1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
|
// license:BSD-3-Clause
// copyright-holders:R. Belmont, Olivier Galibert
/***************************************************************************
drivers/esq1.c
Ensoniq ESQ-1 Digital Wave Synthesizer
Ensoniq ESQ-M (rack-mount ESQ-1)
Ensoniq SQ-80 Cross Wave Synthesizer
Driver by R. Belmont and O. Galibert
Map for ESQ-1 and ESQ-m:
0000-1fff: OS RAM
2000-3fff: Cartridge
4000-5fff: SEQRAM
6000-63ff: ES5503 DOC
6400-67ff: MC2681 DUART
6800-6fff: AD7524 (CV_MUX)
7000-7fff: OS ROM low (banked)
8000-ffff: OS ROM high (fixed)
Map for SQ-80:
0000-1fff: OS RAM
2000-3fff: Cartridge
4000-5fff: DOSRAM or SEQRAM (banked)
6000-63ff: ES5503 DOC
6400-67ff: MC2681 DUART
6800-6bff: AD7524 (CV_MUX)
6c00-6dff: Mapper (bit 0 only - determines DOSRAM or SEQRAM at 4000)
6e00-6fff: WD1772 FDC (not present on ESQ1)
7000-7fff: OS ROM low (banked)
8000-ffff: OS ROM high (fixed)
CV_MUX area:
write to output goes to
$68f8 $00 D/A converter
$68f0 -$08 Filter Frequency (FF)
$68e8 -$10 Filter Resonance (Q)
$68d8 -$20 Final DCA (ENV4)
$68b8 -$40 Panning (PAN)
$6878 -$80 Floppy (Motor/LED on - SQ-80 only)
ESQ1: 8x CEM3379 VC Signal Processor Filter/Mix/VCA, 1x CEM3360 Dual VCA, 4x SSM2300
SQ-80: 8x CEM3379 VC Signal Processor - Filter/Mix/VCA, 1x CEM3360 Dual VCA, 4x SSM2300
If SEQRAM is mapped at 4000, DUART port 2 determines the 32KB "master bank" and ports 0 and 1
determine which of the 4 8KB "sub banks" is visible.
Output ports 3 to 1 determine the 4kB page which should be shown at $7000 to $7fff.
IRQ sources are the DUART and the DRQ line from the FDC (SQ-80 only).
NMI is from the IRQ line on the FDC (again, SQ-80 only).
TODO:
- VFD display
- Keyboard
- Analog filters and VCA on the back end of the 5503
- SQ-80 support (additional banking, FDC)
NOTES:
Commands from KPC are all 2 bytes
first byte: command code, bit 7 is 1 = press, 0 = release
second byte is source: 00 = panel 01 = internal keyboard
04 SEQ
05 CART A
06 CART B
07 INT
08 1 / SEQ 1
09 2 / SEQ 2
0A 3 / SEQ 3
0B 4 / SONG
0C COMPARE
0D DATA UP
0E DATA DOWN
0F WRITE
10 = UPPER 1 (buttons above display)
11 = UPPER 2
12 = UPPER 3
13 = UPPER 4
14 = UPPER 5
15 = LOWER 1 (buttons below display)
16 = LOWER 2
17 = LOWER 3
18 = LOWER 4
19 = LOWER 5
1a = LFO 1
1b = ENV 2
1c = MASTER
1d = CREATE / ERASE
1e = SELECT
1f = RECORD
20 = STORAGE
21 = EDIT
22 = MIX
23 = STOP / CONT
24 = MIDI
25 = CONTROL
26 = LOCATE
27 = PLAY
28 = OSC 1
29 = OSC 2
2A = OSC 3
2B = ENV 1
2C = DCA 1
2D = DCA 2
2E = DCA 3
2F = LFO 2
30 = LFO 3
31 = FILTER
32 = ENV 4
33 = ENV 3
34 = DCA 4
35 = MODES
36 = SPLIT / LAYER
Analog filters (CEM3379):
The analog part is relatively simple. The digital part outputs 8
voices, which are filtered, amplified, panned then summed
together.
