summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/cpu/ie15/ie15dasm.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/devices/cpu/ie15/ie15dasm.c')
-rw-r--r--src/devices/cpu/ie15/ie15dasm.c126
1 files changed, 126 insertions, 0 deletions
diff --git a/src/devices/cpu/ie15/ie15dasm.c b/src/devices/cpu/ie15/ie15dasm.c
new file mode 100644
index 00000000000..3f21fb977e0
--- /dev/null
+++ b/src/devices/cpu/ie15/ie15dasm.c
@@ -0,0 +1,126 @@
+// license:BSD-3-Clause
+// copyright-holders:Sergey Svishchev
+#include "emu.h"
+
+#define OP(A) oprom[(A) - PC]
+#define ARG(A) opram[(A) - PC]
+
+CPU_DISASSEMBLE( ie15 )
+{
+ UINT32 flags = 0;
+ UINT8 op;
+ unsigned PC = pc;
+
+ op = OP(pc++);
+ switch (op & 0xf0)
+ {
+ case 0x00:
+ sprintf (buffer,"add r%d", op & 0x0f);
+ break;
+ case 0x10:
+ sprintf (buffer,"jmp $%04x", (((op & 0x0f) << 8) | ARG(pc)) + 1);
+ pc+=1;
+ break;
+ case 0x20:
+ sprintf (buffer,"ldc r%d, #$%02x", (op & 0x0f), ARG(pc));
+ pc+=1;
+ break;
+ case 0x30: switch (op)
+ {
+ case 0x30:
+ sprintf (buffer,"lca #$%02x", ARG(pc));
+ pc+=1;
+ break;
+ case 0x33:
+ sprintf (buffer,"ral");
+ break;
+ case 0x35:
+ sprintf (buffer,"rar");
+ break;
+ default:
+ sprintf (buffer,"illegal");
+ break;
+ };
+ break;
+ case 0x40:
+ sprintf (buffer,"dsr r%d", op & 0x0f);
+ break;
+ case 0x50: switch (op)
+ {
+ case 0x50:
+ sprintf (buffer,"isn");
+ break;
+ case 0x51:
+ sprintf (buffer,"inc");
+ break;
+ case 0x52:
+ sprintf (buffer,"dsn");
+ break;
+ case 0x58:
+ sprintf (buffer,"ise");
+ break;
+ case 0x5a:
+ sprintf (buffer,"dse");
+ break;
+ case 0x5b:
+ sprintf (buffer,"dec");
+ break;
+ case 0x5d:
+ sprintf (buffer,"com");
+ break;
+ case 0x5f:
+ sprintf (buffer,"clr");
+ break;
+ default:
+ sprintf (buffer,"illegal");
+ break;
+ };
+ break;
+ case 0x60:
+ sprintf (buffer,"lla #$%02x", op & 0x0f);
+ break;
+ case 0x70:
+ sprintf (buffer,"jmi r%d", op & 0x0f);
+ break;
+ case 0x80: switch (op)
+ {
+ case 0x80: case 0x81: case 0x82: case 0x83:
+ case 0x84: case 0x85: case 0x86:
+ sprintf (buffer,"sfc #%d", op & 0x07);
+ break;
+ case 0x87:
+ sprintf (buffer,"skp");
+ break;
+ case 0x88: case 0x89: case 0x8a: case 0x8b:
+ case 0x8c: case 0x8d: case 0x8e:
+ sprintf (buffer,"sfs #%d", op & 0x07);
+ break;
+ case 0x8f:
+ sprintf (buffer,"nop");
+ break;
+ };
+ break;
+ case 0x90:
+ sprintf (buffer,"and r%d", op & 0x0f);
+ break;
+ case 0xa0:
+ sprintf (buffer,"xor r%d", op & 0x0f);
+ break;
+ case 0xb0:
+ sprintf (buffer,"cs r%d", op & 0x0f);
+ break;
+ case 0xc0:
+ sprintf (buffer,"%s #%d", BIT(op, 3) ? "sfl" : "cfl", op & 0x07);
+ break;
+ case 0xd0:
+ sprintf (buffer,"lda r%d", op & 0x0f);
+ break;
+ case 0xe0:
+ sprintf (buffer,"sta r%d", op & 0x0f);
+ break;
+ case 0xf0:
+ sprintf (buffer,"ota #$%02x", op & 0x0f);
+ break;
+ }
+ return (pc - PC) | flags | DASMFLAG_SUPPORTED;
+}
href='#n251'>251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
// license:BSD-3-Clause
// copyright-holders:Aaron Giles
/***************************************************************************

    sound.cpp

    Core sound functions and definitions.

***************************************************************************/

#include "emu.h"
#include "speaker.h"
#include "emuopts.h"
#include "osdepend.h"
#include "config.h"
#include "wavwrite.h"



//**************************************************************************
//  DEBUGGING
//**************************************************************************

#define VERBOSE         (0)

#define VPRINTF(x)      do { if (VERBOSE) osd_printf_debug x; } while (0)

#define LOG_OUTPUT_WAV  (0)



//**************************************************************************
//  CONSTANTS
//**************************************************************************



//**************************************************************************
//  GLOBAL VARIABLES
//**************************************************************************

const attotime sound_manager::STREAMS_UPDATE_ATTOTIME = attotime::from_hz(STREAMS_UPDATE_FREQUENCY);



//**************************************************************************
//  STREAM BUFFER
//**************************************************************************

//-------------------------------------------------
//  stream_buffer - constructor
//-------------------------------------------------

stream_buffer::stream_buffer(u32 sample_rate) :
	m_end_second(0),
	m_end_sample(0),
	m_sample_rate(sample_rate),
	m_sample_attos((sample_rate == 0) ? ATTOSECONDS_PER_SECOND : ((ATTOSECONDS_PER_SECOND + sample_rate - 1) / sample_rate)),
	m_buffer(sample_rate)
{
}


//-------------------------------------------------
//  stream_buffer - destructor
//-------------------------------------------------

stream_buffer::~stream_buffer()
{
#if (SOUND_DEBUG)
	if (m_wav_file != nullptr)
	{
		flush_wav();
		close_wav();
	}
#endif
}


//-------------------------------------------------
//  set_sample_rate - set a new sample rate for
//  this buffer
//-------------------------------------------------

void stream_buffer::set_sample_rate(u32 rate, bool resample)
{
	// skip if nothing is actually changing
	if (rate == m_sample_rate)
		return;

	// force resampling off if coming to or from an invalid rate, or if we're at time 0 (startup)
	sound_assert(rate >= SAMPLE_RATE_MINIMUM - 1);
	if (rate < SAMPLE_RATE_MINIMUM || m_sample_rate < SAMPLE_RATE_MINIMUM || (m_end_second == 0 && m_end_sample == 0))
		resample = false;

