cpp')
-rw-r--r--src/devices/cpu/m68000/m68kfpu.cpp2570
1 files changed, 2570 insertions, 0 deletions
diff --git a/src/devices/cpu/m68000/m68kfpu.cpp b/src/devices/cpu/m68000/m68kfpu.cpp
new file mode 100644
index 00000000000..1d16077091c
--- /dev/null
+++ b/src/devices/cpu/m68000/m68kfpu.cpp
@@ -0,0 +1,2570 @@
+// license:BSD-3-Clause
+// copyright-holders:Karl Stenerud, R. Belmont
+
+/*
+ SoftFloat 3E version, May/June 2024
+ - Exception flags now set for all opcodes
+ - FREM/FMOD now generate the quotient bits in FPSR, required for SANE to do trigonometry
+ - FMOVE of a float to an integer register generates the proper INEXACT exception, required
+ for SANE to calculate square roots.
+*/
+
+#include <cstdint>
+
+#include "emu.h"
+#include "m68kmusashi.h"
+
+#define LOG_FPSR (1U << 1)
+#define LOG_INSTRUCTIONS (1U << 2)
+#define LOG_INSTRUCTIONS_VERBOSE (1U << 3)
+#define LOG_LOADSTORE (1U << 4)
+
+#define VERBOSE (0)
+
+#define LOG_OUTPUT_FUNC osd_printf_info
+#include "logmacro.h"
+
+static constexpr int FPCC_N = 0x08000000;
+static constexpr int FPCC_Z = 0x04000000;
+static constexpr int FPCC_I = 0x02000000;
+static constexpr int FPCC_NAN = 0x01000000;
+
+static constexpr u32 FPES_INEXDEC = 0x00000100;
+static constexpr u32 FPES_INEXACT = 0x00000200;
+static constexpr u32 FPES_DIVZERO = 0x00000400;
+static constexpr u32 FPES_OVERFLOW = 0x00000800;
+static constexpr u32 FPES_UNDERFLOW = 0x00001000;
+static constexpr u32 FPES_OPERR = 0x00002000;
+static constexpr u32 FPES_SNAN = 0x00004000;
+
+static constexpr u32 FPAE_INEXACT = 0x00000008;
+static constexpr u32 FPAE_DIVZERO = 0x00000010;
+static constexpr u32 FPAE_OVERFLOW = 0x00000020;
+static constexpr u32 FPAE_UNDERFLOW = 0x00000040;
+static constexpr u32 FPAE_OPERR = 0x00000010;
+
+static constexpr u32 EXC_ENB_INEXACT = 0x00000001;
+static constexpr u32 EXC_ENB_UNDFLOW = 0x00000002;
+static constexpr u32 EXC_ENB_OVRFLOW = 0x00000004;
+
+// masks for packed dwords, positive k-factor
+const u32 m68000_musashi_device::pkmask2[18] =
+{
+ 0xffffffff, 0, 0xf0000000, 0xff000000, 0xfff00000, 0xffff0000,
+ 0xfffff000, 0xffffff00, 0xfffffff0, 0xffffffff,
+ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
+ 0xffffffff, 0xffffffff, 0xffffffff
+};
+
+const u32 m68000_musashi_device::pkmask3[18] =
+{
+ 0xffffffff, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0xf0000000, 0xff000000, 0xfff00000, 0xffff0000,
+ 0xfffff000, 0xffffff00, 0xfffffff0, 0xffffffff,
+};
+
+inline extFloat80_t m68000_musashi_device::load_extended_float80(u32 ea)
+{
+ u32 d1,d2;
+ u16 d3;
+ extFloat80_t fp;
+
+ d3 = m68ki_read_16(ea);
+ d1 = m68ki_read_32(ea+4);
+ d2 = m68ki_read_32(ea+8);
+
+ fp.signExp = d3;
+ fp.signif = ((u64)d1<<32) | (d2 & 0xffffffff);
+
+ return fp;
+}
+
+inline void m68000_musashi_device::store_extended_float80(u32 ea, extFloat80_t fpr)
+{
+ m68ki_write_16(ea+0, fpr.signExp);
+ m68ki_write_16(ea+2, 0);
+ m68ki_write_32(ea+4, (fpr.signif>>32)&0xffffffff);
+ m68ki_write_32(ea+8, fpr.signif&0xffffffff);
+}
+
+inline extFloat80_t m68000_musashi_device::load_pack_float80(u32 ea)
+{
+ u32 dw1, dw2, dw3;
+ extFloat80_t result;
+ double tmp;
+ char str[128], *ch;
+
+ dw1 = m68ki_read_32(ea);
+ dw2 = m68ki_read_32(ea+4);
+ dw3 = m68ki_read_32(ea+8);
+
+ ch = &str[0];
+ if (dw1 & 0x80000000) // mantissa sign
+ {
+ *ch++ = '-';
+ }
+ *ch++ = (char)((dw1 & 0xf) + '0');
+ *ch++ = '.';
+ *ch++ = (char)(((dw2 >> 28) & 0xf) + '0');
+ *ch++ = (char)(((dw2 >> 24) & 0xf) + '0');
+ *ch++ = (char)(((dw2 >> 20) & 0xf) + '0');
+ *ch++ = (char)(((dw2 >> 16) & 0xf) + '0');
+ *ch++ = (char)(((dw2 >> 12) & 0xf) + '0');
+ *ch++ = (char)(((dw2 >> 8) & 0xf) + '0');
+ *ch++ = (char)(((dw2 >> 4) & 0xf) + '0');
+ *ch++ = (char)(((dw2 >> 0) & 0xf) + '0');
+ *ch++ = (char)(((dw3 >> 28) & 0xf) + '0');
+ *ch++ = (char)(((dw3 >> 24) & 0xf) + '0');
+ *ch++ = (char)(((dw3 >> 20) & 0xf) + '0');
+ *ch++ = (char)(((dw3 >> 16) & 0xf) + '0');
+ *ch++ = (char)(((dw3 >> 12) & 0xf) + '0');
+ *ch++ = (char)(((dw3 >> 8) & 0xf) + '0');
+ *ch++ = (char)(((dw3 >> 4) & 0xf) + '0');
+ *ch++ = (char)(((dw3 >> 0) & 0xf) + '0');
+ *ch++ = 'E';
+ if (dw1 & 0x40000000) // exponent sign
+ {
+ *ch++ = '-';
+ }
+ *ch++ = (char)(((dw1 >> 24) & 0xf) + '0');
+ *ch++ = (char)(((dw1 >> 20) & 0xf) + '0');
+ *ch++ = (char)(((dw1 >> 16) & 0xf) + '0');
+ *ch = '\0';
+
+ sscanf(str, "%le", &tmp);
+
+ result = double_to_fx80(tmp);
+
+ return result;
+}
+
+inline void m68000_musashi_device::store_pack_float80(u32 ea, int k, extFloat80_t fpr)
+{
+ u32 dw1, dw2, dw3;
+ char str[128], *ch;
+ int i, j, exp;
+
+ dw1 = dw2 = dw3 = 0;
+ ch = &str[0];
+
+ snprintf(str, sizeof(str), "%.16e", fx80_to_double(fpr));
+
+ if (*ch == '-')
+ {
+ ch++;
+ dw1 = 0x80000000;
+ }
+
+ if (*ch == '+')
+ {
+ ch++;
+ }
+
+ dw1 |= (*ch++ - '0');
+
+ if (*ch == '.')