The filtering stage is a 4-level lowpass filter with a loopback:
+-[+]-<-[*-1]--------------------------+
| | |
^ [*r] |
| | |
| v ^
input ---+-[+]--[LPF]---[LPF]---[LPF]---[LPF]---+--- output
All 4 LPFs are identical, with a transconductance G:
output = 1/(1+s/G)^4 * ( (1+r)*input - r*output)
or
output = input * (1+r)/((1+s/G)^4+r)
to which the usual z-transform can be applied (see votrax.c)
G is voltage controlled through the Vfreq input, with the formula (Vfreq in mV):
G = 6060*exp(Vfreq/28.5)
That gives a cutoff frequency (f=G/(2pi)) of 5Hz at 5mV, 964Hz at
28.5mV and 22686Hz at 90mV. The resistor ladder between the DAC
and the input seem to map 0..255 into a range of -150.4mV to
+83.6mV.
The resonance is controlled through the Vq input pin, and is not
well defined. Reading between the lines the control seems linear
and tops when then circuit is self-oscillation, at r=4.
The amplification is exponential for a control voltage between 0
to 0.2V from -100dB to -20dB, and then linear up to 5V at 0dB. Or
in other words:
amp(Vca) = Vca < 0.2 ? 10**(-5+20*Vca) : Vca*0.1875 + 0.0625
Finally the panning is not very described. What is clear is that
the control voltage at 2.5V gives a gain of -6dB, the max
attenuation at 0/5V is -100dB. The doc also says the gain is
linear between 1V and 3.5V, which makes no sense since it's not
symmetrical, and logarithmic afterwards, probably meaning
exponential, otherwise the change between 0 and 1V would be
minimal. So we're going to do some assumptions:
- 0-1V exponential from -100Db to -30dB
- 1V-2.5V linear from -30dB to -6dB
- 2.5V-5V is 1-amp at 2.5V-v
Note that this may be incorrect, maybe to sum of squares should be
constant, the half-point should be at -3dB and the linearity in dB
space.
***************************************************************************/
#include "bus/midi/midi.h"
#include "cpu/m6809/m6809.h"
#include "sound/es5503.h"
#include "machine/mc68681.h"
#include "machine/wd_fdc.h"
#include "machine/esqpanel.h"
#define WD1772_TAG "wd1772"
class esq1_filters : public device_t,
public device_sound_interface
{
public:
// construction/destruction
esq1_filters(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock);
void set_vca(int channel, UINT8 value);
void set_vpan(int channel, UINT8 value);
void set_vq(int channel, UINT8 value);
void set_vfc(int channel, UINT8 value);
protected:
// device-level overrides
virtual void device_start();
// device_sound_interface overrides
virtual void sound_stream_update(sound_stream &stream, stream_sample_t **inputs, stream_sample_t **outputs, int samples);
private:
struct filter {
UINT8 vca, vpan, vq, vfc;
double amp, lamp, ramp;
double a[5], b[5];
double x[4], y[4];
};
filter filters[8];
sound_stream *stream;
void recalc_filter(filter &f);
};
static const device_type ESQ1_FILTERS = &device_creator<esq1_filters>;