	// note the time and period of the current buffer (end_time is AFTER the final sample)
	attotime prevperiod = sample_period();
	attotime prevend = end_time();

	// compute the time and period of the new buffer
	attotime newperiod = attotime(0, (ATTOSECONDS_PER_SECOND + rate - 1) / rate);
	attotime newend = attotime(prevend.seconds(), (prevend.attoseconds() / newperiod.attoseconds()) * newperiod.attoseconds());

	// buffer a short runway of previous samples; in order to support smooth
	// sample rate changes (needed by, e.g., Q*Bert's Votrax), we buffer a few
	// samples at the previous rate, and then reconstitute them resampled
	// (via simple point sampling) at the new rate. The litmus test is the
	// voice when jumping off the edge in Q*Bert; without this extra effort
	// it is crackly and/or glitchy at times
	sample_t buffer[64];
	int buffered_samples = std::min(m_sample_rate, std::min(rate, u32(ARRAY_LENGTH(buffer))));

	// if the new rate is lower, downsample into our holding buffer;
	// otherwise just copy into our holding buffer for later upsampling
	bool new_rate_higher = (rate > m_sample_rate);
	if (resample)
	{
		if (!new_rate_higher)
			backfill_downsample(&buffer[0], buffered_samples, newend, newperiod);
		else
		{
			u32 end = m_end_sample;
			for (int index = 0; index < buffered_samples; index++)
			{
				end = prev_index(end);
#if (SOUND_DEBUG)
				// multiple resamples can occur before clearing out old NaNs so
				// neuter them for this specific case
				if (std::isnan(m_buffer[end]))
					buffer[index] = 0;
				else
#endif
					buffer[index] = get(end);
			}
		}
	}

	// ensure our buffer is large enough to hold a full second at the new rate
	if (m_buffer.size() < rate)
		m_buffer.resize(rate);

	// set the new rate
	m_sample_rate = rate;
	m_sample_attos = newperiod.attoseconds();

	// compute the new end sample index based on the buffer time
	m_end_sample = time_to_buffer_index(prevend, false, true);

	// if the new rate is higher, upsample from our temporary buffer;
	// otherwise just copy our previously-downsampled data
	if (resample)
	{
#if (SOUND_DEBUG)
		// for aggressive debugging, fill the buffer with NANs to catch anyone
		// reading beyond what we resample below
		fill(NAN);
#endif

		if (new_rate_higher)
			backfill_upsample(&buffer[0], buffered_samples, prevend, prevperiod);
		else
		{
			u32 end = m_end_sample;
			for (int index = 0; index < buffered_samples; index++)
			{
				end = prev_index(end);
				put(end, buffer[index]);
			}
		}
	}

	// if not resampling, clear the buffer
	else
		fill(0);
}


//-------------------------------------------------
//  open_wav - open a WAV file for logging purposes
//-------------------------------------------------

#if (SOUND_DEBUG)
void stream_buffer::open_wav(char const *filename)
{
	// always open at 48k so that sound programs can handle it
	// re-sample as needed
	m_wav_file = wav_open(filename, 48000, 1);
}
#endif


//-------------------------------------------------
//  flush_wav - flush data to the WAV file
//-------------------------------------------------

#if (SOUND_DEBUG)
void stream_buffer::flush_wav()
{
	// skip if no file
	if (m_wav_file == nullptr)
		return;

	// grab a view of the data from the last-written point
	read_stream_view view(this, m_last_written, m_end_sample, 1.0f);
	m_last_written = m_end_sample;

	// iterate over chunks for conversion
	s16 buffer[1024];
	for (int samplebase = 0; samplebase < view.samples(); samplebase += ARRAY_LENGTH(buffer))
	{
		// clamp to the buffer size
		int cursamples = view.samples() - samplebase;
		if (cursamples > ARRAY_LENGTH(buffer))
			cursamples = ARRAY_LENGTH(buffer);

		// convert and fill
		for (int sampindex = 0; sampindex < cursamples; sampindex++)
			buffer[sampindex] = s16(view.get(samplebase + sampindex) * 32768.0);

		// write to the WAV
		wav_add_data_16(m_wav_file, buffer, cursamples);
	}
}
#endif


//-------------------------------------------------
//  close_wav - close the logging WAV file
//-------------------------------------------------

#if (SOUND_DEBUG)
void stream_buffer::close_wav()
{
	if (m_wav_file != nullptr)
		wav_close(m_wav_file);
	m_wav_file = nullptr;
}
#endif


//-------------------------------------------------
//  index_time - return the attotime of a given
//  index within the buffer
//-------------------------------------------------

attotime stream_buffer::index_time(s32 index) const
{
	index = clamp_index(index);
	return attotime(m_end_second - ((index > m_end_sample) ? 1 : 0), index * m_sample_attos);
}


//-------------------------------------------------
//  time_to_buffer_index - given an attotime,
//  return the buffer index corresponding to it
//-------------------------------------------------

u32 stream_buffer::time_to_buffer_index(attotime time, bool round_up, bool allow_expansion)
{
	// compute the sample index within the second
	int sample = (time.attoseconds() + (round_up ? (m_sample_attos - 1) : 0)) / m_sample_attos;
	sound_assert(sample >= 0 && sample <= size());

	// if the time is past the current end, make it the end
	if (time.seconds() > m_end_second || (time.seconds() == m_end_second && sample > m_end_sample))
	{
		sound_assert(allow_expansion);

		m_end_sample = sample;
		m_end_second = time.m_seconds;

		// due to round_up, we could tweak over the line into the next second
		if (sample >= size())
		{
			m_end_sample -= size();
			m_end_second++;
		}
	}

	// if the time is before the start, fail
	if (time.seconds() + 1 < m_end_second || (time.seconds() + 1 == m_end_second && sample < m_end_sample))
		throw emu_fatalerror("Attempt to create an out-of-bounds view");

	return clamp_index(sample);
}


//-------------------------------------------------
//  backfill_downsample - this is called BEFORE
//  the sample rate change to downsample from the
//  end of the current buffer into a temporary
//  holding location
//-------------------------------------------------

void stream_buffer::backfill_downsample(sample_t *dest, int samples, attotime newend, attotime newperiod)
{
	// compute the time of the first sample to be backfilled; start one period before
	attotime time = newend - newperiod;

	// loop until we run out of buffered data
	int dstindex;
	for (dstindex = 0; dstindex < samples && time.seconds() >= 0; dstindex++)
	{
		u32 srcindex = time_to_buffer_index(time, false);
#if (SOUND_DEBUG)
		// multiple resamples can occur before clearing out old NaNs so
		// neuter them for this specific case
		if (std::isnan(m_buffer[srcindex]))
			dest[dstindex] = 0;
		else
#endif
			dest[dstindex] = get(srcindex);
		time -= newperiod;
	}
	for ( ; dstindex < samples; dstindex++)
		dest[dstindex] = 0;
}