+ {
+ ch++;
+ }
+
+ // handle negative k-factor here
+ if ((k <= 0) && (k >= -13))
+ {
+ exp = 0;
+ for (i = 0; i < 3; i++)
+ {
+ if (ch[18+i] >= '0' && ch[18+i] <= '9')
+ {
+ exp = (exp << 4) | (ch[18+i] - '0');
+ }
+ }
+
+ if (ch[17] == '-')
+ {
+ exp = -exp;
+ }
+
+ k = -k;
+ // last digit is (k + exponent - 1)
+ k += (exp - 1);
+
+ // round up the last significant mantissa digit
+ if (ch[k+1] >= '5')
+ {
+ ch[k]++;
+ }
+
+ // zero out the rest of the mantissa digits
+ for (j = (k+1); j < 16; j++)
+ {
+ ch[j] = '0';
+ }
+
+ // now zero out K to avoid tripping the positive K detection below
+ k = 0;
+ }
+
+ // crack 8 digits of the mantissa
+ for (i = 0; i < 8; i++)
+ {
+ dw2 <<= 4;
+ if (*ch >= '0' && *ch <= '9')
+ {
+ dw2 |= *ch++ - '0';
+ }
+ }
+
+ // next 8 digits of the mantissa
+ for (i = 0; i < 8; i++)
+ {
+ dw3 <<= 4;
+ if (*ch >= '0' && *ch <= '9')
+ dw3 |= *ch++ - '0';
+ }
+
+ // handle masking if k is positive
+ if (k >= 1)
+ {
+ if (k <= 17)
+ {
+ dw2 &= pkmask2[k];
+ dw3 &= pkmask3[k];
+ }
+ else
+ {
+ dw2 &= pkmask2[17];
+ dw3 &= pkmask3[17];
+// m_fpcr |= (need to set OPERR bit)
+ }
+ }
+
+ // finally, crack the exponent
+ if (*ch == 'e' || *ch == 'E')
+ {
+ ch++;
+ if (*ch == '-')
+ {
+ ch++;
+ dw1 |= 0x40000000;
+ }
+
+ if (*ch == '+')
+ {
+ ch++;
+ }
+
+ j = 0;
+ for (i = 0; i < 3; i++)
+ {
+ if (*ch >= '0' && *ch <= '9')
+ {
+ j = (j << 4) | (*ch++ - '0');
+ }
+ }
+
+ dw1 |= (j << 16);
+ }
+
+ m68ki_write_32(ea, dw1);
+ m68ki_write_32(ea+4, dw2);
+ m68ki_write_32(ea+8, dw3);
+}
+
+void m68000_musashi_device::set_condition_codes(extFloat80_t reg)
+{
+ m_fpsr &= ~(FPCC_N|FPCC_Z|FPCC_I|FPCC_NAN);
+
+ // sign flag
+ if (reg.signExp & 0x8000)
+ {
+ m_fpsr |= FPCC_N;
+ }
+
+ // zero flag
+ if (((reg.signExp & 0x7fff) == 0) && ((reg.signif<<1) == 0))
+ {
+ m_fpsr |= FPCC_Z;
+ }
+
+ // infinity flag
+ if (((reg.signExp & 0x7fff) == 0x7fff) && ((reg.signif<<1) == 0))
+ {
+ m_fpsr |= FPCC_I;
+ }
+
+ // NaN flag
+ if (extFloat80_is_nan(reg))
+ {
+ m_fpsr |= FPCC_NAN;
+ }
+}
+
+void m68000_musashi_device::clear_exception_flags()
+{
+ softfloat_exceptionFlags = 0;
+ m_fpsr &= ~(FPES_SNAN | FPES_OPERR | FPES_OVERFLOW | FPES_UNDERFLOW | FPES_DIVZERO | FPAE_DIVZERO | FPAE_INEXACT | FPAE_OPERR | FPAE_OVERFLOW | FPAE_UNDERFLOW | FPES_INEXDEC);
+}
+
+void m68000_musashi_device::sync_exception_flags(extFloat80_t op1, extFloat80_t op2, u32 enables)
+{
+ if (extF80_isSignalingNaN(op1) || extF80_isSignalingNaN(op2))
+ {
+ m_fpsr |= FPES_SNAN;
+ }
+
+ if ((enables & EXC_ENB_INEXACT) && (softfloat_exceptionFlags & softfloat_flag_inexact))
+ {
+ m_fpsr |= FPES_INEXACT | FPAE_INEXACT;
+ }
+
+ if ((enables & EXC_ENB_UNDFLOW) && (softfloat_exceptionFlags & softfloat_flag_underflow))
+ {
+ m_fpsr |= FPES_UNDERFLOW | FPAE_UNDERFLOW;
+ }
+
+ if ((enables & EXC_ENB_OVRFLOW) && (softfloat_exceptionFlags & softfloat_flag_overflow))
+ {
+ m_fpsr |= FPES_OVERFLOW | FPAE_OVERFLOW;
+ }
+}
+
+int m68000_musashi_device::test_condition(int condition)
+{
+ int n = (m_fpsr & FPCC_N) != 0;
+ int z = (m_fpsr & FPCC_Z) != 0;
+ int nan = (m_fpsr & FPCC_NAN) != 0;
+ int r = 0;
+ switch (condition)
+ {
+ case 0x10:
+ case 0x00: return 0; // False
+
+ case 0x11:
+ case 0x01: return (z); // Equal
+
+ case 0x12:
+ case 0x02: return (!(nan || z || n)); // Greater Than
+
+ case 0x13:
+ case 0x03: return (z || !(nan || n)); // Greater or Equal
+
+ case 0x14:
+ case 0x04: return (n && !(nan || z)); // Less Than
+
+ case 0x15:
+ case 0x05: return (z || (n && !nan)); // Less Than or Equal
+
+ case 0x16:
+ case 0x06: return !nan && !z;
+
+ case 0x17:
+ case 0x07: return !nan;
+
+ case 0x18:
+ case 0x08: return nan;
+
+ case 0x19:
+ case 0x09: return nan || z;
+
+ case 0x1a:
+ case 0x0a: return (nan || !(n || z)); // Not Less Than or Equal
+
+ case 0x1b:
+ case 0x0b: return (nan || z || !n); // Not Less Than
+
+ case 0x1c:
+ case 0x0c: return (nan || (n && !z)); // Not Greater or Equal Than
+
+ case 0x1d:
+ case 0x0d: return (nan || z || n); // Not Greater Than
+
+ case 0x1e:
+ case 0x0e: return (!z); // Not Equal
+
+ case 0x1f:
+ case 0x0f: return 1; // True
+
+ default: fatalerror("M68kFPU: test_condition: unhandled condition %02X\n", condition);
+ }
+
+ return r;
+}
+
+s32 m68000_musashi_device::convert_to_int(extFloat80_t source, s32 lowerLimit, s32 upperLimit)
+{
+ clear_exception_flags();
+ s32 result = extF80_to_i32(source, softfloat_roundingMode, true);
+ sync_exception_flags(source, source, EXC_ENB_INEXACT);
+ if (result < lowerLimit)
+ {
+ result = lowerLimit;
+ m_fpsr |= FPES_INEXACT | FPAE_INEXACT;
+ }
+ else if (result > upperLimit)
+ {
+ result = upperLimit;
+ m_fpsr |= FPES_INEXACT | FPAE_INEXACT;
+ }
+
+ return result;
+}
+
+u8 m68000_musashi_device::READ_EA_8(int ea)
+{
+ int mode = (ea >> 3) & 0x7;
+ int reg = (ea & 0x7);
+
+ switch (mode)
+ {
+ case 0: // Dn
+ {
+ return REG_D()[reg] & 0xff;
+ }
+ case 2: // (An)
+ {
+ u32 ea = REG_A()[reg];
+ return m68ki_read_8(ea);
+ }
+ case 3: // (An)+
+ {
+ u32 ea = EA_AY_PI_8();
+ return m68ki_read_8(ea);
+ }
+ case 4: // -(An)
+ {
+ u32 ea = EA_AY_PD_8();
+ return m68ki_read_8(ea);
+ }
+ case 5: // (d16, An)
+ {
+ u32 ea = EA_AY_DI_8();
+ return m68ki_read_8(ea);
+ }
+ case 6: // (An) + (Xn) + d8
+ {
+ u32 ea = EA_AY_IX_8();
+ return m68ki_read_8(ea);
+ }
+ case 7:
+ {
+ switch (reg)
+ {
+ case 0: // (xxx).W
+ {
+ u32 ea = OPER_I_16();
+ return m68ki_read_8(ea);
+ }
+ case 1: // (xxx).L
+ {
+ u32 d1 = OPER_I_16();
+ u32 d2 = OPER_I_16();
+ u32 ea = (d1 << 16) | d2;
+ return m68ki_read_8(ea);
+ }
+ case 2: // (d16, PC)
+ {
+ u32 ea = EA_PCDI_8();
+ return m68ki_read_8(ea);
+ }
+ case 3: // (PC) + (Xn) + d8
+ {
+ u32 ea = EA_PCIX_8();
+ return m68ki_read_8(ea);
+ }
+ case 4: // #<data>
+ {
+ return OPER_I_8();
+ }
+ default: fatalerror("M68kFPU: READ_EA_8: unhandled mode %d, reg %d at %08X\n", mode, reg, m_pc);
+ }
+ break;
+ }
+ default: fatalerror("M68kFPU: READ_EA_8: unhandled mode %d, reg %d at %08X\n", mode, reg, m_pc);
+ }
+
+ return 0;
+}
+
+u16 m68000_musashi_device::READ_EA_16(int ea)
+{
+ int mode = (ea >> 3) & 0x7;
+ int reg = (ea & 0x7);
+
+ switch (mode)
+ {
+ case 0: // Dn
+ {
+ return (u16)(REG_D()[reg] & 0xffff);
+ }
+ case 2: // (An)
+ {
+ u32 ea = REG_A()[reg];
+ return m68ki_read_16(ea);
+ }
+ case 3: // (An)+
+ {
+ u32 ea = EA_AY_PI_16();
+ return m68ki_read_16(ea);
+ }
+ case 4: // -(An)
+ {
+ u32 ea = EA_AY_PD_16();
+ return m68ki_read_16(ea);
+ }
+ case 5: // (d16, An)
+ {
+ u32 ea = EA_AY_DI_16();
+ return m68ki_read_16(ea);
+ }
+ case 6: // (An) + (Xn) + d8
+ {
+ u32 ea = EA_AY_IX_16();
+ return m68ki_read_16(ea);
+ }
+ case 7:
+ {
+ switch (reg)
+ {
+ case 0: // (xxx).W
+ {
+ u32 ea = OPER_I_16();
+ return m68ki_read_16(ea);
+ }
+ case 1: // (xxx).L
+ {
+ u32 d1 = OPER_I_16();
+ u32 d2 = OPER_I_16();
+ u32 ea = (d1 << 16) | d2;
+ return m68ki_read_16(ea);
+ }
+ case 2: // (d16, PC)
+ {
+ u32 ea = EA_PCDI_16();
+ return m68ki_read_16(ea);
+ }
+ case 3: // (PC) + (Xn) + d8
+ {
+ u32 ea = EA_PCIX_16();
+ return m68ki_read_16(ea);
+ }
+ case 4: // #<data>
+ {
+ return OPER_I_16();
+ }
+
+ default: fatalerror("M68kFPU: READ_EA_16: unhandled mode %d, reg %d at %08X\n", mode, reg, m_pc);
+ }