esq1_filters::esq1_filters(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock)
: device_t(mconfig, ESQ1_FILTERS, "ESQ1 Filters stage", tag, owner, clock, "esq1-filters", __FILE__),
device_sound_interface(mconfig, *this)
{
}
void esq1_filters::set_vca(int channel, UINT8 value)
{
if(filters[channel].vca != value) {
stream->update();
filters[channel].vca = value;
recalc_filter(filters[channel]);
}
}
void esq1_filters::set_vpan(int channel, UINT8 value)
{
if(filters[channel].vpan != value) {
stream->update();
filters[channel].vpan = value;
recalc_filter(filters[channel]);
}
}
void esq1_filters::set_vq(int channel, UINT8 value)
{
if(filters[channel].vq != value) {
stream->update();
filters[channel].vq = value;
recalc_filter(filters[channel]);
}
}
void esq1_filters::set_vfc(int channel, UINT8 value)
{
if(filters[channel].vfc != value) {
stream->update();
filters[channel].vfc = value;
recalc_filter(filters[channel]);
}
}
void esq1_filters::recalc_filter(filter &f)
{
// Filtering stage
// First let's establish the control values
// Some tuning may be required
double vfc = -150.4 + (83.6+150.4)*f.vfc/255;
double r = 4.0*f.vq/255;
double g = 6060*exp(vfc/28.5);
double zc = g/tan(g/2/44100);
/* if(f.vfc) {
double ff = g/(2*M_PI);
double fzc = 2*M_PI*ff/tan(M_PI*ff/44100);
fprintf(stderr, "%02x f=%f zc=%f zc1=%f\n", f.vfc, g/(2*M_PI), zc, fzc);
}*/
double gzc = zc/g;
double gzc2 = gzc*gzc;
double gzc3 = gzc2*gzc;
double gzc4 = gzc3*gzc;
double r1 = 1+r;
f.a[0] = r1;
f.a[1] = 4*r1;
f.a[2] = 6*r1;
f.a[3] = 4*r1;
f.a[4] = r1;
f.b[0] = r1 + 4*gzc + 6*gzc2 + 4*gzc3 + gzc4;
f.b[1] = 4*(r1 + 2*gzc - 2*gzc3 - gzc4);
f.b[2] = 6*(r1 - 2*gzc2 + gzc4);
f.b[3] = 4*(r1 - 2*gzc + 2*gzc3 - gzc4);
f.b[4] = r1 - 4*gzc + 6*gzc2 - 4*gzc3 + gzc4;
/* if(f.vfc != 0)
for(int i=0; i<5; i++)
printf("a%d=%f\nb%d=%f\n",
i, f.a[i], i, f.b[i]);*/
// Amplification stage
double vca = f.vca*(5.0/255.0);
f.amp = vca < 0.2 ? pow(10, -5+20*vca) : vca*0.1875 + 0.0625;
// Panning stage
// Very approximative at best
// Left/right unverified
double vpan = f.vpan*(5.0/255.0);
double vref = vpan > 2.5 ? 2.5 - vpan : vpan;
double pan_amp = vref < 1 ? pow(10, -5+3.5*vref) : vref*0.312 - 0.280;
if(vref < 2.5) {
f.lamp = pan_amp;
f.ramp = 1-pan_amp;
} else {
f.lamp = 1-pan_amp;
f.ramp = pan_amp;
}
}
void esq1_filters::device_start()
{
stream = stream_alloc(8, 2, 44100);
memset(filters, 0, sizeof(filters));
for(int i=0; i<8; i++)
recalc_filter(filters[i]);
}
void esq1_filters::sound_stream_update(sound_stream &stream, stream_sample_t **inputs, stream_sample_t **outputs, int samples)
{
/* if(0) {
for(int i=0; i<8; i++)
fprintf(stderr, " [%02x %02x %02x %02x]",
filters[i].vca,
filters[i].vpan,
filters[i].vq,
filters[i].vfc);
fprintf(stderr, "\n");
}*/
for(int i=0; i<samples; i++) {
double l=0, r=0;
for(int j=0; j<8; j++) {
filter &f = filters[j];