//-------------------------------------------------
//  backfill_upsample - this is called AFTER the
//  sample rate change to take a copied buffer
//  of samples at the old rate and upsample them
//  to the new (current) rate
//-------------------------------------------------

void stream_buffer::backfill_upsample(sample_t const *src, int samples, attotime prevend, attotime prevperiod)
{
	// compute the time of the first sample to be backfilled; start one period before
	attotime time = end_time() - sample_period();

	// also adjust the buffered sample end time to point to the sample time of the
	// final sample captured
	prevend -= prevperiod;

	// loop until we run out of buffered data
	u32 end = m_end_sample;
	int srcindex = 0;
	while (1)
	{
		// if our backfill time is before the current buffered sample time,
		// back up until we have a sample that covers this time
		while (time < prevend && srcindex < samples)
		{
			prevend -= prevperiod;
			srcindex++;
		}

		// stop when we run out of source
		if (srcindex >= samples)
			break;

		// write this sample at the pevious position
		end = prev_index(end);
		put(end, src[srcindex]);

		// back up to the next sample time
		time -= sample_period();
	}
}



//**************************************************************************
//  SOUND STREAM OUTPUT
//**************************************************************************

//-------------------------------------------------
//  sound_stream_output - constructor
//-------------------------------------------------

sound_stream_output::sound_stream_output() :
	m_stream(nullptr),
	m_index(0),
	m_gain(1.0)
{
}


//-------------------------------------------------
//  init - initialization
//-------------------------------------------------

void sound_stream_output::init(sound_stream &stream, u32 index, char const *tag)
{
	// set the passed-in data
	m_stream = &stream;
	m_index = index;

	// save our state
	auto &save = stream.device().machine().save();
	save.save_item(&stream.device(), "stream.output", tag, index, NAME(m_gain));

#if (LOG_OUTPUT_WAV)
	std::string filename = stream.device().machine().basename();
	filename += stream.device().tag();
	for (int index = 0; index < filename.size(); index++)
		if (filename[index] == ':')
			filename[index] = '_';
	if (dynamic_cast<default_resampler_stream *>(&stream) != nullptr)
		filename += "_resampler";
	filename += "_OUT_";
	char buf[10];
	sprintf(buf, "%d", index);
	filename += buf;
	filename += ".wav";
	m_buffer.open_wav(filename.c_str());
#endif
}


//-------------------------------------------------
//  name - return the friendly name of this output
//-------------------------------------------------

std::string sound_stream_output::name() const
{
	// start with our owning stream's name
	std::ostringstream str;
	util::stream_format(str, "%s Ch.%d", m_stream->name(), m_stream->output_base() + m_index);
	return str.str();
}


//-------------------------------------------------
//  optimize_resampler - optimize resamplers by
//  either returning the native rate or another
//  input's resampler if they can be reused
//-------------------------------------------------

sound_stream_output &sound_stream_output::optimize_resampler(sound_stream_output *input_resampler)
{
	// if no resampler, or if the resampler rate matches our rate, return ourself
	if (input_resampler == nullptr || buffer_sample_rate() == input_resampler->buffer_sample_rate())
		return *this;

	// scan our list of resamplers to see if there's another match
	for (auto &resampler : m_resampler_list)
		if (resampler->buffer_sample_rate() == input_resampler->buffer_sample_rate())
			return *resampler;

	// add the input to our list and return the one we were given back
	m_resampler_list.push_back(input_resampler);
	return *input_resampler;
}



//**************************************************************************
//  SOUND STREAM INPUT
//**************************************************************************

//-------------------------------------------------
//  sound_stream_input - constructor
//-------------------------------------------------

sound_stream_input::sound_stream_input() :
	m_owner(nullptr),
	m_native_source(nullptr),
	m_resampler_source(nullptr),
	m_index(0),
	m_gain(1.0),
	m_user_gain(1.0)
{
}


//-------------------------------------------------
//  init - initialization
//-------------------------------------------------

void sound_stream_input::init(sound_stream &stream, u32 index, char const *tag, sound_stream_output *resampler)
{
	// set the passed-in values
	m_owner = &stream;
	m_index = index;
	m_resampler_source = resampler;

	// save our state
	auto &save = stream.device().machine().save();
	save.save_item(&stream.device(), "stream.input", tag, index, NAME(m_gain));
	save.save_item(&stream.device(), "stream.input", tag, index, NAME(m_user_gain));
}


//-------------------------------------------------
//  name - return the friendly name of this input
//-------------------------------------------------

std::string sound_stream_input::name() const
{
	// start with our owning stream's name
	std::ostringstream str;
	util::stream_format(str, "%s", m_owner->name());

	// if we have a source, indicate where the sound comes from by device name and tag
	if (valid())
		util::stream_format(str, " <- %s", m_native_source->name());
	return str.str();
}


//-------------------------------------------------
//  set_source - wire up the output source for
//  our consumption
//-------------------------------------------------

void sound_stream_input::set_source(sound_stream_output *source)
{
	m_native_source = source;
	if (m_resampler_source != nullptr)
		m_resampler_source->stream().set_input(0, &source->stream(), source->index());
}


//-------------------------------------------------
//  update - update our source's stream to the
//  current end time and return a view to its
//  contents
//-------------------------------------------------

read_stream_view sound_stream_input::update(attotime start, attotime end)
{
	// shouldn't get here unless valid
	sound_assert(valid());

	// pick an optimized resampler
	sound_stream_output &source = m_native_source->optimize_resampler(m_resampler_source);

	// if not using our own resampler, keep it up to date in case we need to invoke it later
	if (m_resampler_source != nullptr && &source != m_resampler_source)
		m_resampler_source->set_end_time(end);

	// update the source, returning a view of the needed output over the start and end times
	return source.stream().update_view(start, end, source.index()).apply_gain(m_gain * m_user_gain * m_native_source->gain());
}


//-------------------------------------------------
//  apply_sample_rate_changes - tell our sources
//  to apply any sample rate changes, informing
//  them of our current rate
//-------------------------------------------------

void sound_stream_input::apply_sample_rate_changes(u32 updatenum, u32 downstream_rate)
{
	// shouldn't get here unless valid
	sound_assert(valid());

	// if we have a resampler, tell it (and it will tell the native source)
	if (m_resampler_source != nullptr)
		m_resampler_source->stream().apply_sample_rate_changes(updatenum, downstream_rate);