+ break;
+ }
+ default: fatalerror("M68kFPU: READ_EA_16: unhandled mode %d, reg %d at %08X\n", mode, reg, m_pc);
+ }
+
+ return 0;
+}
+
+u32 m68000_musashi_device::READ_EA_32(int ea)
+{
+ int mode = (ea >> 3) & 0x7;
+ int reg = (ea & 0x7);
+
+ switch (mode)
+ {
+ case 0: // Dn
+ {
+ return REG_D()[reg];
+ }
+ case 1: // An
+ {
+ return REG_A()[reg];
+ }
+ case 2: // (An)
+ {
+ u32 ea = REG_A()[reg];
+ return m68ki_read_32(ea);
+ }
+ case 3: // (An)+
+ {
+ u32 ea = EA_AY_PI_32();
+ return m68ki_read_32(ea);
+ }
+ case 4: // -(An)
+ {
+ u32 ea = EA_AY_PD_32();
+ return m68ki_read_32(ea);
+ }
+ case 5: // (d16, An)
+ {
+ u32 ea = EA_AY_DI_32();
+ return m68ki_read_32(ea);
+ }
+ case 6: // (An) + (Xn) + d8
+ {
+ u32 ea = EA_AY_IX_32();
+ return m68ki_read_32(ea);
+ }
+ case 7:
+ {
+ switch (reg)
+ {
+ case 0: // (xxx).W
+ {
+ u32 ea = OPER_I_16();
+ return m68ki_read_32(ea);
+ }
+ case 1: // (xxx).L
+ {
+ u32 d1 = OPER_I_16();
+ u32 d2 = OPER_I_16();
+ u32 ea = (d1 << 16) | d2;
+ return m68ki_read_32(ea);
+ }
+ case 2: // (d16, PC)
+ {
+ u32 ea = EA_PCDI_32();
+ return m68ki_read_32(ea);
+ }
+ case 3: // (PC) + (Xn) + d8
+ {
+ u32 ea = EA_PCIX_32();
+ return m68ki_read_32(ea);
+ }
+ case 4: // #<data>
+ {
+ return OPER_I_32();
+ }
+ default: fatalerror("M68kFPU: READ_EA_32: unhandled mode %d, reg %d at %08X\n", mode, reg, m_pc);
+ }
+ break;
+ }
+ default: fatalerror("M68kFPU: READ_EA_32: unhandled mode %d, reg %d at %08X\n", mode, reg, m_pc);
+ }
+ return 0;
+}
+
+u64 m68000_musashi_device::READ_EA_64(int ea)
+{
+ int mode = (ea >> 3) & 0x7;
+ int reg = (ea & 0x7);
+ u32 h1, h2;
+
+ switch (mode)
+ {
+ case 2: // (An)
+ {
+ u32 ea = REG_A()[reg];
+ h1 = m68ki_read_32(ea+0);
+ h2 = m68ki_read_32(ea+4);
+ return (u64)(h1) << 32 | (u64)(h2);
+ }
+ case 3: // (An)+
+ {
+ u32 ea = REG_A()[reg];
+ REG_A()[reg] += 8;
+ h1 = m68ki_read_32(ea+0);
+ h2 = m68ki_read_32(ea+4);
+ return (u64)(h1) << 32 | (u64)(h2);
+ }
+ case 4: // -(An)
+ {
+ u32 ea = REG_A()[reg]-8;
+ REG_A()[reg] -= 8;
+ h1 = m68ki_read_32(ea+0);
+ h2 = m68ki_read_32(ea+4);
+ return (u64)(h1) << 32 | (u64)(h2);
+ }
+ case 5: // (d16, An)
+ {
+ u32 ea = EA_AY_DI_32();
+ h1 = m68ki_read_32(ea+0);
+ h2 = m68ki_read_32(ea+4);
+ return (u64)(h1) << 32 | (u64)(h2);
+ }
+ case 6: // (An) + (Xn) + d8
+ {
+ u32 ea = EA_AY_IX_32();
+ h1 = m68ki_read_32(ea+0);
+ h2 = m68ki_read_32(ea+4);
+ return (u64)(h1) << 32 | (u64)(h2);
+ }
+ case 7:
+ {
+ switch (reg)
+ {
+ case 1: // (xxx).L
+ {
+ u32 d1 = OPER_I_16();
+ u32 d2 = OPER_I_16();
+ u32 ea = (d1 << 16) | d2;
+ return (u64)(m68ki_read_32(ea)) << 32 | (u64)(m68ki_read_32(ea+4));
+ }
+ case 3: // (PC) + (Xn) + d8
+ {
+ u32 ea = EA_PCIX_32();
+ h1 = m68ki_read_32(ea+0);
+ h2 = m68ki_read_32(ea+4);
+ return (u64)(h1) << 32 | (u64)(h2);
+ }
+ case 4: // #<data>
+ {
+ h1 = OPER_I_32();
+ h2 = OPER_I_32();
+ return (u64)(h1) << 32 | (u64)(h2);
+ }
+ case 2: // (d16, PC)
+ {
+ u32 ea = EA_PCDI_32();
+ h1 = m68ki_read_32(ea+0);
+ h2 = m68ki_read_32(ea+4);
+ return (u64)(h1) << 32 | (u64)(h2);
+ }
+ default: fatalerror("M68kFPU: READ_EA_64: unhandled mode %d, reg %d at %08X\n", mode, reg, m_pc);
+ }
+ break;
+ }
+ default: fatalerror("M68kFPU: READ_EA_64: unhandled mode %d, reg %d at %08X\n", mode, reg, m_pc);
+ }
+
+ return 0;
+}
+
+extFloat80_t m68000_musashi_device::READ_EA_FPE(int mode, int reg, uint32_t offset)
+{
+ extFloat80_t fpr;
+
+ switch (mode)
+ {
+ case 2: // (An)
+ {
+ u32 ea = REG_A()[reg];
+ fpr = load_extended_float80(ea + offset);
+ break;
+ }
+
+ case 3: // (An)+
+ {
+ u32 ea = REG_A()[reg];
+ REG_A()[reg] += 12;
+ fpr = load_extended_float80(ea);
+ break;
+ }
+ case 4: // -(An)
+ {
+ u32 ea = REG_A()[reg]-12;
+ REG_A()[reg] -= 12;
+ fpr = load_extended_float80(ea);
+ break;
+ }
+ case 5: // (d16, An)
+ {
+ u32 ea = REG_A()[reg];
+ fpr = load_extended_float80(ea + offset);
+ break;
+ }
+#if 0
+ // FIXME: this addressing mode is broken, and fixing it so it works properly
+ // for FMOVEM is quite challenging; disabling it for now.
+ case 6: // (An) + (Xn) + d8
+ {
+ u32 ea = REG_A()[reg];
+ fpr = load_extended_float80(ea + offset);
+ break;
+ }
+#endif
+
+ case 7: // extended modes
+ {
+ switch (reg)
+ {
+ case 1: // (xxx)
+ {
+ u32 d1 = OPER_I_16();
+ u32 d2 = OPER_I_16();
+ u32 ea = (d1 << 16) | d2;
+ fpr = load_extended_float80(ea);
+ }
+ break;
+
+ case 2: // (d16, PC)
+ {
+ u32 ea = EA_PCDI_32();
+ fpr = load_extended_float80(ea);
+ }
+ break;
+
+ case 3: // (d16,PC,Dx.w)
+ {
+ u32 ea = EA_PCIX_32();
+ fpr = load_extended_float80(ea);
+ }
+ break;
+
+ case 4: // #<data>
+ fpr = load_extended_float80(m_pc);
+ m_pc += 12;
+ break;
+
+ default:
+ fatalerror("M68kFPU: READ_EA_FPE: unhandled mode %d, reg %d, at %08X\n", mode, reg, m_pc);
+ break;
+ }
+ }
+ break;
+
+ default: fatalerror("M68kFPU: READ_EA_FPE: unhandled mode %d, reg %d, at %08X\n", mode, reg, m_pc); break;
+ }
+
+ return fpr;
+}
+
+extFloat80_t m68000_musashi_device::READ_EA_PACK(int ea)
+{
+ extFloat80_t fpr;
+ int mode = (ea >> 3) & 0x7;
+ int reg = (ea & 0x7);
+
+ switch (mode)
+ {
+ case 2: // (An)
+ {
+ u32 ea = REG_A()[reg];
+ fpr = load_pack_float80(ea);
+ break;
+ }
+
+ case 3: // (An)+
+ {
+ u32 ea = REG_A()[reg];
+ REG_A()[reg] += 12;
+ fpr = load_pack_float80(ea);
+ break;
+ }
+
+ case 7: // extended modes
+ {
+ switch (reg)
+ {
+ case 3: // (d16,PC,Dx.w)
+ {
+ u32 ea = EA_PCIX_32();
+ fpr = load_pack_float80(ea);
+ }
+ break;
+
+ default:
+ fatalerror("M68kFPU: READ_EA_PACK: unhandled mode %d, reg %d, at %08X\n", mode, reg, m_pc);
+ break;
+ }
+ }
+ break;
+
+ default: fatalerror("M68kFPU: READ_EA_PACK: unhandled mode %d, reg %d, at %08X\n", mode, reg, m_pc); break;
+ }
+
+ return fpr;
+}
+
+void m68000_musashi_device::WRITE_EA_8(int ea, u8 data)
+{
+ int mode = (ea >> 3) & 0x7;
+ int reg = (ea & 0x7);
+
+ switch (mode)
+ {
+ case 0: // Dn
+ {
+ REG_D()[reg] &= 0xffffff00;
+ REG_D()[reg] |= data;
+ break;
+ }
+ case 2: // (An)
+ {
+ u32 ea = REG_A()[reg];
+ m68ki_write_8(ea, data);
+ break;
+ }
+ case 3: // (An)+
+ {
+ u32 ea = EA_AY_PI_8();
+ m68ki_write_8(ea, data);
+ break;
+ }
+ case 4: // -(An)
+ {
+ u32 ea = EA_AY_PD_8();
+ m68ki_write_8(ea, data);
+ break;
+ }
+ case 5: // (d16, An)
+ {
+ u32 ea = EA_AY_DI_8();
+ m68ki_write_8(ea, data);
+ break;
+ }
+ case 6: // (An) + (Xn) + d8
+ {
+ u32 ea = EA_AY_IX_8();
+ m68ki_write_8(ea, data);
+ break;
+ }
+ case 7:
+ {
+ switch (reg)
+ {
+ case 1: // (xxx).B
+ {
+ u32 d1 = OPER_I_16();
+ u32 d2 = OPER_I_16();
+ u32 ea = (d1 << 16) | d2;
+ m68ki_write_8(ea, data);
+ break;
+ }
+ case 2: // (d16, PC)
+ {
+ u32 ea = EA_PCDI_16();
+ m68ki_write_8(ea, data);
+ break;
+ }
+ default: fatalerror("M68kFPU: WRITE_EA_8: unhandled mode %d, reg %d at %08X\n", mode, reg, m_pc);
+ }
+ break;
+ }
+ default: fatalerror("M68kFPU: WRITE_EA_8: unhandled mode %d, reg %d, data %08X at %08X\n", mode, reg, data, m_pc);
+ }
+}
+
+void m68000_musashi_device::WRITE_EA_16(int ea, u16 data)
+{
+ int mode = (ea >> 3) & 0x7;
+ int reg = (ea & 0x7);
+
+ switch (mode)
+ {
+ case 0: // Dn
+ {
+ REG_D()[reg] &= 0xffff0000;
+ REG_D()[reg] |= data;
+ break;
+ }
+ case 2: // (An)
+ {
+ u32 ea = REG_A()[reg];
+ m68ki_write_16(ea, data);