double x = inputs[j][i];
double y = (x*f.a[0]
+ f.x[0]*f.a[1] + f.x[1]*f.a[2] + f.x[2]*f.a[3] + f.x[3]*f.a[4]
- f.y[0]*f.b[1] - f.y[1]*f.b[2] - f.y[2]*f.b[3] - f.y[3]*f.b[4]) / f.b[0];
memmove(f.x+1, f.x, 3*sizeof(double));
memmove(f.y+1, f.y, 3*sizeof(double));
f.x[0] = x;
f.y[0] = y;
y = y * f.amp;
l += y * f.lamp;
r += y * f.ramp;
}
static double maxl = 0;
if(l > maxl) {
maxl = l;
// fprintf(stderr, "%f\n", maxl);
}
// l *= 6553;
// r *= 6553;
l *= 2;
r *= 2;
outputs[0][i] = l < -32768 ? -32768 : l > 32767 ? 32767 : int(l);
outputs[1][i] = r < -32768 ? -32768 : r > 32767 ? 32767 : int(r);
}
}
class esq1_state : public driver_device
{
public:
esq1_state(const machine_config &mconfig, device_type type, const char *tag)
: driver_device(mconfig, type, tag),
m_maincpu(*this, "maincpu"),
m_duart(*this, "duart"),
m_filters(*this, "filters"),
m_fdc(*this, WD1772_TAG),
m_panel(*this, "panel"),
m_mdout(*this, "mdout")
{ }
required_device<cpu_device> m_maincpu;
required_device<mc68681_device> m_duart;
required_device<esq1_filters> m_filters;
optional_device<wd1772_t> m_fdc;
optional_device<esqpanel2x40_device> m_panel;
optional_device<midi_port_device> m_mdout;
DECLARE_READ8_MEMBER(wd1772_r);
DECLARE_WRITE8_MEMBER(wd1772_w);
DECLARE_READ8_MEMBER(seqdosram_r);
DECLARE_WRITE8_MEMBER(seqdosram_w);
DECLARE_WRITE8_MEMBER(mapper_w);
DECLARE_WRITE8_MEMBER(analog_w);
DECLARE_WRITE_LINE_MEMBER(duart_irq_handler);
DECLARE_WRITE_LINE_MEMBER(duart_tx_a);
DECLARE_WRITE_LINE_MEMBER(duart_tx_b);
DECLARE_WRITE8_MEMBER(duart_output);
DECLARE_WRITE_LINE_MEMBER(esq1_doc_irq);
DECLARE_READ8_MEMBER(esq1_adc_read);
int m_mapper_state;
int m_seq_bank;
UINT8 m_seqram[0x10000];
UINT8 m_dosram[0x2000];
virtual void machine_reset();
DECLARE_INPUT_CHANGED_MEMBER(key_stroke);
void send_through_panel(UINT8 data);
};
WRITE_LINE_MEMBER(esq1_state::esq1_doc_irq)
{
}
READ8_MEMBER(esq1_state::esq1_adc_read)
{
return 0x00;
}
void esq1_state::machine_reset()
{
// set default OSROM banking
membank("osbank")->set_base(memregion("osrom")->base() );
m_mapper_state = 0;
m_seq_bank = 0;
}
READ8_MEMBER(esq1_state::wd1772_r)
{
return m_fdc->read(space, offset&3);
}
WRITE8_MEMBER(esq1_state::wd1772_w)
{
m_fdc->write(space, offset&3, data);
}
WRITE8_MEMBER(esq1_state::mapper_w)
{
m_mapper_state = (data & 1) ^ 1;
// printf("mapper_state = %d\n", data ^ 1);
}
WRITE8_MEMBER(esq1_state::analog_w)
{
if(!(offset & 8))
m_filters->set_vfc(offset & 7, data);
if(!(offset & 16))
m_filters->set_vq(offset & 7, data);
if(!(offset & 32))
m_filters->set_vpan(offset & 7, data);
if(!(offset & 64))
m_filters->set_vca(offset & 7, data);
}
READ8_MEMBER(esq1_state::seqdosram_r)
{
if (m_mapper_state)
{
return m_dosram[offset];
}
else
{
return m_seqram[offset + m_seq_bank];
}
}
WRITE8_MEMBER(esq1_state::seqdosram_w)
{
if (m_mapper_state)
{
m_dosram[offset] = data;
}
else
{