	// otherwise, just tell the native source directly
	else
		m_native_source->stream().apply_sample_rate_changes(updatenum, downstream_rate);
}



//**************************************************************************
//  SOUND STREAM
//**************************************************************************

//-------------------------------------------------
//  sound_stream - private common constructor
//-------------------------------------------------

sound_stream::sound_stream(device_t &device, u32 inputs, u32 outputs, u32 output_base, u32 sample_rate, sound_stream_flags flags) :
	m_device(device),
	m_next(nullptr),
	m_sample_rate((sample_rate < SAMPLE_RATE_MINIMUM) ? (SAMPLE_RATE_MINIMUM - 1) : (sample_rate < SAMPLE_RATE_OUTPUT_ADAPTIVE) ? sample_rate : 48000),
	m_pending_sample_rate(SAMPLE_RATE_INVALID),
	m_last_sample_rate_update(0),
	m_input_adaptive(sample_rate == SAMPLE_RATE_INPUT_ADAPTIVE),
	m_output_adaptive(sample_rate == SAMPLE_RATE_OUTPUT_ADAPTIVE),
	m_synchronous((flags & STREAM_SYNCHRONOUS) != 0),
	m_resampling_disabled((flags & STREAM_DISABLE_INPUT_RESAMPLING) != 0),
	m_sync_timer(nullptr),
	m_input(inputs),
	m_input_view(inputs),
	m_empty_buffer(100),
	m_output_base(output_base),
	m_output(outputs),
	m_output_view(outputs)
{
	sound_assert(outputs > 0);

	// create a name
	m_name = m_device.name();
	m_name += " '";
	m_name += m_device.tag();
	m_name += "'";

	// create a unique tag for saving
	std::string state_tag = string_format("%d", m_device.machine().sound().unique_id());
	auto &save = m_device.machine().save();
	save.register_postload(save_prepost_delegate(FUNC(sound_stream::postload), this));

	// initialize all inputs
	for (unsigned int inputnum = 0; inputnum < m_input.size(); inputnum++)
	{
		// allocate a resampler stream if needed, and get a pointer to its output
		sound_stream_output *resampler = nullptr;
		if (!m_resampling_disabled)
		{
			m_resampler_list.push_back(std::make_unique<default_resampler_stream>(m_device));
			resampler = &m_resampler_list.back()->m_output[0];
		}

		// add the new input
		m_input[inputnum].init(*this, inputnum, state_tag.c_str(), resampler);
	}

	// initialize all outputs
	for (unsigned int outputnum = 0; outputnum < m_output.size(); outputnum++)
		m_output[outputnum].init(*this, outputnum, state_tag.c_str());

	// create an update timer for synchronous streams
	if (synchronous())
		m_sync_timer = m_device.machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(sound_stream::sync_update), this));

	// force an update to the sample rates
	sample_rate_changed();
}


//-------------------------------------------------
//  sound_stream - constructor
//-------------------------------------------------

sound_stream::sound_stream(device_t &device, u32 inputs, u32 outputs, u32 output_base, u32 sample_rate, stream_update_delegate callback, sound_stream_flags flags) :
	sound_stream(device, inputs, outputs, output_base, sample_rate, flags)
{
	m_callback_ex = std::move(callback);
}


//-------------------------------------------------
//  ~sound_stream - destructor
//-------------------------------------------------

sound_stream::~sound_stream()
{
}


//-------------------------------------------------
//  set_sample_rate - set the sample rate on a
//  given stream
//-------------------------------------------------

void sound_stream::set_sample_rate(u32 new_rate)
{
	// we will update this on the next global update
	if (new_rate != sample_rate())
		m_pending_sample_rate = new_rate;
}


//-------------------------------------------------
//  set_input - configure a stream's input
//-------------------------------------------------

void sound_stream::set_input(int index, sound_stream *input_stream, int output_index, float gain)
{
	VPRINTF(("stream_set_input(%p, '%s', %d, %p, %d, %f)\n", (void *)this, m_device.tag(),
			index, (void *)input_stream, output_index, (double) gain));

	// make sure it's a valid input
	if (index >= m_input.size())
		fatalerror("stream_set_input attempted to configure nonexistent input %d (%d max)\n", index, int(m_input.size()));

	// make sure it's a valid output
	if (input_stream != nullptr && output_index >= input_stream->m_output.size())
		fatalerror("stream_set_input attempted to use a nonexistent output %d (%d max)\n", output_index, int(m_output.size()));

	// wire it up
	m_input[index].set_source((input_stream != nullptr) ? &input_stream->m_output[output_index] : nullptr);
	m_input[index].set_gain(gain);

	// update sample rates now that we know the input
	sample_rate_changed();
}


//-------------------------------------------------
//  update - force a stream to update to
//  the current emulated time
//-------------------------------------------------

void sound_stream::update()
{
	// ignore any update requests if we're already up to date
	attotime start = m_output[0].end_time();
	attotime end = m_device.machine().time();
	if (start >= end)
		return;

	// regular update then
	update_view(start, end);
}


//-------------------------------------------------
//  update_view - force a stream to update to
//  the current emulated time and return a view
//  to the generated samples from the given
//  output number
//-------------------------------------------------

read_stream_view sound_stream::update_view(attotime start, attotime end, u32 outputnum)
{
	sound_assert(start <= end);
	sound_assert(outputnum < m_output.size());

	// clean up parameters for when the asserts go away
	if (outputnum >= m_output.size())
		outputnum = 0;
	if (start > end)
		start = end;

	g_profiler.start(PROFILER_SOUND);

	// reposition our start to coincide with the current buffer end
	attotime update_start = m_output[outputnum].end_time();
	if (update_start <= end)
	{
		// create views for all the outputs
		for (unsigned int outindex = 0; outindex < m_output.size(); outindex++)
			m_output_view[outindex] = m_output[outindex].view(update_start, end);

		// skip if nothing to do
		u32 samples = m_output_view[0].samples();
		sound_assert(samples >= 0);
		if (samples != 0 && m_sample_rate >= SAMPLE_RATE_MINIMUM)
		{
			sound_assert(!synchronous() || samples == 1);

			// ensure all input streams are up to date, and create views for them as well
			for (unsigned int inputnum = 0; inputnum < m_input.size(); inputnum++)
			{
				if (m_input[inputnum].valid())
					m_input_view[inputnum] = m_input[inputnum].update(update_start, end);
				else
					m_input_view[inputnum] = empty_view(update_start, end);
				sound_assert(m_input_view[inputnum].samples() > 0);
				sound_assert(m_resampling_disabled || m_input_view[inputnum].sample_rate() == m_sample_rate);
			}

#if (SOUND_DEBUG)
			// clear each output view to NANs before we call the callback
			for (unsigned int outindex = 0; outindex < m_output.size(); outindex++)
				m_output_view[outindex].fill(NAN);
#endif