+ break;
+ }
+ case 3: // (An)+
+ {
+ u32 ea = EA_AY_PI_16();
+ m68ki_write_16(ea, data);
+ break;
+ }
+ case 4: // -(An)
+ {
+ u32 ea = EA_AY_PD_16();
+ m68ki_write_16(ea, data);
+ break;
+ }
+ case 5: // (d16, An)
+ {
+ u32 ea = EA_AY_DI_16();
+ m68ki_write_16(ea, data);
+ break;
+ }
+ case 6: // (An) + (Xn) + d8
+ {
+ u32 ea = EA_AY_IX_16();
+ m68ki_write_16(ea, data);
+ break;
+ }
+ case 7:
+ {
+ switch (reg)
+ {
+ case 1: // (xxx).W
+ {
+ u32 d1 = OPER_I_16();
+ u32 d2 = OPER_I_16();
+ u32 ea = (d1 << 16) | d2;
+ m68ki_write_16(ea, data);
+ break;
+ }
+ case 2: // (d16, PC)
+ {
+ u32 ea = EA_PCDI_16();
+ m68ki_write_16(ea, data);
+ break;
+ }
+ default: fatalerror("M68kFPU: WRITE_EA_16: unhandled mode %d, reg %d at %08X\n", mode, reg, m_pc);
+ }
+ break;
+ }
+ default: fatalerror("M68kFPU: WRITE_EA_16: unhandled mode %d, reg %d, data %08X at %08X\n", mode, reg, data, m_pc);
+ }
+}
+
+void m68000_musashi_device::WRITE_EA_32(int ea, u32 data)
+{
+ int mode = (ea >> 3) & 0x7;
+ int reg = (ea & 0x7);
+
+ switch (mode)
+ {
+ case 0: // Dn
+ {
+ REG_D()[reg] = data;
+ break;
+ }
+ case 1: // An
+ {
+ REG_A()[reg] = data;
+ break;
+ }
+ case 2: // (An)
+ {
+ u32 ea = REG_A()[reg];
+ m68ki_write_32(ea, data);
+ break;
+ }
+ case 3: // (An)+
+ {
+ u32 ea = EA_AY_PI_32();
+ m68ki_write_32(ea, data);
+ break;
+ }
+ case 4: // -(An)
+ {
+ u32 ea = EA_AY_PD_32();
+ m68ki_write_32(ea, data);
+ break;
+ }
+ case 5: // (d16, An)
+ {
+ u32 ea = EA_AY_DI_32();
+ m68ki_write_32(ea, data);
+ break;
+ }
+ case 6: // (An) + (Xn) + d8
+ {
+ u32 ea = EA_AY_IX_32();
+ m68ki_write_32(ea, data);
+ break;
+ }
+ case 7:
+ {
+ switch (reg)
+ {
+ case 0: // (xxx).W
+ {
+ u32 ea = OPER_I_16();
+ m68ki_write_32(ea, data);
+ break;
+ }
+ case 1: // (xxx).L
+ {
+ u32 d1 = OPER_I_16();
+ u32 d2 = OPER_I_16();
+ u32 ea = (d1 << 16) | d2;
+ m68ki_write_32(ea, data);
+ break;
+ }
+ case 2: // (d16, PC)
+ {
+ u32 ea = EA_PCDI_32();
+ m68ki_write_32(ea, data);
+ break;
+ }
+ default: fatalerror("M68kFPU: WRITE_EA_32: unhandled mode %d, reg %d at %08X\n", mode, reg, m_pc);
+ }
+ break;
+ }
+ default: fatalerror("M68kFPU: WRITE_EA_32: unhandled mode %d, reg %d, data %08X at %08X\n", mode, reg, data, m_pc);
+ }
+}
+
+void m68000_musashi_device::WRITE_EA_64(int ea, u64 data)
+{
+ int mode = (ea >> 3) & 0x7;
+ int reg = (ea & 0x7);
+
+ switch (mode)
+ {
+ case 2: // (An)
+ {
+ u32 ea = REG_A()[reg];
+ m68ki_write_32(ea, (u32)(data >> 32));
+ m68ki_write_32(ea+4, (u32)(data));
+ break;
+ }
+ case 3: // (An)+
+ {
+ u32 ea = REG_A()[reg];
+ REG_A()[reg] += 8;
+ m68ki_write_32(ea+0, (u32)(data >> 32));
+ m68ki_write_32(ea+4, (u32)(data));
+ break;
+ }
+ case 4: // -(An)
+ {
+ u32 ea;
+ REG_A()[reg] -= 8;
+ ea = REG_A()[reg];
+ m68ki_write_32(ea+0, (u32)(data >> 32));
+ m68ki_write_32(ea+4, (u32)(data));
+ break;
+ }
+ case 5: // (d16, An)
+ {
+ u32 ea = EA_AY_DI_32();
+ m68ki_write_32(ea+0, (u32)(data >> 32));
+ m68ki_write_32(ea+4, (u32)(data));
+ break;
+ }
+ case 6: // (An) + (Xn) + d8
+ {
+ u32 ea = EA_AY_IX_32();
+ m68ki_write_32(ea+0, (u32)(data >> 32));
+ m68ki_write_32(ea+4, (u32)(data));
+ break;
+ }
+ case 7:
+ {
+ switch (reg)
+ {
+ case 1: // (xxx).L
+ {
+ u32 d1 = OPER_I_16();
+ u32 d2 = OPER_I_16();
+ u32 ea = (d1 << 16) | d2;
+ m68ki_write_32(ea+0, (u32)(data >> 32));
+ m68ki_write_32(ea+4, (u32)(data));
+ break;
+ }
+ case 2: // (d16, PC)
+ {
+ u32 ea = EA_PCDI_32();
+ m68ki_write_32(ea+0, (u32)(data >> 32));
+ m68ki_write_32(ea+4, (u32)(data));
+ break;
+ }
+ default: fatalerror("M68kFPU: WRITE_EA_64: unhandled mode %d, reg %d at %08X\n", mode, reg, m_pc);
+ }
+ break;
+ }
+ default: fatalerror("M68kFPU: WRITE_EA_64: unhandled mode %d, reg %d, data %08X%08X at %08X\n", mode, reg, (u32)(data >> 32), (u32)(data), m_pc);
+ }
+}
+
+void m68000_musashi_device::WRITE_EA_FPE(int mode, int reg, extFloat80_t fpr, uint32_t offset)
+{
+ switch (mode)
+ {
+ case 2: // (An)
+ {
+ u32 ea = REG_A()[reg];
+ store_extended_float80(ea + offset, fpr);
+ break;
+ }
+
+ case 3: // (An)+
+ {
+ u32 ea = REG_A()[reg];
+ store_extended_float80(ea, fpr);
+ REG_A()[reg] += 12;
+ break;
+ }
+
+ case 4: // -(An)
+ {
+ REG_A()[reg] -= 12;
+ u32 ea = REG_A()[reg];
+ store_extended_float80(ea, fpr);
+ break;
+ }
+
+ case 5: // (d16,An)
+ {
+ u32 ea = REG_A()[reg];
+ store_extended_float80(ea + offset, fpr);
+ break;
+ }
+
+ case 7:
+ {
+ switch (reg)
+ {
+ default: fatalerror("M68kFPU: WRITE_EA_FPE: unhandled mode %d, reg %d, at %08X\n", mode, reg, m_pc);
+ }
+ }
+ default: fatalerror("M68kFPU: WRITE_EA_FPE: unhandled mode %d, reg %d, at %08X\n", mode, reg, m_pc);
+ }
+}
+
+void m68000_musashi_device::WRITE_EA_PACK(int ea, int k, extFloat80_t fpr)
+{
+ int mode = (ea >> 3) & 0x7;
+ int reg = (ea & 0x7);
+
+ switch (mode)
+ {
+ case 2: // (An)
+ {
+ u32 ea;
+ ea = REG_A()[reg];
+ store_pack_float80(ea, k, fpr);
+ break;
+ }
+
+ case 3: // (An)+
+ {
+ u32 ea;
+ ea = REG_A()[reg];
+ store_pack_float80(ea, k, fpr);
+ REG_A()[reg] += 12;
+ break;
+ }
+
+ case 4: // -(An)
+ {
+ u32 ea;
+ REG_A()[reg] -= 12;
+ ea = REG_A()[reg];
+ store_pack_float80(ea, k, fpr);
+ break;
+ }
+
+ case 7:
+ {
+ switch (reg)
+ {
+ default: fatalerror("M68kFPU: WRITE_EA_PACK: unhandled mode %d, reg %d, at %08X\n", mode, reg, m_pc);
+ }
+ }
+ default: fatalerror("M68kFPU: WRITE_EA_PACK: unhandled mode %d, reg %d, at %08X\n", mode, reg, m_pc);
+ }
+}
+
+void m68000_musashi_device::fpgen_rm_reg(u16 w2)
+{
+ int ea = m_ir & 0x3f;
+ int rm = (w2 >> 14) & 0x1;
+ int src = (w2 >> 10) & 0x7;
+ int dst = (w2 >> 7) & 0x7;
+ int opmode = w2 & 0x7f;
+ extFloat80_t source;
+
+ // fmovecr #$f, fp0 f200 5c0f
+
+ if (rm)
+ {
+ switch (src)
+ {
+ case 0: // Long-Word Integer
+ {
+ s32 d = READ_EA_32(ea);
+ source = i32_to_extF80(d);
+ break;
+ }
+ case 1: // Single-precision Real
+ {
+ u32 d = READ_EA_32(ea);
+ float32_t *pF = (float32_t *)&d;
+ source = f32_to_extF80(*pF);
+ break;
+ }
+ case 2: // Extended-precision Real
+ {
+ int imode = (ea >> 3) & 0x7;
+ int reg = (ea & 0x7);
+ uint32_t offset = (imode == 5) ? MAKE_INT_16(m68ki_read_imm_16()) : 0;
+ source = READ_EA_FPE(imode, reg, offset);
+ break;
+ }
+ case 3: // Packed-decimal Real
+ {
+ source = READ_EA_PACK(ea);
+ break;
+ }
+ case 4: // Word Integer
+ {
+ s16 d = READ_EA_16(ea);
+ source = i32_to_extF80((s32)d);
+ break;
+ }
+ case 5: // Double-precision Real
+ {
+ u64 d = READ_EA_64(ea);
+ float64_t *pF = (float64_t *)&d;
+ source = f64_to_extF80(*pF);
+ break;
+ }
+ case 6: // Byte Integer
+ {
+ s8 d = READ_EA_8(ea);
+ source = i32_to_extF80((s32)d);
+ break;
+ }
+ case 7: // FMOVECR load from constant ROM
+ {
+ switch (w2 & 0x7f)
+ {
+ case 0x0: // Pi
+ source.signExp = 0x4000;
+ source.signif = 0xc90fdaa22168c235U;
+ break;
+
+ case 0xb: // log10(2)
+ source.signExp = 0x3ffd;
+ source.signif = 0x9a209a84fbcff798U;
+ break;
+
+ case 0xc: // e
+ source.signExp = 0x4000;
+ source.signif = 0xadf85458a2bb4a9bU;
+ break;
+
+ case 0xd: // log2(e)
+ source.signExp = 0x3fff;
+ source.signif = 0xb8aa3b295c17f0bcU;
+ break;
+
+ case 0xe: // log10(e)
+ source.signExp = 0x3ffd;
+ source.signif = 0xde5bd8a937287195U;
+ break;
+
+ case 0xf: // 0.0
+ source = i32_to_extF80((s32)0);