m_seqram[offset + m_seq_bank] = data;
}
}
static ADDRESS_MAP_START( esq1_map, AS_PROGRAM, 8, esq1_state )
AM_RANGE(0x0000, 0x1fff) AM_RAM // OSRAM
AM_RANGE(0x4000, 0x5fff) AM_RAM // SEQRAM
AM_RANGE(0x6000, 0x63ff) AM_DEVREADWRITE("es5503", es5503_device, read, write)
AM_RANGE(0x6400, 0x640f) AM_DEVREADWRITE("duart", mc68681_device, read, write)
AM_RANGE(0x6800, 0x68ff) AM_WRITE(analog_w)
AM_RANGE(0x7000, 0x7fff) AM_ROMBANK("osbank")
AM_RANGE(0x8000, 0xffff) AM_ROM AM_REGION("osrom", 0x8000) // OS "high" ROM is always mapped here
ADDRESS_MAP_END
static ADDRESS_MAP_START( sq80_map, AS_PROGRAM, 8, esq1_state )
AM_RANGE(0x0000, 0x1fff) AM_RAM // OSRAM
AM_RANGE(0x4000, 0x5fff) AM_RAM // SEQRAM
// AM_RANGE(0x4000, 0x5fff) AM_READWRITE(seqdosram_r, seqdosram_w)
AM_RANGE(0x6000, 0x63ff) AM_DEVREADWRITE("es5503", es5503_device, read, write)
AM_RANGE(0x6400, 0x640f) AM_DEVREADWRITE("duart", mc68681_device, read, write)
AM_RANGE(0x6800, 0x68ff) AM_WRITE(analog_w)
AM_RANGE(0x6c00, 0x6dff) AM_WRITE(mapper_w)
AM_RANGE(0x6e00, 0x6fff) AM_READWRITE(wd1772_r, wd1772_w)
AM_RANGE(0x7000, 0x7fff) AM_ROMBANK("osbank")
AM_RANGE(0x8000, 0xffff) AM_ROM AM_REGION("osrom", 0x8000) // OS "high" ROM is always mapped here
ADDRESS_MAP_END
// from the schematics:
//
// DUART channel A is MIDI
// channel B is to the keyboard/display
// IP0 = tape in
// IP1 = sequencer expansion cartridge inserted
// IP2 = patch cartridge inserted
// IP3 & 4 are 0.5 MHz, IP 5 & 6 are 1 MHz (note 0.5 MHz / 16 = MIDI baud rate)
//
// OP0 = to display processor
// OP1/2/3 = bank select 0, 1, and 2
// OP4 = metronome low
// OP5 = metronome hi
// OP6/7 = tape out
WRITE_LINE_MEMBER(esq1_state::duart_irq_handler)
{
m_maincpu->set_input_line(M6809_IRQ_LINE, state);
};
WRITE8_MEMBER(esq1_state::duart_output)
{
int bank = ((data >> 1) & 0x7);
// printf("DP [%02x]: %d mlo %d mhi %d tape %d\n", data, data&1, (data>>4)&1, (data>>5)&1, (data>>6)&3);
// printf("[%02x] bank %d => offset %x (PC=%x)\n", data, bank, bank * 0x1000, m_maincpu->safe_pc());
membank("osbank")->set_base(memregion("osrom")->base() + (bank * 0x1000) );
m_seq_bank = (data & 0x8) ? 0x8000 : 0x0000;
m_seq_bank += ((data>>1) & 3) * 0x2000;
// printf("seqram_bank = %x\n", state->m_seq_bank);
}
// MIDI send
WRITE_LINE_MEMBER(esq1_state::duart_tx_a)
{
m_mdout->write_txd(state);
}
WRITE_LINE_MEMBER(esq1_state::duart_tx_b)
{
m_panel->rx_w(state);
}
void esq1_state::send_through_panel(UINT8 data)
{
m_panel->xmit_char(data);
}
INPUT_CHANGED_MEMBER(esq1_state::key_stroke)
{
if (oldval == 0 && newval == 1)
{
send_through_panel((UINT8)(FPTR)param);
send_through_panel((UINT8)(FPTR)0x00);
}
else if (oldval == 1 && newval == 0)
{
send_through_panel((UINT8)(FPTR)param&0x7f);
send_through_panel((UINT8)(FPTR)0x00);
}
}
static MACHINE_CONFIG_START( esq1, esq1_state )
MCFG_CPU_ADD("maincpu", M6809E, 4000000) // how fast is it?