			// if we have an extended callback, that's all we need
			m_callback_ex(*this, m_input_view, m_output_view);

#if (SOUND_DEBUG)
			// make sure everything was overwritten
			for (unsigned int outindex = 0; outindex < m_output.size(); outindex++)
				for (int sampindex = 0; sampindex < m_output_view[outindex].samples(); sampindex++)
					m_output_view[outindex].get(sampindex);

			for (unsigned int outindex = 0; outindex < m_output.size(); outindex++)
				m_output[outindex].m_buffer.flush_wav();
#endif
		}
	}
	g_profiler.stop();

	// return the requested view
	return read_stream_view(m_output_view[outputnum], start);
}


//-------------------------------------------------
//  apply_sample_rate_changes - if there is a
//  pending sample rate change, apply it now
//-------------------------------------------------

void sound_stream::apply_sample_rate_changes(u32 updatenum, u32 downstream_rate)
{
	// grab the new rate and invalidate
	u32 new_rate = (m_pending_sample_rate != SAMPLE_RATE_INVALID) ? m_pending_sample_rate : m_sample_rate;
	m_pending_sample_rate = SAMPLE_RATE_INVALID;

	// clamp to the minimum - 1 (anything below minimum means "off" and
	// will not call the sound callback at all)
	if (new_rate < SAMPLE_RATE_MINIMUM)
		new_rate = SAMPLE_RATE_MINIMUM - 1;

	// if we're input adaptive, override with the rate of our input
	if (input_adaptive() && m_input.size() > 0 && m_input[0].valid())
		new_rate = m_input[0].source().stream().sample_rate();

	// if we're output adaptive, override with the rate of our output
	if (output_adaptive())
	{
		if (m_last_sample_rate_update == updatenum)
			sound_assert(new_rate == m_sample_rate);
		else
			m_last_sample_rate_update = updatenum;
		new_rate = downstream_rate;
	}

	// if something is different, process the change
	if (new_rate != SAMPLE_RATE_INVALID && new_rate != m_sample_rate)
	{
		// update to the new rate and notify everyone
#if (SOUND_DEBUG)
		printf("stream %s changing rates %d -> %d\n", name().c_str(), m_sample_rate, new_rate);
#endif
		m_sample_rate = new_rate;
		sample_rate_changed();
	}

	// now call through our inputs and apply the rate change there
	for (auto &input : m_input)
		if (input.valid())
			input.apply_sample_rate_changes(updatenum, m_sample_rate);
}


//-------------------------------------------------
//  print_graph_recursive - helper for debugging;
//  prints info on this stream and then recursively
//  prints info on all inputs
//-------------------------------------------------

#if (SOUND_DEBUG)
void sound_stream::print_graph_recursive(int indent, int index)
{
	osd_printf_info("%*s%s Ch.%d @ %d\n", indent, "", name().c_str(), index + m_output_base, sample_rate());
	for (int index = 0; index < m_input.size(); index++)
		if (m_input[index].valid())
		{
			if (m_input[index].m_resampler_source != nullptr)
				m_input[index].m_resampler_source->stream().print_graph_recursive(indent + 2, m_input[index].m_resampler_source->index());
			else
				m_input[index].m_native_source->stream().print_graph_recursive(indent + 2, m_input[index].m_native_source->index());
		}
}
#endif


//-------------------------------------------------
//  sample_rate_changed - recompute sample
//  rate data, and all streams that are affected
//  by this stream
//-------------------------------------------------

void sound_stream::sample_rate_changed()
{
	// if invalid, just punt
	if (m_sample_rate == SAMPLE_RATE_INVALID)
		return;

	// update all output buffers
	for (auto &output : m_output)
		output.sample_rate_changed(m_sample_rate);

	// if synchronous, prime the timer
	if (synchronous())
		reprime_sync_timer();
}


//-------------------------------------------------
//  postload - save/restore callback
//-------------------------------------------------

void sound_stream::postload()
{
	// set the end time of all of our streams to now
	for (auto &output : m_output)
		output.set_end_time(m_device.machine().time());

	// recompute the sample rate information
	sample_rate_changed();
}


//-------------------------------------------------
//  reprime_sync_timer - set up the next sync
//  timer to go off just a hair after the end of
//  the current sample period
//-------------------------------------------------

void sound_stream::reprime_sync_timer()
{
	attotime curtime = m_device.machine().time();
	attotime target = m_output[0].end_time() + attotime(0, 1);
	m_sync_timer->adjust(target - curtime);
}


//-------------------------------------------------
//  sync_update - timer callback to handle a
//  synchronous stream
//-------------------------------------------------

void sound_stream::sync_update(void *, s32)
{
	update();
	reprime_sync_timer();
}


//-------------------------------------------------
//  empty_view - return an empty view covering the
//  given time period as a substitute for invalid
//  inputs
//-------------------------------------------------

read_stream_view sound_stream::empty_view(attotime start, attotime end)
{
	// if our dummy buffer doesn't match our sample rate, update and clear it
	if (m_empty_buffer.sample_rate() != m_sample_rate)
		m_empty_buffer.set_sample_rate(m_sample_rate, false);

	// allocate a write view so that it can expand, and convert back to a read view
	// on the return
	return write_stream_view(m_empty_buffer, start, end);
}



//**************************************************************************
//  RESAMPLER STREAM
//**************************************************************************

//-------------------------------------------------
//  default_resampler_stream - derived sound_stream
//  class that handles resampling
//-------------------------------------------------

default_resampler_stream::default_resampler_stream(device_t &device) :
	sound_stream(device, 1, 1, 0, SAMPLE_RATE_OUTPUT_ADAPTIVE, stream_update_delegate(&default_resampler_stream::resampler_sound_update, this), STREAM_DISABLE_INPUT_RESAMPLING),
	m_max_latency(0)
{
	// create a name
	m_name = "Default Resampler '";
	m_name += device.tag();
	m_name += "'";
}


//-------------------------------------------------
//  resampler_sound_update - stream callback
//  handler for resampling an input stream to the
//  target sample rate of the output
//-------------------------------------------------

void default_resampler_stream::resampler_sound_update(sound_stream &stream, std::vector<read_stream_view> const &inputs, std::vector<write_stream_view> &outputs)
{
	sound_assert(inputs.size() == 1);
	sound_assert(outputs.size() == 1);

	auto &input = inputs[0];
	auto &output = outputs[0];

	// if the input has an invalid rate, just fill with zeros
	if (input.sample_rate() <= 1)
	{
		output.fill(0);
		return;
	}

	// optimize_resampler ensures we should not have equal sample rates
	sound_assert(input.sample_rate() != output.sample_rate());