+ break;
+
+ case 0x30: // ln(2)
+ source.signExp = 0x3ffe;
+ source.signif = 0xb17217f7d1cf79acU;
+ break;
+
+ case 0x31: // ln(10)
+ source.signExp = 0x4000;
+ source.signif = 0x935d8dddaaa8ac17U;
+ break;
+
+ case 0x32: // 1 (or 100? manuals are unclear, but 1 would make more sense)
+ source = i32_to_extF80((s32)1);
+ break;
+
+ case 0x33: // 10^1
+ source = i32_to_extF80((s32)10);
+ break;
+
+ case 0x34: // 10^2
+ source = i32_to_extF80((s32)10 * 10);
+ break;
+
+ case 0x35: // 10^4
+ source = i32_to_extF80((s32)1000 * 10);
+ break;
+
+ case 0x36: // 1.0e8
+ source = i32_to_extF80((s32)10000000 * 10);
+ break;
+
+ case 0x37: // 1.0e16 - can't get the right precision from s32 so go "direct" with constants from h/w
+ source.signExp = 0x4034;
+ source.signif = 0x8e1bc9bf04000000U;
+ break;
+
+ case 0x38: // 1.0e32
+ source.signExp = 0x4069;
+ source.signif = 0x9dc5ada82b70b59eU;
+ break;
+
+ case 0x39: // 1.0e64
+ source.signExp = 0x40d3;
+ source.signif = 0xc2781f49ffcfa6d5U;
+ break;
+
+ case 0x3a: // 1.0e128
+ source.signExp = 0x41a8;
+ source.signif = 0x93ba47c980e98ce0U;
+ break;
+
+ case 0x3b: // 1.0e256
+ source.signExp = 0x4351;
+ source.signif = 0xaa7eebfb9df9de8eU;
+ break;
+
+ case 0x3c: // 1.0e512
+ source.signExp = 0x46a3;
+ source.signif = 0xe319a0aea60e91c7U;
+ break;
+
+ case 0x3d: // 1.0e1024
+ source.signExp = 0x4d48;
+ source.signif = 0xc976758681750c17U;
+ break;
+
+ case 0x3e: // 1.0e2048
+ source.signExp = 0x5a92;
+ source.signif = 0x9e8b3b5dc53d5de5U;
+ break;
+
+ case 0x3f: // 1.0e4096
+ source.signExp = 0x7525;
+ source.signif = 0xc46052028a20979bU;
+ break;
+
+ default:
+ fatalerror("fmove_rm_reg: unknown constant ROM offset %x at %08x\n", w2&0x7f, m_pc-4);
+ break;
+ }
+
+ // handle it right here, the usual opmode bits aren't valid in the FMOVECR case
+ m_fpr[dst] = source;
+ set_condition_codes(m_fpr[dst]);
+ m_icount -= 4;
+ return;
+ }
+ default: fatalerror("fmove_rm_reg: invalid source specifier %x at %08X\n", src, m_pc-4);
+ }
+
+ LOGMASKED(LOG_LOADSTORE, "Load source type %d = %f (PC=%08x)\n", src, fx80_to_double(source), m_ppc);
+ }
+ else
+ {
+ source = m_fpr[src];
+ LOGMASKED(LOG_LOADSTORE, "Load source from FPR %d = %f (PC=%08x)\n", src, fx80_to_double(source), m_ppc);
+ }
+
+ LOGMASKED(LOG_INSTRUCTIONS, "FPU: opmode %02x (PC=%08x)\n", opmode, m_ppc);
+ const extFloat80_t dstCopy = m_fpr[dst];
+ if (opmode != 0)
+ {
+ clear_exception_flags();
+ }
+
+ switch (opmode)
+ {
+ case 0x00: // FMOVE
+ {
+ m_fpr[dst] = source;
+ set_condition_codes(m_fpr[dst]);
+ m_icount -= 56;
+ break;
+ }
+ case 0x01: // FINT
+ {
+ s32 temp = convert_to_int(source, INT32_MIN, INT32_MAX);
+ m_fpr[dst] = i32_to_extF80(temp);
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, source, EXC_ENB_INEXACT);
+ m_icount -= 78;
+ break;
+ }
+ case 0x03: // FINTRZ
+ {
+ s32 temp = extF80_to_i32_r_minMag(source, true);
+ m_fpr[dst] = i32_to_extF80(temp);
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, source, 0);
+ m_icount -= 78;
+ break;
+ }
+ case 0x04: // FSQRT
+ {
+ m_fpr[dst] = extF80_sqrt(source);
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, source, EXC_ENB_INEXACT);
+ m_icount -= 109;
+ break;
+ }
+ case 0x06: // FLOGNP1
+ {
+ m_fpr[dst] = extFloat80_lognp1(source);
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, source, EXC_ENB_INEXACT | EXC_ENB_UNDFLOW);
+ m_icount -= 594;
+ break;
+ }
+ case 0x0a: // FATAN
+ {
+ m_fpr[dst] = source;
+ m_fpr[dst] = extFloat80_68katan(m_fpr[dst]);
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, source, EXC_ENB_INEXACT | EXC_ENB_UNDFLOW);
+ m_icount -= 426;
+ break;
+ }
+ case 0x0e: // FSIN
+ {
+ m_fpr[dst] = source;
+ extFloat80_sin(m_fpr[dst]);
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, source, EXC_ENB_INEXACT | EXC_ENB_UNDFLOW);
+ m_icount -= 414;
+ break;
+ }
+ case 0x0f: // FTAN
+ {
+ m_fpr[dst] = source;
+ extFloat80_tan(m_fpr[dst]);
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, source, EXC_ENB_INEXACT | EXC_ENB_OVRFLOW | EXC_ENB_UNDFLOW);
+ m_icount -= 496;
+ break;
+ }
+ case 0x14: // FLOGN
+ {
+ m_fpr[dst] = extFloat80_logn(source);
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, source, EXC_ENB_INEXACT);
+ m_icount -= 548;
+ break;
+ }
+ case 0x15: // FLOG10
+ {
+ m_fpr[dst] = extFloat80_log10 (source);
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, source, EXC_ENB_INEXACT);
+ m_icount -= 604;
+ break;
+ }
+ case 0x16: // FLOG2
+ {
+ m_fpr[dst] = extFloat80_log2 (source);
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, source, EXC_ENB_INEXACT);
+ m_icount -= 604;
+ break;
+ }
+ case 0x18: // FABS
+ {
+ m_fpr[dst] = source;
+ m_fpr[dst].signExp &= 0x7fff;
+ set_condition_codes(m_fpr[dst]);
+ m_icount -= 58;
+ break;
+ }
+ case 0x1a: // FNEG
+ {
+ m_fpr[dst] = source;
+ m_fpr[dst].signExp ^= 0x8000;
+ set_condition_codes(m_fpr[dst]);
+ m_icount -= 58;
+ break;
+ }
+ case 0x1d: // FCOS
+ {
+ m_fpr[dst] = source;
+ extFloat80_cos(m_fpr[dst]);
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, source, EXC_ENB_INEXACT);
+ m_icount -= 414;
+ break;
+ }
+ case 0x1e: // FGETEXP
+ {
+ s16 temp2;
+
+ temp2 = source.signExp; // get the exponent
+ temp2 -= 0x3fff; // take off the bias
+ m_fpr[dst] = double_to_fx80((double)temp2);
+ LOGMASKED(LOG_INSTRUCTIONS_VERBOSE, "FGETEXP: %f\n", fx80_to_double(m_fpr[dst]));
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, source, 0); // only NaNs can raise an exception here
+ m_icount -= 68;
+ break;
+ }
+ case 0x1f: // FGETMAN
+ {
+ m_fpr[dst] = extFloat80_getman(source);
+ LOGMASKED(LOG_INSTRUCTIONS_VERBOSE, "FGETMAN: %f\n", fx80_to_double(m_fpr[dst]));
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, source, 0); // only NaNs can raise an exception here
+ m_icount -= 54;
+ break;
+ }
+ case 0x60: // FSDIVS
+ {
+ float32_t sngSrc, sngDst;
+ sngSrc = extF80_to_f32(source);
+ sngDst = extF80_to_f32(m_fpr[dst]);
+ if (f32_eq(sngSrc, i32_to_f32(0)))
+ {
+ m_fpsr |= FPES_DIVZERO | FPAE_DIVZERO;
+ }
+ sngDst = f32_div(sngDst, sngSrc);
+ m_fpr[dst] = f32_to_extF80(sngDst);
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, dstCopy, EXC_ENB_OVRFLOW | EXC_ENB_UNDFLOW);
+ m_icount -= 124;
+ break;
+ }
+ case 0x64: // FDDIV
+ {
+ float64_t sngSrc, sngDst;
+ sngSrc = extF80_to_f64(source);
+ sngDst = extF80_to_f64(m_fpr[dst]);
+ if (f64_eq(sngSrc, i32_to_f64(0)))
+ {
+ m_fpsr |= FPES_DIVZERO | FPAE_DIVZERO;
+ }
+ sngDst = f64_div(sngDst, sngSrc);
+ m_fpr[dst] = f64_to_extF80(sngDst);
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, dstCopy, EXC_ENB_OVRFLOW | EXC_ENB_UNDFLOW);
+ m_icount -= 130;
+ break;
+ }
+ case 0x20: // FDIV
+ {
+ if (extF80_eq(source, i32_to_extF80(0)))
+ {
+ m_fpsr |= FPES_DIVZERO | FPAE_DIVZERO;
+ }
+ m_fpr[dst] = extF80_div(m_fpr[dst], source);
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, dstCopy, EXC_ENB_OVRFLOW|EXC_ENB_UNDFLOW);
+ m_icount -= 128;
+ break;
+ }
+ case 0x21: // FMOD
+ {
+ s8 const mode = softfloat_roundingMode;
+ uint64_t quotient;
+ softfloat_roundingMode = softfloat_round_minMag;
+ extFloat80_remainder(m_fpr[dst], source, m_fpr[dst], quotient);
+ set_condition_codes(m_fpr[dst]);
+ softfloat_roundingMode = mode;