MCFG_CPU_PROGRAM_MAP(esq1_map)
MCFG_MC68681_ADD("duart", 4000000)
MCFG_MC68681_SET_EXTERNAL_CLOCKS(500000, 500000, 1000000, 1000000)
MCFG_MC68681_IRQ_CALLBACK(WRITELINE(esq1_state, duart_irq_handler))
MCFG_MC68681_A_TX_CALLBACK(WRITELINE(esq1_state, duart_tx_a))
MCFG_MC68681_B_TX_CALLBACK(WRITELINE(esq1_state, duart_tx_b))
MCFG_MC68681_OUTPORT_CALLBACK(WRITE8(esq1_state, duart_output))
MCFG_ESQPANEL2x40_ADD("panel")
MCFG_ESQPANEL_TX_CALLBACK(DEVWRITELINE("duart", mc68681_device, rx_b_w))
MCFG_MIDI_PORT_ADD("mdin", midiin_slot, "midiin")
MCFG_MIDI_RX_HANDLER(DEVWRITELINE("duart", mc68681_device, rx_a_w)) // route MIDI Tx send directly to 68681 channel A Rx
MCFG_MIDI_PORT_ADD("mdout", midiout_slot, "midiout")
MCFG_SPEAKER_STANDARD_STEREO("lspeaker", "rspeaker")
MCFG_SOUND_ADD("filters", ESQ1_FILTERS, 0)
MCFG_SOUND_ROUTE(0, "lspeaker", 1.0)
MCFG_SOUND_ROUTE(1, "rspeaker", 1.0)
MCFG_ES5503_ADD("es5503", 7000000)
MCFG_ES5503_OUTPUT_CHANNELS(8)
MCFG_ES5503_IRQ_FUNC(WRITELINE(esq1_state, esq1_doc_irq))
MCFG_ES5503_ADC_FUNC(READ8(esq1_state, esq1_adc_read))
MCFG_SOUND_ROUTE_EX(0, "filters", 1.0, 0)
MCFG_SOUND_ROUTE_EX(1, "filters", 1.0, 1)
MCFG_SOUND_ROUTE_EX(2, "filters", 1.0, 2)
MCFG_SOUND_ROUTE_EX(3, "filters", 1.0, 3)
MCFG_SOUND_ROUTE_EX(4, "filters", 1.0, 4)
MCFG_SOUND_ROUTE_EX(5, "filters", 1.0, 5)
MCFG_SOUND_ROUTE_EX(6, "filters", 1.0, 6)
MCFG_SOUND_ROUTE_EX(7, "filters", 1.0, 7)
MACHINE_CONFIG_END
static MACHINE_CONFIG_DERIVED(sq80, esq1)
MCFG_CPU_MODIFY("maincpu")
MCFG_CPU_PROGRAM_MAP(sq80_map)
MCFG_WD1772x_ADD(WD1772_TAG, 4000000)
MACHINE_CONFIG_END
static INPUT_PORTS_START( esq1 )
PORT_START("KEY0")
PORT_BIT(0x0001, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_Q) PORT_CHAR('q') PORT_CHAR('Q') PORT_CHANGED_MEMBER(DEVICE_SELF, esq1_state, key_stroke, 0x84) PORT_NAME("SEQ")
PORT_BIT(0x0002, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_W) PORT_CHAR('w') PORT_CHAR('W') PORT_CHANGED_MEMBER(DEVICE_SELF, esq1_state, key_stroke, 0x85) PORT_NAME("CART A")
PORT_BIT(0x0004, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_E) PORT_CHAR('e') PORT_CHAR('E') PORT_CHANGED_MEMBER(DEVICE_SELF, esq1_state, key_stroke, 0x86) PORT_NAME("CART B")
PORT_BIT(0x0008, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_R) PORT_CHAR('r') PORT_CHAR('R') PORT_CHANGED_MEMBER(DEVICE_SELF, esq1_state, key_stroke, 0x87) PORT_NAME("INT")
PORT_BIT(0x0010, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_A) PORT_CHAR('a') PORT_CHAR('A') PORT_CHANGED_MEMBER(DEVICE_SELF, esq1_state, key_stroke, 0x88) PORT_NAME("1 / SEQ 1")