	// compute the stepping value and the inverse
	stream_buffer::sample_t step = stream_buffer::sample_t(input.sample_rate()) / stream_buffer::sample_t(output.sample_rate());
	stream_buffer::sample_t stepinv = 1.0 / step;

	// determine the latency we need to introduce, in input samples:
	//    1 input sample for undersampled inputs
	//    1 + step input samples for oversampled inputs
	s64 latency_samples = 1 + ((step < 1.0) ? 0 : s32(step));
	if (latency_samples <= m_max_latency)
		latency_samples = m_max_latency;
	else
		m_max_latency = latency_samples;
	attotime latency = latency_samples * input.sample_period();

	// clamp the latency to the start (only relevant at the beginning)
	s32 dstindex = 0;
	attotime output_start = output.start_time();
	auto numsamples = output.samples();
	while (latency > output_start && dstindex < numsamples)
	{
		output.put(dstindex++, 0);
		output_start += output.sample_period();
	}
	if (dstindex >= numsamples)
		return;

	// create a rebased input buffer around the adjusted start time
	read_stream_view rebased(input, output_start - latency);
	sound_assert(rebased.start_time() + latency <= output_start);

	// compute the fractional input start position
	attotime delta = output_start - (rebased.start_time() + latency);
	sound_assert(delta.seconds() == 0);
	stream_buffer::sample_t srcpos = stream_buffer::sample_t(double(delta.attoseconds()) / double(rebased.sample_period_attoseconds()));
	sound_assert(srcpos <= 1.0f);

	// input is undersampled: point sample except where our sample period covers a boundary
	s32 srcindex = 0;
	if (step < 1.0)
	{
		stream_buffer::sample_t cursample = rebased.get(srcindex++);
		for ( ; dstindex < numsamples; dstindex++)
		{
			// if still within the current sample, just replicate
			srcpos += step;
			if (srcpos <= 1.0)
				output.put(dstindex, cursample);

			// if crossing a sample boundary, blend with the neighbor
			else
			{
				srcpos -= 1.0;
				sound_assert(srcpos <= step + 1e-5);
				stream_buffer::sample_t prevsample = cursample;
				cursample = rebased.get(srcindex++);
				output.put(dstindex, stepinv * (prevsample * (step - srcpos) + srcpos * cursample));
			}
		}
		sound_assert(srcindex <= rebased.samples());
	}

	// input is oversampled: sum the energy
	else
	{
		float cursample = rebased.get(srcindex++);
		for ( ; dstindex < numsamples; dstindex++)
		{
			// compute the partial first sample and advance
			stream_buffer::sample_t scale = 1.0 - srcpos;
			stream_buffer::sample_t sample = cursample * scale;

			// add in complete samples until we only have a fraction left
			stream_buffer::sample_t remaining = step - scale;
			while (remaining >= 1.0)
			{
				sample += rebased.get(srcindex++);
				remaining -= 1.0;
			}

			// add in the final partial sample
			cursample = rebased.get(srcindex++);
			sample += cursample * remaining;
			output.put(dstindex, sample * stepinv);

			// our position is now the remainder
			srcpos = remaining;
			sound_assert(srcindex <= rebased.samples());
		}
	}
}



//**************************************************************************
//  SOUND MANAGER
//**************************************************************************

//-------------------------------------------------
//  sound_manager - constructor
//-------------------------------------------------

sound_manager::sound_manager(running_machine &machine) :
	m_machine(machine),
	m_update_timer(nullptr),
	m_update_number(0),
	m_last_update(attotime::zero),
	m_finalmix_leftover(0),
	m_samples_this_update(0),
	m_finalmix(machine.sample_rate()),
	m_leftmix(machine.sample_rate()),
	m_rightmix(machine.sample_rate()),
	m_compressor_scale(1.0),
	m_compressor_counter(0),
	m_muted(0),
	m_nosound_mode(machine.osd().no_sound()),
	m_attenuation(0),
	m_unique_id(0),
	m_wavfile(nullptr),
	m_first_reset(true)
{
	// get filename for WAV file or AVI file if specified
	const char *wavfile = machine.options().wav_write();
	const char *avifile = machine.options().avi_write();

	// handle -nosound and lower sample rate if not recording WAV or AVI
	if (m_nosound_mode && wavfile[0] == 0 && avifile[0] == 0)
		machine.m_sample_rate = 11025;

	// count the mixers
#if VERBOSE
	mixer_interface_iterator iter(machine.root_device());
	VPRINTF(("total mixers = %d\n", iter.count()));
#endif

	// register callbacks
	machine.configuration().config_register("mixer", config_load_delegate(&sound_manager::config_load, this), config_save_delegate(&sound_manager::config_save, this));
	machine.add_notifier(MACHINE_NOTIFY_PAUSE, machine_notify_delegate(&sound_manager::pause, this));
	machine.add_notifier(MACHINE_NOTIFY_RESUME, machine_notify_delegate(&sound_manager::resume, this));
	machine.add_notifier(MACHINE_NOTIFY_RESET, machine_notify_delegate(&sound_manager::reset, this));
	machine.add_notifier(MACHINE_NOTIFY_EXIT, machine_notify_delegate(&sound_manager::stop_recording, this));

	// register global states
	machine.save().save_item(NAME(m_last_update));

	// set the starting attenuation
	set_attenuation(machine.options().volume());

	// start the periodic update flushing timer
	m_update_timer = machine.scheduler().timer_alloc(timer_expired_delegate(FUNC(sound_manager::update), this));
	m_update_timer->adjust(STREAMS_UPDATE_ATTOTIME, 0, STREAMS_UPDATE_ATTOTIME);
}


//-------------------------------------------------
//  sound_manager - destructor
//-------------------------------------------------

sound_manager::~sound_manager()
{
}


//-------------------------------------------------
//  stream_alloc - allocate a new stream with the
//  new-style callback and flags
//-------------------------------------------------

sound_stream *sound_manager::stream_alloc(device_t &device, u32 inputs, u32 outputs, u32 sample_rate, stream_update_delegate callback, sound_stream_flags flags)
{
	// determine output base
	u32 output_base = 0;
	for (auto &stream : m_stream_list)
		if (&stream->device() == &device)
			output_base += stream->output_count();

	m_stream_list.push_back(std::make_unique<sound_stream>(device, inputs, outputs, output_base, sample_rate, callback, flags));
	return m_stream_list.back().get();
}


//-------------------------------------------------
//  start_recording - begin audio recording
//-------------------------------------------------

void sound_manager::start_recording()
{
	// open the output WAV file if specified
	const char *wavfile = machine().options().wav_write();
	if (wavfile[0] != 0 && m_wavfile == nullptr)
		m_wavfile = wav_open(wavfile, machine().sample_rate(), 2);
}