+ m_fpsr &= 0xff00ffff;
+ m_fpsr |= (quotient & 0x7f) << 16;
+ if (m_fpr[dst].signExp & 0x8000)
+ {
+ m_fpsr |= 0x00800000;
+ }
+ m_icount -= 95;
+ break;
+ }
+ case 0x22: // FADD
+ {
+ m_fpr[dst] = extF80_add(m_fpr[dst], source);
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, dstCopy, EXC_ENB_OVRFLOW|EXC_ENB_UNDFLOW);
+ LOGMASKED(LOG_INSTRUCTIONS_VERBOSE, "FADD: %f + %f = %f\n", fx80_to_double(dstCopy), fx80_to_double(source), fx80_to_double(m_fpr[dst]));
+ m_icount -= 76;
+ break;
+ }
+ case 0x63: // FSMULS (JFF)
+ case 0x23: // FMUL
+ {
+ m_fpr[dst] = extF80_mul(m_fpr[dst], source);
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, dstCopy, EXC_ENB_UNDFLOW);
+ LOGMASKED(LOG_INSTRUCTIONS_VERBOSE, "FMUL: %f * %f = %f\n", fx80_to_double(dstCopy), fx80_to_double(source), fx80_to_double(m_fpr[dst]));
+ m_icount -= 96;
+ break;
+ }
+ case 0x24: // FSGLDIV
+ {
+ float32_t a = extF80_to_f32( m_fpr[dst] );
+ float32_t b = extF80_to_f32( source );
+ m_fpr[dst] = f32_to_extF80( f32_div(a, b) );
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, dstCopy, EXC_ENB_INEXACT | EXC_ENB_OVRFLOW | EXC_ENB_UNDFLOW);
+ m_icount -= 94;
+ break;
+ }
+ case 0x25: // FREM
+ {
+ s8 const mode = softfloat_roundingMode;
+ uint64_t quotient;
+ softfloat_roundingMode = softfloat_round_near_even;
+ extFloat80_ieee754_remainder(m_fpr[dst], source, m_fpr[dst], quotient);
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(dstCopy, source, EXC_ENB_UNDFLOW);
+ softfloat_roundingMode = mode;
+ m_fpsr &= 0xff00ffff;
+ m_fpsr |= (quotient & 0x7f) << 16;
+ if (m_fpr[dst].signExp & 0x8000)
+ {
+ m_fpsr |= 0x00800000;
+ }
+ m_icount -= 125;
+ break;
+ }
+ case 0x26: // FSCALE
+ {
+ m_fpr[dst] = extFloat80_scale(m_fpr[dst], source);
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, dstCopy, EXC_ENB_OVRFLOW | EXC_ENB_UNDFLOW);
+ m_icount -= 66;
+ break;
+ }
+ case 0x27: // FSGLMUL
+ {
+ float32_t a = extF80_to_f32( m_fpr[dst] );
+ float32_t b = extF80_to_f32( source );
+ m_fpr[dst] = f32_to_extF80( f32_mul(a, b) );
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, dstCopy, EXC_ENB_INEXACT | EXC_ENB_OVRFLOW | EXC_ENB_UNDFLOW);
+ m_icount -= 94;
+ break;
+ }
+ case 0x28: case 0x29: case 0x2a: case 0x2b:
+ case 0x2c: case 0x2d: case 0x2e: case 0x2f: // FSUB
+ {
+ m_fpr[dst] = extF80_sub(m_fpr[dst], source);
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, dstCopy, EXC_ENB_INEXACT | EXC_ENB_OVRFLOW | EXC_ENB_UNDFLOW);
+ LOGMASKED(LOG_INSTRUCTIONS_VERBOSE, "FSUB: %f - %f = %f\n", fx80_to_double(dstCopy), fx80_to_double(source), fx80_to_double(m_fpr[dst]));
+ m_icount -= 76;
+ break;
+ }
+
+ case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35:
+ case 0x36: case 0x37: // FSINCOS
+ {
+ extFloat80_sincos(source, &m_fpr[dst], &m_fpr[w2 & 7]);
+ set_condition_codes(m_fpr[dst]); // CCs are set on the sin result
+ sync_exception_flags(source, dstCopy, EXC_ENB_INEXACT | EXC_ENB_UNDFLOW);
+ m_icount -= 474;
+ break;
+ }
+
+ case 0x38: case 0x39: case 0x3c: case 0x3d: // FCMP
+ {
+ const extFloat80_t res = extF80_sub(m_fpr[dst], source);
+ set_condition_codes(res);
+ sync_exception_flags(source, dstCopy, 0);
+
+ LOGMASKED(LOG_INSTRUCTIONS_VERBOSE, "FCMP: %f - %f = %f\n", fx80_to_double(dstCopy), fx80_to_double(source), fx80_to_double(res));
+ m_icount -= 58;
+ break;
+ }
+ case 0x3a: case 0x3b: case 0x3e: case 0x3f: // FTST
+ {
+ set_condition_codes(source);
+ sync_exception_flags(source, dstCopy, 0);
+ m_icount -= 56;
+ break;
+ }
+ case 0x08: // FETOXM1
+ {
+ m_fpr[dst] = extF80_sub(extFloat80_etox(source), i32_to_extF80(1));
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, dstCopy, EXC_ENB_UNDFLOW);
+ LOGMASKED(LOG_INSTRUCTIONS_VERBOSE, "FETOXM1: e ** %f - 1 = %f\n", fx80_to_double(source), fx80_to_double(m_fpr[dst]));
+ m_icount -= 568;
+ break;
+ }
+ case 0x10: // FETOX
+ {
+ m_fpr[dst] = extFloat80_etox(source);
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, dstCopy, EXC_ENB_UNDFLOW);
+ LOGMASKED(LOG_INSTRUCTIONS_VERBOSE, "FETOX: e ** %f = %f\n", fx80_to_double(source), fx80_to_double(m_fpr[dst]));
+ m_icount -= 520;
+ break;
+ }
+ case 0x11: // FTWOTOX
+ {
+ m_fpr[dst] = extFloat80_2tox(source);
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, dstCopy, EXC_ENB_UNDFLOW);
+ printf("FTWOTOX: 2 ** %f = %f\n", fx80_to_double(source), fx80_to_double(m_fpr[dst]));
+ m_icount -= 590;
+ break;
+ }
+ case 0x12: // FTENTOX
+ {
+ m_fpr[dst] = extFloat80_10tox(source);
+ set_condition_codes(m_fpr[dst]);
+ sync_exception_flags(source, dstCopy, EXC_ENB_UNDFLOW);
+ LOGMASKED(LOG_INSTRUCTIONS_VERBOSE, "FTENTOX: 10 ** %f = %f\n", fx80_to_double(source), fx80_to_double(m_fpr[dst]));
+ m_icount -= 590;
+ break;
+ }
+
+ default: fatalerror("fpgen_rm_reg: unimplemented opmode %02X at %08X\n", opmode, m_ppc);
+ }
+}
+
+void m68000_musashi_device::fmove_reg_mem(u16 w2)
+{
+ int ea = m_ir & 0x3f;
+ int src = (w2 >> 7) & 0x7;
+ int dst = (w2 >> 10) & 0x7;
+ int k = (w2 & 0x7f);
+
+ switch (dst)
+ {
+ case 0: // Long-Word Integer
+ {
+ s32 d = convert_to_int(m_fpr[src], INT32_MIN, INT32_MAX);
+ WRITE_EA_32(ea, d);
+ break;
+ }
+ case 1: // Single-precision Real
+ {
+ u32 d;
+ float32_t *pF = (float32_t *)&d;
+ *pF = extF80_to_f32(m_fpr[src]);
+ WRITE_EA_32(ea, d);
+ break;
+ }
+ case 2: // Extended-precision Real
+ {
+ int mode = (ea >> 3) & 0x7;
+ int reg = (ea & 0x7);
+ uint32_t offset = (mode == 5) ? MAKE_INT_16(m68ki_read_imm_16()) : 0;
+
+ WRITE_EA_FPE(mode, reg, m_fpr[src], offset);
+ break;
+ }
+ case 3: // Packed-decimal Real with Static K-factor
+ {
+ // sign-extend k
+ k = (k & 0x40) ? (k | 0xffffff80) : (k & 0x7f);
+ WRITE_EA_PACK(ea, k, m_fpr[src]);
+ break;
+ }
+ case 4: // Word Integer
+ {
+ LOGMASKED(LOG_INSTRUCTIONS_VERBOSE, "FMOVE: %f to reg %d\n", fx80_to_double(m_fpr[src]), dst);
+ s16 value = (s16)convert_to_int(m_fpr[src], INT16_MIN, INT16_MAX);
+ WRITE_EA_16(ea, value);
+ break;
+ }
+ case 5: // Double-precision Real
+ {
+ u64 d;
+ float64_t *pF = (float64_t *)&d;
+ clear_exception_flags();
+ *pF = extF80_to_f64(m_fpr[src]);
+ sync_exception_flags(m_fpr[src], m_fpr[src], 0);
+ WRITE_EA_64(ea, d);
+ break;
+ }
+ case 6: // Byte Integer
+ {
+ s8 value = (s8)convert_to_int(m_fpr[src], INT8_MIN, INT8_MAX);
+ WRITE_EA_8(ea, value);
+ break;
+ }
+ case 7: // Packed-decimal Real with Dynamic K-factor
+ {
+ WRITE_EA_PACK(ea, REG_D()[k>>4], m_fpr[src]);
+ break;
+ }
+ }
+
+ m_icount -= 12;
+}
+
+void m68000_musashi_device::fmove_fpcr(u16 w2)
+{
+ int ea = m_ir & 0x3f;
+ int dir = (w2 >> 13) & 0x1;
+ int regsel = (w2 >> 10) & 0x7;
+ int reg = ea & 7;
+ int mode = (ea >> 3) & 0x7;
+
+ LOGMASKED(LOG_FPSR, "FMOVE FP*R: EA %x dir %x reg %d mode %d regsel %x\n", ea, dir, reg, mode, regsel);
+
+ u32 address = 0;
+ switch (mode)
+ {
+ case 0: // Dn
+ case 1: // An
+ break;
+
+ case 2: // (An)
+ address = REG_A()[reg];
+ break;
+
+ case 3: // (An)+
+ case 4: // -(An)
+ break;
+
+ case 5: // (d16, An)
+ address = EA_AY_DI_32();
+ break;
+
+ case 6: // (An) + (Xn) + d8
+ address = EA_AY_IX_32();
+ break;
+
+ case 7:
+ {
+ switch (reg)
+ {
+ case 0: // (xxx).W
+ address = OPER_I_16();
+ break;
+
+ case 1: // (xxx).L
+ {
+ u32 d1 = OPER_I_16();