PORT_BIT(0x0020, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_S) PORT_CHAR('s') PORT_CHAR('S') PORT_CHANGED_MEMBER(DEVICE_SELF, esq1_state, key_stroke, 0x89) PORT_NAME("2 / SEQ 2")
PORT_BIT(0x0040, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_D) PORT_CHAR('d') PORT_CHAR('D') PORT_CHANGED_MEMBER(DEVICE_SELF, esq1_state, key_stroke, 0x8a) PORT_NAME("3 / SEQ 3")
PORT_BIT(0x0080, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_F) PORT_CHAR('f') PORT_CHAR('F') PORT_CHANGED_MEMBER(DEVICE_SELF, esq1_state, key_stroke, 0x8b) PORT_NAME("4 / SONG")
PORT_BIT(0x0100, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_G) PORT_CHAR('g') PORT_CHAR('Z') PORT_CHANGED_MEMBER(DEVICE_SELF, esq1_state, key_stroke, 0x8c) PORT_NAME("COMPARE")
PORT_BIT(0x0200, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_MINUS) PORT_CHAR('-') PORT_CHANGED_MEMBER(DEVICE_SELF, esq1_state, key_stroke, 0x8e) PORT_NAME("DATA DOWN")
PORT_BIT(0x0400, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_EQUALS) PORT_CHAR('=') PORT_CHANGED_MEMBER(DEVICE_SELF, esq1_state, key_stroke, 0x8d) PORT_NAME("DATA UP")
PORT_BIT(0x0800, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_ENTER) PORT_CHAR('\r') PORT_CHANGED_MEMBER(DEVICE_SELF, esq1_state, key_stroke, 0x8f) PORT_NAME("WRITE")
PORT_START("KEY1")
PORT_BIT(0x0001, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_1) PORT_CHAR('1') PORT_CHANGED_MEMBER(DEVICE_SELF, esq1_state, key_stroke, 0x90) PORT_NAME("UPPER 1")
PORT_BIT(0x0002, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_2) PORT_CHAR('2') PORT_CHANGED_MEMBER(DEVICE_SELF, esq1_state, key_stroke, 0x91) PORT_NAME("UPPER 2")
PORT_BIT(0x0004, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_3) PORT_CHAR('3') PORT_CHANGED_MEMBER(DEVICE_SELF, esq1_state, key_stroke, 0x92) PORT_NAME("UPPER 3")
PORT_BIT(0x0008, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_4) PORT_CHAR('4') PORT_CHANGED_MEMBER(DEVICE_SELF, esq1_state, key_stroke, 0x93) PORT_NAME("UPPER 4")
PORT_BIT(0x0010, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_5) PORT_CHAR('5') PORT_CHANGED_MEMBER(DEVICE_SELF, esq1_state, key_stroke, 0x99) PORT_NAME("UPPER 5")
PORT_BIT(0x0020, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_6) PORT_CHAR('6') PORT_CHANGED_MEMBER(DEVICE_SELF, esq1_state, key_stroke, 0x94) PORT_NAME("LOWER 1")
PORT_BIT(0x0040, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_7) PORT_CHAR('7') PORT_CHANGED_MEMBER(DEVICE_SELF, esq1_state, key_stroke, 0x95) PORT_NAME("LOWER 2")