//-------------------------------------------------
//  stop_recording - end audio recording
//-------------------------------------------------

void sound_manager::stop_recording()
{
	// close any open WAV file
	if (m_wavfile != nullptr)
		wav_close(m_wavfile);
	m_wavfile = nullptr;
}


//-------------------------------------------------
//  set_attenuation - set the global volume
//-------------------------------------------------

void sound_manager::set_attenuation(float attenuation)
{
	// currently OSD only supports integral attenuation
	m_attenuation = int(attenuation);
	machine().osd().set_mastervolume(m_muted ? -32 : m_attenuation);
}


//-------------------------------------------------
//  indexed_mixer_input - return the mixer
//  device and input index of the global mixer
//  input
//-------------------------------------------------

bool sound_manager::indexed_mixer_input(int index, mixer_input &info) const
{
	// scan through the mixers until we find the indexed input
	for (device_mixer_interface &mixer : mixer_interface_iterator(machine().root_device()))
	{
		if (index < mixer.inputs())
		{
			info.mixer = &mixer;
			info.stream = mixer.input_to_stream_input(index, info.inputnum);
			sound_assert(info.stream != nullptr);
			return true;
		}
		index -= mixer.inputs();
	}

	// didn't locate
	info.mixer = nullptr;
	return false;
}


//-------------------------------------------------
//  samples - fills the specified buffer with
//  16-bit stereo audio samples generated during
//  the current frame
//-------------------------------------------------

void sound_manager::samples(s16 *buffer)
{
	for (int sample = 0; sample < m_samples_this_update * 2; sample++)
		*buffer++ = m_finalmix[sample];
}


//-------------------------------------------------
//  mute - mute sound output
//-------------------------------------------------

void sound_manager::mute(bool mute, u8 reason)
{
	if (mute)
		m_muted |= reason;
	else
		m_muted &= ~reason;
	set_attenuation(m_attenuation);
}


//-------------------------------------------------
//  recursive_remove_stream_from_orphan_list -
//  remove the given stream from the orphan list
//  and recursively remove all our inputs
//-------------------------------------------------

void sound_manager::recursive_remove_stream_from_orphan_list(sound_stream *which)
{
	m_orphan_stream_list.erase(which);
	for (int inputnum = 0; inputnum < which->input_count(); inputnum++)
	{
		auto &input = which->input(inputnum);
		if (input.valid())
			recursive_remove_stream_from_orphan_list(&input.source().stream());
	}
}


//-------------------------------------------------
//  apply_sample_rate_changes - recursively
//  update sample rates throughout the system
//-------------------------------------------------

void sound_manager::apply_sample_rate_changes()
{
	// update sample rates if they have changed
	for (speaker_device &speaker : speaker_device_iterator(machine().root_device()))
	{
		int stream_out;
		sound_stream *stream = speaker.output_to_stream_output(0, stream_out);

		// due to device removal, some speakers may end up with no outputs; just skip those
		if (stream != nullptr)
		{
			sound_assert(speaker.outputs() == 1);
			stream->apply_sample_rate_changes(m_update_number, machine().sample_rate());
		}
	}
}


//-------------------------------------------------
//  reset - reset all sound chips
//-------------------------------------------------

void sound_manager::reset()
{
	// reset all the sound chips
	for (device_sound_interface &sound : sound_interface_iterator(machine().root_device()))
		sound.device().reset();

	// apply any sample rate changes now
	apply_sample_rate_changes();

	// on first reset, identify any orphaned streams
	if (m_first_reset)
	{
		m_first_reset = false;

		// put all the streams on the orphan list to start
		for (auto &stream : m_stream_list)
			m_orphan_stream_list[stream.get()] = 0;

		// then walk the graph like we do on update and remove any we touch
		for (speaker_device &speaker : speaker_device_iterator(machine().root_device()))
		{
			int dummy;
			sound_stream *output = speaker.output_to_stream_output(0, dummy);
			if (output != nullptr)
				recursive_remove_stream_from_orphan_list(output);
		}

#if (SOUND_DEBUG)
		// dump the sound graph when we start up
		for (speaker_device &speaker : speaker_device_iterator(machine().root_device()))
		{
			int index;
			sound_stream *output = speaker.output_to_stream_output(0, index);
			if (output != nullptr)
				output->print_graph_recursive(0, index);
		}

		// dump the orphan list as well
		if (m_orphan_stream_list.size() != 0)
		{
			osd_printf_info("\nOrphaned streams:\n");
			for (auto &stream : m_orphan_stream_list)
				osd_printf_info("   %s\n", stream.first->name());
		}
#endif
	}
}


//-------------------------------------------------
//  pause - pause sound output
//-------------------------------------------------

void sound_manager::pause()
{
	mute(true, MUTE_REASON_PAUSE);
}


//-------------------------------------------------
//  resume - resume sound output
//-------------------------------------------------

void sound_manager::resume()
{
	mute(false, MUTE_REASON_PAUSE);
}


//-------------------------------------------------
//  config_load - read and apply data from the
//  configuration file
//-------------------------------------------------

void sound_manager::config_load(config_type cfg_type, util::xml::data_node const *parentnode)
{
	// we only care about game files
	if (cfg_type != config_type::GAME)
		return;

	// might not have any data
	if (parentnode == nullptr)
		return;

	// iterate over channel nodes
	for (util::xml::data_node const *channelnode = parentnode->get_child("channel"); channelnode != nullptr; channelnode = channelnode->get_next_sibling("channel"))
	{
		mixer_input info;
		if (indexed_mixer_input(channelnode->get_attribute_int("index", -1), info))
		{
			float defvol = channelnode->get_attribute_float("defvol", 1.0f);
			float newvol = channelnode->get_attribute_float("newvol", -1000.0f);
			if (newvol != -1000.0f)
				info.stream->input(info.inputnum).set_user_gain(newvol / defvol);
		}
	}
}


//-------------------------------------------------
//  config_save - save data to the configuration
//  file
//-------------------------------------------------

void sound_manager::config_save(config_type cfg_type, util::xml::data_node *parentnode)
{
	// we only care about game files
	if (cfg_type != config_type::GAME)
		return;

	// iterate over mixer channels
	if (parentnode != nullptr)
		for (int mixernum = 0; ; mixernum++)
		{
			mixer_input info;
			if (!indexed_mixer_input(mixernum, info))
				break;
			float newvol = info.stream->input(info.inputnum).user_gain();

			if (newvol != 1.0f)
			{
				util::xml::data_node *const channelnode = parentnode->add_child("channel", nullptr);
				if (channelnode != nullptr)
				{
					channelnode->set_attribute_int("index", mixernum);
					channelnode->set_attribute_float("newvol", newvol);
				}
			}
		}
}