+ u32 d2 = OPER_I_16();
+ address = (d1 << 16) | d2;
+ }
+ break;
+ case 2: // (d16, PC)
+ address = EA_PCDI_32();
+ break;
+
+ case 3: // (PC) + (Xn) + d8
+ address = EA_PCIX_32();
+ break;
+
+ case 4: // #<data>
+ {
+ if (regsel & 4) m_fpcr = READ_EA_32(ea);
+ else if (regsel & 2) m_fpsr = READ_EA_32(ea);
+ else if (regsel & 1) m_fpiar = READ_EA_32(ea);
+ return;
+ }
+
+ default:
+ fatalerror("M68kFPU: fmove_fpcr: unhandled mode %d, reg %d at %08X\n", mode, reg, m_pc);
+ break;
+ }
+ }
+ break;
+
+ default:
+ fatalerror("M68kFPU: fmove_fpcr: unhandled mode %d, reg %d at %08X\n", mode, reg, m_pc);
+ break;
+ }
+
+ switch (mode)
+ {
+ case 0: // Dn
+ case 1: // An
+ case 3: // (An)+
+ case 4: // -(An)
+ if (dir) // From system control reg to <ea>
+ {
+ if (regsel & 4) WRITE_EA_32(ea, m_fpcr);
+ if (regsel & 2) WRITE_EA_32(ea, m_fpsr);
+ if (regsel & 1) WRITE_EA_32(ea, m_fpiar);
+ }
+ else // From <ea> to system control reg
+ {
+ if (regsel & 4) m_fpcr = READ_EA_32(ea);
+ if (regsel & 2) m_fpsr = READ_EA_32(ea);
+ if (regsel & 1) m_fpiar = READ_EA_32(ea);
+ }
+ break;
+
+ default:
+ if (dir) // From system control reg to <ea>
+ {
+ if (regsel & 4)
+ {
+ m68ki_write_32(address, m_fpcr);
+ address += 4;
+ }
+ if (regsel & 2)
+ {
+ m68ki_write_32(address, m_fpsr);
+ address += 4;
+ }
+ if (regsel & 1)
+ {
+ m68ki_write_32(address, m_fpiar);
+ address += 4;
+ }
+ }
+ else // From <ea> to system control reg
+ {
+ if (regsel & 4)
+ {
+ m_fpcr = m68ki_read_32(address);
+ address += 4;
+ }
+ if (regsel & 2)
+ {
+ m_fpsr = m68ki_read_32(address);
+ address += 4;
+ }
+ if (regsel & 1)
+ {
+ m_fpiar = m68ki_read_32(address);
+ address += 4;
+ }
+ }
+ break;
+ }
+
+ // FIXME: (2011-12-18 ost)
+ // rounding_mode and rounding_precision of softfloat.c should be set according to current fpcr
+ // but: with this code on Apollo the following programs in /systest/fptest will fail:
+ // 1. Single Precision Whetstone will return wrong results never the less
+ // 2. Vector Test will fault with 00040004: reference to illegal address
+
+ if ((regsel & 4) && dir == 0)
+ {
+ int rnd = (m_fpcr >> 4) & 3;
+ int prec = (m_fpcr >> 6) & 3;
+
+ // logerror("fmove_fpcr: fpcr=%04x prec=%d rnd=%d\n", m_fpcr, prec, rnd);
+
+ switch (prec)
+ {
+ case 0: // Extend (X)
+ extF80_roundingPrecision = 80;
+ break;
+ case 1: // Single (S)
+ extF80_roundingPrecision = 32;
+ break;
+ case 2: // Double (D)
+ extF80_roundingPrecision = 64;
+ break;
+ case 3: // Undefined
+ extF80_roundingPrecision = 80;
+ break;
+ }
+
+ switch (rnd)
+ {
+ case 0: // To Nearest (RN)
+ softfloat_roundingMode = softfloat_round_near_even;
+ break;
+ case 1: // To Zero (RZ)
+ softfloat_roundingMode = softfloat_round_minMag;
+ break;
+ case 2: // To Minus Infinitiy (RM)
+ softfloat_roundingMode = softfloat_round_min;
+ break;
+ case 3: // To Plus Infinitiy (RP)
+ softfloat_roundingMode = softfloat_round_max;
+ break;
+ }
+ }
+
+ m_icount -= 30;
+}
+
+void m68000_musashi_device::fmovem(u16 w2)
+{
+ int i;
+ int ea = m_ir & 0x3f;
+ int dir = (w2 >> 13) & 0x1;
+ int mode = (w2 >> 11) & 0x3;
+ int reglist = w2 & 0xff;
+
+ if (dir) // From FP regs to mem
+ {
+ switch (mode)
+ {
+ case 1: // dynamic register list, predecrement addressing mode
+ reglist = REG_D()[(reglist >> 4) & 7];
+ [[fallthrough]];
+ case 0: // static register list, predecrement addressing mode
+ {
+ // the "di_mode_ea" parameter kludge is required here else WRITE_EA_FPE would have
+ // to call EA_AY_DI_32() (that advances PC & reads displacement) each time
+ // when the proper behaviour is 1) read once, 2) increment ea for each matching register
+ // this forces to pre-read the mode (named "imode") so we can decide to read displacement, only once
+ int imode = (ea >> 3) & 0x7;
+ int reg = (ea & 0x7);
+ uint32_t offset = (imode == 5) ? MAKE_INT_16(m68ki_read_imm_16()) : 0;
+
+ for (i=0; i < 8; i++)
+ {
+ if (reglist & (1 << i))
+ {
+ WRITE_EA_FPE(imode, reg, m_fpr[i], offset);
+ offset += 12;
+
+ m_icount -= 2;
+ }
+ }
+ break;
+ }
+
+ case 3: // dynamic register list, postincrement or control addressing mode
+ reglist = REG_D()[(reglist >> 4) & 7];
+ [[fallthrough]];
+ case 2: // static register list, postincrement or control addressing mode
+ {
+ int imode = (ea >> 3) & 0x7;
+ int reg = (ea & 0x7);
+ uint32_t offset = (imode == 5) ? MAKE_INT_16(m68ki_read_imm_16()) : 0;
+
+ for (i=0; i < 8; i++)
+ {
+ if (reglist & (1 << i))
+ {
+ WRITE_EA_FPE(imode, reg, m_fpr[7 - i], offset);
+ offset += 12;
+
+ m_icount -= 2;
+ }
+ }
+ break;
+ }
+
+ default: fatalerror("M680x0: FMOVEM: mode %d unimplemented at %08X\n", mode, m_pc-4);
+ }
+ }
+ else // From mem to FP regs
+ {
+ switch (mode)
+ {
+ case 3: // dynamic register list, postincrement or control addressing mode
+ // FIXME: not really tested, but seems to work
+ reglist = REG_D()[(reglist >> 4) & 7];
+ [[fallthrough]];
+ case 2: // static register list, postincrement or control addressing mode
+ {
+ int imode = (ea >> 3) & 0x7;
+ int reg = (ea & 0x7);
+ uint32_t offset = (imode == 5) ? MAKE_INT_16(m68ki_read_imm_16()) : 0;
+
+ for (i=0; i < 8; i++)
+ {
+ if (reglist & (1 << i))
+ {
+ m_fpr[7 - i] = READ_EA_FPE(imode, reg, offset);
+ offset += 12;
+
+ m_icount -= 2;
+ }
+ }
+ break;
+ }
+
+ default: fatalerror("M680x0: FMOVEM: mode %d unimplemented at %08X\n", mode, m_pc-4);
+ }
+ }
+}
+
+void m68000_musashi_device::fscc()
+{
+ const int mode = (m_ir & 0x38) >> 3;
+ const int condition = OPER_I_16() & 0x3f;
+ const int v = (test_condition(condition) ? 0xff : 0x00);
+
+ switch (mode)
+ {
+ case 0: // Dx (handled specially because it only changes the low byte of Dx)
+ {
+ const int reg = m_ir & 7;
+ REG_D()[reg] = (REG_D()[reg] & 0xffffff00) | v;
+ }
+ break;
+
+ default:
+ WRITE_EA_8(m_ir & 0x3f, v);
+ break;
+ }
+
+ m_icount -= 7; // ???
+}
+
+void m68000_musashi_device::fbcc16()
+{
+ s32 offset;
+ int condition = m_ir & 0x3f;
+
+ offset = (s16)(OPER_I_16());
+
+ // TODO: condition and jump!!!
+ if (test_condition(condition))
+ {
+ m68ki_trace_t0(); /* auto-disable (see m68kcpu.h) */
+ m68ki_branch_16(offset-2);
+ }
+
+ m_icount -= 7;
+}
+
+void m68000_musashi_device::fbcc32()
+{
+ s32 offset;
+ int condition = m_ir & 0x3f;
+
+ offset = OPER_I_32();
+
+ // TODO: condition and jump!!!
+ if (test_condition(condition))
+ {
+ m68ki_trace_t0(); /* auto-disable (see m68kcpu.h) */
+ m68ki_branch_32(offset-4);
+ }
+
+ m_icount -= 7;
+}
+
+void m68000_musashi_device::m68040_fpu_op0()
+{
+ m_fpu_just_reset = 0;
+
+ switch ((m_ir >> 6) & 0x3)
+ {
+ case 0:
+ {
+ u16 w2 = OPER_I_16();
+ switch ((w2 >> 13) & 0x7)
+ {
+ case 0x0: // FPU ALU FP, FP
+ case 0x2: // FPU ALU ea, FP
+ {
+ fpgen_rm_reg(w2);
+ break;
+ }
+
+ case 0x3: // FMOVE FP, ea
+ {
+ fmove_reg_mem(w2);
+ break;
+ }
+
+ case 0x4: // FMOVEM ea, FPCR
+ case 0x5: // FMOVEM FPCR, ea
+ {
+ fmove_fpcr(w2);
+ break;
+ }
+
+ case 0x6: // FMOVEM ea, list
+ case 0x7: // FMOVEM list, ea
+ {
+ fmovem(w2);
+ break;
+ }
+
+ default: fatalerror("M68kFPU: unimplemented subop %d at %08X\n", (w2 >> 13) & 0x7, m_pc-4);
+ }
+ break;
+ }
+
+ case 1: // FBcc disp16
+ {
+ switch ((m_ir >> 3) & 0x7) {
+ case 1: // FDBcc
+ // TODO:
+ break;
+ default: // FScc (?)