PORT_BIT(0x0080, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_8) PORT_CHAR('8') PORT_CHANGED_MEMBER(DEVICE_SELF, esq1_state, key_stroke, 0x96) PORT_NAME("LOWER 3")
PORT_BIT(0x0100, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_9) PORT_CHAR('9') PORT_CHANGED_MEMBER(DEVICE_SELF, esq1_state, key_stroke, 0x97) PORT_NAME("LOWER 4")
PORT_BIT(0x0200, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_0) PORT_CHAR('0') PORT_CHANGED_MEMBER(DEVICE_SELF, esq1_state, key_stroke, 0x98) PORT_NAME("LOWER 5")
INPUT_PORTS_END
ROM_START( esq1 )
ROM_REGION(0x10000, "osrom", 0)
ROM_LOAD( "3p5lo.bin", 0x0000, 0x8000, CRC(ed001ad8) SHA1(14d1150bccdbc15d90567cf1812aacdb3b6ee882) )
ROM_LOAD( "3p5hi.bin", 0x8000, 0x8000, CRC(332c572f) SHA1(ddb4f62807eb2ab29e5ac6b5d209d2ecc74cf806) )
ROM_REGION(0x20000, "es5503", 0)
ROM_LOAD( "esq1wavlo.bin", 0x0000, 0x8000, CRC(4d04ac87) SHA1(867b51229b0a82c886bf3b216aa8893748236d8b) )
ROM_LOAD( "esq1wavhi.bin", 0x8000, 0x8000, CRC(94c554a3) SHA1(ed0318e5253637585559e8cf24c06d6115bd18f6) )
ROM_END
ROM_START( sq80 )
ROM_REGION(0x10000, "osrom", 0)
ROM_LOAD( "sq80rom.low", 0x0000, 0x008000, CRC(97ecd9a0) SHA1(cadff16ebbc15b52cf1d3335d22dc930d430a058) )
ROM_LOAD( "sq80rom.hig", 0x8000, 0x008000, CRC(f83962b1) SHA1(e3e5cf41f15a37f8bf29b88fb1c85c0fca9ea912) )
ROM_REGION(0x40000, "es5503", 0)
ROM_LOAD( "2202.bin", 0x0000, 0x010000, CRC(dffd538c) SHA1(e90f6ff3a7804b54c8a3b1b574ec9c223a6c2bf9) )
ROM_LOAD( "2203.bin", 0x0000, 0x010000, CRC(9be8cceb) SHA1(1ee4d7e6d2171b44e88e464071bdc4b800b69c4a) )
ROM_LOAD( "2204.bin", 0x0000, 0x010000, CRC(4937c6f7) SHA1(4505efb9b28fe6d4bcc1f79e81a70bb215c399cb) )
ROM_LOAD( "2205.bin", 0x0000, 0x010000, CRC(0f917d40) SHA1(1cfae9c80088f4c90b3c9e0b284c3b91f7ff61b9) )
ROM_REGION(0x8000, "kpc", 0) // 68HC11 keyboard/front panel processor
ROM_LOAD( "sq80_kpc_150.bin", 0x000000, 0x008000, CRC(8170b728) SHA1(3ad68bb03948e51b20d2e54309baa5c02a468f7c) )
ROM_END
ROM_START( esqm )
ROM_REGION(0x10000, "osrom", 0)
ROM_LOAD( "1355500157_d640_esq-m_oshi.u14", 0x8000, 0x008000, CRC(ea6a7bae) SHA1(2830f8c52dc443b4ca469dc190b33e2ff15b78e1) )
ROM_REGION(0x20000, "es5503", 0)
ROM_LOAD( "esq1wavlo.bin", 0x0000, 0x8000, CRC(4d04ac87) SHA1(867b51229b0a82c886bf3b216aa8893748236d8b) )
ROM_LOAD( "esq1wavhi.bin", 0x8000, 0x8000, CRC(94c554a3) SHA1(ed0318e5253637585559e8cf24c06d6115bd18f6) )
ROM_END
CONS( 1986, esq1, 0 , 0, esq1, esq1, driver_device, 0, "Ensoniq", "ESQ-1", GAME_NOT_WORKING )
CONS( 1986, esqm, esq1, 0, esq1, esq1, driver_device, 0, "Ensoniq", "ESQ-M", GAME_NOT_WORKING )
CONS( 1988, sq80, 0, 0, sq80, esq1, driver_device, 0, "Ensoniq", "SQ-80", GAME_NOT_WORKING )
|