//-------------------------------------------------
//  adjust_toward_compressor_scale - adjust the
//  current scale factor toward the current goal,
//  in small increments
//-------------------------------------------------

stream_buffer::sample_t sound_manager::adjust_toward_compressor_scale(stream_buffer::sample_t curscale, stream_buffer::sample_t prevsample, stream_buffer::sample_t rawsample)
{
	stream_buffer::sample_t proposed_scale = curscale;

	// if we want to get larger, increment by 0.01
	if (curscale < m_compressor_scale)
	{
		proposed_scale += 0.01f;
		if (proposed_scale > m_compressor_scale)
			proposed_scale = m_compressor_scale;
	}

	// otherwise, decrement by 0.01
	else
	{
		proposed_scale -= 0.01f;
		if (proposed_scale < m_compressor_scale)
			proposed_scale = m_compressor_scale;
	}

	// compute the sample at the current scale and at the proposed scale
	stream_buffer::sample_t cursample = rawsample * curscale;
	stream_buffer::sample_t proposed_sample = rawsample * proposed_scale;

	// if they trend in the same direction, it's ok to take the step
	if ((cursample < prevsample && proposed_sample < prevsample) || (cursample > prevsample && proposed_sample > prevsample))
		curscale = proposed_scale;

	// return the current scale
	return curscale;
}


//-------------------------------------------------
//  update - mix everything down to its final form
//  and send it to the OSD layer
//-------------------------------------------------

void sound_manager::update(void *ptr, int param)
{
	VPRINTF(("sound_update\n"));

	g_profiler.start(PROFILER_SOUND);

	// determine the duration of this update
	attotime update_period = machine().time() - m_last_update;
	sound_assert(update_period.seconds() == 0);

	// use that to compute the number of samples we need from the speakers
	attoseconds_t sample_rate_attos = HZ_TO_ATTOSECONDS(machine().sample_rate());
	m_samples_this_update = update_period.attoseconds() / sample_rate_attos;

	// recompute the end time to an even sample boundary
	attotime endtime = m_last_update + attotime(0, m_samples_this_update * sample_rate_attos);

	// clear out the mix bufers
	std::fill_n(&m_leftmix[0], m_samples_this_update, 0);
	std::fill_n(&m_rightmix[0], m_samples_this_update, 0);

	// force all the speaker streams to generate the proper number of samples
	for (speaker_device &speaker : speaker_device_iterator(machine().root_device()))
		speaker.mix(&m_leftmix[0], &m_rightmix[0], m_last_update, endtime, m_samples_this_update, (m_muted & MUTE_REASON_SYSTEM));

	// determine the maximum in this section
	stream_buffer::sample_t curmax = 0;
	for (int sampindex = 0; sampindex < m_samples_this_update; sampindex++)
	{
		auto sample = m_leftmix[sampindex];
		if (sample < 0)
			sample = -sample;
		if (sample > curmax)
			curmax = sample;

		sample = m_rightmix[sampindex];
		if (sample < 0)
			sample = -sample;
		if (sample > curmax)
			curmax = sample;
	}

	// pull in current compressor scale factor before modifying
	stream_buffer::sample_t lscale = m_compressor_scale;
	stream_buffer::sample_t rscale = m_compressor_scale;

	// if we're above what the compressor will handle, adjust the compression
	if (curmax * m_compressor_scale > 1.0)
	{
		m_compressor_scale = 1.0 / curmax;
		m_compressor_counter = STREAMS_UPDATE_FREQUENCY / 5;
	}

	// if we're currently scaled, wait a bit to see if we can trend back toward 1.0
	else if (m_compressor_counter != 0)
		m_compressor_counter--;

	// try to migrate toward 0 unless we're going to introduce clipping
	else if (m_compressor_scale < 1.0 && curmax * 1.01 * m_compressor_scale < 1.0)
	{
		m_compressor_scale *= 1.01f;
		if (m_compressor_scale > 1.0)
			m_compressor_scale = 1.0;
	}

#if (SOUND_DEBUG)
	if (lscale != m_compressor_scale)
	printf("scale=%.5f\n", m_compressor_scale);
#endif

	// track whether there are pending scale changes in left/right
	stream_buffer::sample_t lprev = 0, rprev = 0;

	// now downmix the final result
	u32 finalmix_step = machine().video().speed_factor();
	u32 finalmix_offset = 0;
	s16 *finalmix = &m_finalmix[0];
	int sample;
	for (sample = m_finalmix_leftover; sample < m_samples_this_update * 1000; sample += finalmix_step)
	{
		int sampindex = sample / 1000;

		// ensure that changing the compression won't reverse direction to reduce "pops"
		stream_buffer::sample_t lsamp = m_leftmix[sampindex];
		if (lscale != m_compressor_scale && sample != m_finalmix_leftover)
			lscale = adjust_toward_compressor_scale(lscale, lprev, lsamp);

		// clamp the left side
		lprev = lsamp *= lscale;
		if (lsamp > 1.0)
			lsamp = 1.0;
		else if (lsamp < -1.0)
			lsamp = -1.0;
		finalmix[finalmix_offset++] = s16(lsamp * 32767.0);

		// ensure that changing the compression won't reverse direction to reduce "pops"
		stream_buffer::sample_t rsamp = m_rightmix[sampindex];
		if (rscale != m_compressor_scale && sample != m_finalmix_leftover)
			rscale = adjust_toward_compressor_scale(rscale, rprev, rsamp);

		// clamp the left side
		rprev = rsamp *= rscale;
		if (rsamp > 1.0)
			rsamp = 1.0;
		else if (rsamp < -1.0)
			rsamp = -1.0;
		finalmix[finalmix_offset++] = s16(rsamp * 32767.0);
	}
	m_finalmix_leftover = sample - m_samples_this_update * 1000;

	// play the result
	if (finalmix_offset > 0)
	{
		if (!m_nosound_mode)
			machine().osd().update_audio_stream(finalmix, finalmix_offset / 2);
		machine().osd().add_audio_to_recording(finalmix, finalmix_offset / 2);
		machine().video().add_sound_to_recording(finalmix, finalmix_offset / 2);
		if (m_wavfile != nullptr)
			wav_add_data_16(m_wavfile, finalmix, finalmix_offset);
	}

	// update any orphaned streams so they don't get too far behind
	for (auto &stream : m_orphan_stream_list)
		stream.first->update();

	// remember the update time
	m_last_update = endtime;
	m_update_number++;

	// apply sample rate changes
	apply_sample_rate_changes();

	// notify that new samples have been generated
	emulator_info::sound_hook();

	g_profiler.stop();
}