+ fscc();
+ return;
+ }
+ fatalerror("M68kFPU: unimplemented main op %d with mode %d at %08X\n", (m_ir >> 6) & 0x3, (m_ir >> 3) & 0x7, m_ppc);
+ }
+
+ case 2: // FBcc disp16
+ {
+ fbcc16();
+ break;
+ }
+ case 3: // FBcc disp32
+ {
+ fbcc32();
+ break;
+ }
+
+ default: fatalerror("M68kFPU: unimplemented main op %d\n", (m_ir >> 6) & 0x3);
+ }
+}
+
+int m68000_musashi_device::perform_fsave(u32 addr, int inc)
+{
+ if(m_cpu_type & CPU_TYPE_040)
+ {
+ if(inc)
+ {
+ m68ki_write_32(addr, 0x41000000);
+ return 4;
+ }
+ else
+ {
+ m68ki_write_32(addr-4, 0x41000000);
+ return -4;
+ }
+ }
+
+ if (inc)
+ {
+ // 68881 IDLE, version 0x1f
+ m68ki_write_32(addr, 0x1f180000);
+ m68ki_write_32(addr+4, 0);
+ m68ki_write_32(addr+8, 0);
+ m68ki_write_32(addr+12, 0);
+ m68ki_write_32(addr+16, 0);
+ m68ki_write_32(addr+20, 0);
+ m68ki_write_32(addr+24, 0x70000000);
+ return 7*4;
+ }
+ else
+ {
+ m68ki_write_32(addr-4, 0x70000000);
+ m68ki_write_32(addr-8, 0);
+ m68ki_write_32(addr-12, 0);
+ m68ki_write_32(addr-16, 0);
+ m68ki_write_32(addr-20, 0);
+ m68ki_write_32(addr-24, 0);
+ m68ki_write_32(addr-28, 0x1f180000);
+ return -7*4;
+ }
+}
+
+// FRESTORE on a nullptr frame reboots the FPU - all registers to NaN, the 3 status regs to 0
+void m68000_musashi_device::do_frestore_null()
+{
+ int i;
+
+ m_fpcr = 0;
+ m_fpsr = 0;
+ m_fpiar = 0;
+ for (i = 0; i < 8; i++)
+ {
+ m_fpr[i].signExp = 0x7fff;
+ m_fpr[i].signif = 0xffffffffffffffffU;
+ }
+
+ // Mac IIci at 408458e6 wants an FSAVE of a just-restored nullptr frame to also be nullptr
+ // The PRM says it's possible to generate a nullptr frame, but not how/when/why. (need the 68881/68882 manual!)
+ m_fpu_just_reset = 1;
+}
+
+void m68000_musashi_device::m68040_do_fsave(u32 addr, int reg, int inc)
+{
+ if (m_fpu_just_reset)
+ {
+ m68ki_write_32(addr, 0);
+ }
+ else
+ {
+ // we normally generate an IDLE frame
+ int delta = perform_fsave(addr, inc);
+ if(reg != -1)
+ REG_A()[reg] += delta;
+ }
+}
+
+void m68000_musashi_device::m68040_do_frestore(u32 addr, int reg)
+{
+ bool m40 = m_cpu_type & CPU_TYPE_040;
+ u32 temp = m68ki_read_32(addr);
+
+ // check for nullptr frame
+ if (temp & 0xff000000)
+ {
+ // we don't handle non-nullptr frames
+ m_fpu_just_reset = 0;
+
+ if (reg != -1)
+ {
+ // how about an IDLE frame?
+ if (!m40 && ((temp & 0x00ff0000) == 0x00180000))
+ {
+ REG_A()[reg] += 7*4;
+ }
+ else if (m40 && ((temp & 0xffff0000) == 0x41000000))
+ {
+ REG_A()[reg] += 4;
+ } // check UNIMP
+ else if ((temp & 0x00ff0000) == 0x00380000)
+ {
+ REG_A()[reg] += 14*4;
+ } // check BUSY
+ else if ((temp & 0x00ff0000) == 0x00b40000)
+ {
+ REG_A()[reg] += 45*4;
+ }
+ }
+ }
+ else
+ {
+ do_frestore_null();
+ }
+}
+
+void m68000_musashi_device::m68040_fpu_op1()
+{
+ int ea = m_ir & 0x3f;
+ int mode = (ea >> 3) & 0x7;
+ int reg = (ea & 0x7);
+ u32 addr;
+
+ switch ((m_ir >> 6) & 0x3)
+ {
+ case 0: // FSAVE <ea>
+ {
+ switch (mode)
+ {
+ case 2: // (An)
+ addr = REG_A()[reg];
+ m68040_do_fsave(addr, -1, 1);
+ break;
+
+ case 3: // (An)+
+ addr = EA_AY_PI_32();
+ m68040_do_fsave(addr, reg, 1);
+ break;
+
+ case 4: // -(An)
+ addr = EA_AY_PD_32();
+ m68040_do_fsave(addr, reg, 0);
+ break;
+
+ case 5: // (D16, An)
+ addr = EA_AY_DI_16();
+ m68040_do_fsave(addr, -1, 1);
+ break;
+
+ case 6: // (An) + (Xn) + d8
+ addr = EA_AY_IX_16();
+ m68040_do_fsave(addr, -1, 1);
+ break;
+
+ case 7: //
+ switch (reg)
+ {
+ case 1: // (abs32)
+ {
+ addr = EA_AL_32();
+ m68040_do_fsave(addr, -1, 1);
+ break;
+ }
+ case 2: // (d16, PC)
+ {
+ addr = EA_PCDI_16();
+ m68040_do_fsave(addr, -1, 1);
+ break;
+ }
+ default:
+ fatalerror("M68kFPU: FSAVE unhandled mode %d reg %d at %x\n", mode, reg, m_pc);
+ }
+
+ break;
+
+ default:
+ fatalerror("M68kFPU: FSAVE unhandled mode %d reg %d at %x\n", mode, reg, m_pc);
+ }
+ break;
+ }
+ break;
+
+ case 1: // FRESTORE <ea>
+ {
+ switch (mode)
+ {
+ case 2: // (An)
+ addr = REG_A()[reg];
+ m68040_do_frestore(addr, -1);
+ break;
+
+ case 3: // (An)+
+ addr = EA_AY_PI_32();
+ m68040_do_frestore(addr, reg);
+ break;
+
+ case 5: // (D16, An)
+ addr = EA_AY_DI_16();
+ m68040_do_frestore(addr, -1);
+ break;
+
+ case 6: // (An) + (Xn) + d8
+ addr = EA_AY_IX_16();
+ m68040_do_frestore(addr, -1);
+ break;
+
+ case 7: //
+ switch (reg)
+ {
+ case 1: // (abs32)
+ {
+ addr = EA_AL_32();
+ m68040_do_frestore(addr, -1);
+ break;
+ }
+ case 2: // (d16, PC)
+ {
+ addr = EA_PCDI_16();
+ m68040_do_frestore(addr, -1);
+ break;
+ }
+ default:
+ fatalerror("M68kFPU: FRESTORE unhandled mode %d reg %d at %x\n", mode, reg, m_pc);
+ }
+
+ break;
+
+ default:
+ fatalerror("M68kFPU: FRESTORE unhandled mode %d reg %d at %x\n", mode, reg, m_pc);
+ }
+ break;
+ }
+ break;
+
+ default: fatalerror("m68040_fpu_op1: unimplemented op %d at %08X\n", (m_ir >> 6) & 0x3, m_pc-2);
+ }
+}
+
+void m68000_musashi_device::m68881_ftrap()
+{
+ u16 w2 = OPER_I_16();
+
+ // now check the condition
+ if (test_condition(w2 & 0x3f))
+ {
+ // trap here
+ m68ki_exception_trap(EXCEPTION_TRAPV);
+ }
+ else // fall through, requires eating the operand
+ {
+ switch (m_ir & 0x7)
+ {
+ case 2: // word operand
+ OPER_I_16();
+ break;
+
+ case 3: // long word operand
+ OPER_I_32();
+ break;
+
+ case 4: // no operand
+ break;
+ }
+ }
+}
+
+// Read the FPU's Coprocessor Interface Registers (CIRs).
+// References: MC68881/68882 Coprocessor User's Manual 1st Edition,
+// pages 7-1 to 7-8 and M68030 User's Manual 3rd Edition page 7-69.
+u32 m68000_musashi_device::m6888x_read_cir(offs_t offset)
+{
+ // If no FPU is present, reading any CIRs causes a bus error.
+ // Pre-1992 Macintosh ROMs use this method to detect the presence
+ // of an FPU. 1992 and later ROMs just execute FNOP and check for
+ // an F-line trap, because this mechanism does not exist on the 68040.
+ if (!m_has_fpu)
+ {
+ m68k_cause_bus_error();
+ }
+
+ // TODO: actually try to return meaningful values?
+ // offset function
+ // 0x00 Response read-only 16 bit (value in D31-D16)
+ // 0x02 Control write-only 16
+ // 0x04 Save read 16
+ // 0x06 Restore read/write 16
+ // 0x08 Operation Word read/write 16
+ // 0x0a Command write-only 16
+ // 0x0c (reserved) N/A 16
+ // 0x0e Condition write-only 16
+ // 0x10 Operand read/write 32 bit
+ // 0x14 Register Select read-only 16
+ // 0x18 Instruction Address write-only 32
+ // 0x1c Operand Address read/write 32
+ return 0;
+}
+
+void m68000_musashi_device::m6888x_write_cir(offs_t offset, u32 data)
+{
+ if (!m_has_fpu)
+ {
+ m68k_cause_bus_error();
+ }
+
+ // TODO: actually do something with these values?
+}