summaryrefslogtreecommitdiffstatshomepage
path: root/src/emu/cpu/psx/sio.c
blob: abf3c4b8bf1cd3dd6bef07ad13551a8c384d3899 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
// license:BSD-3-Clause
// copyright-holders:smf
/*
 * PlayStation Serial I/O emulator
 *
 * Copyright 2003-2011 smf
 *
 */

#include "sio.h"

#define VERBOSE_LEVEL ( 0 )

INLINE void ATTR_PRINTF(3,4) verboselog( running_machine& machine, int n_level, const char *s_fmt, ... )
{
	if( VERBOSE_LEVEL >= n_level )
	{
		va_list v;
		char buf[ 32768 ];
		va_start( v, s_fmt );
		vsprintf( buf, s_fmt, v );
		va_end( v );
		logerror( "%s: %s", machine.describe_context(), buf );
	}
}

const device_type PSX_SIO0 = &device_creator<psxsio0_device>;
const device_type PSX_SIO1 = &device_creator<psxsio1_device>;

psxsio0_device::psxsio0_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock) :
	psxsio_device(mconfig, PSX_SIO0, "Sony PSX SIO-0", tag, owner, clock, "psxsio0", __FILE__)
{
}

psxsio1_device::psxsio1_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock) :
	psxsio_device(mconfig, PSX_SIO1, "Sony PSX SIO-1", tag, owner, clock, "psxsio1", __FILE__)
{
}

psxsio_device::psxsio_device(const machine_config &mconfig, device_type type, const char *name, const char *tag, device_t *owner, UINT32 clock, const char *shortname, const char *source) :
	device_t(mconfig, type, name, tag, owner, clock, shortname, source),
	m_status(SIO_STATUS_TX_EMPTY | SIO_STATUS_TX_RDY),
	m_rxd(1),
	m_irq_handler(*this),
	m_sck_handler(*this),
	m_txd_handler(*this),
	m_dtr_handler(*this),
	m_rts_handler(*this)
{
}

void psxsio_device::device_post_load()
{
	sio_timer_adjust();
}

void psxsio_device::device_start()
{
	m_irq_handler.resolve_safe();
	m_sck_handler.resolve_safe();
	m_txd_handler.resolve_safe();
	m_dtr_handler.resolve_safe();
	m_rts_handler.resolve_safe();

	m_timer = timer_alloc( 0 );
	m_mode = 0;
	m_control = 0;
	m_baud = 0;
	m_rx_data = 0;
	m_tx_data = 0;
	m_rx_shift = 0;
	m_tx_shift = 0;
	m_rx_bits = 0;
	m_tx_bits = 0;

	save_item( NAME( m_status ) );
	save_item( NAME( m_mode ) );
	save_item( NAME( m_control ) );
	save_item( NAME( m_baud ) );
	save_item( NAME( m_rxd ) );
	save_item( NAME( m_rx_data ) );
	save_item( NAME( m_tx_data ) );
	save_item( NAME( m_rx_shift ) );
	save_item( NAME( m_tx_shift ) );
	save_item( NAME( m_rx_bits ) );
	save_item( NAME( m_tx_bits ) );
}

void psxsio_device::sio_interrupt()
{
	verboselog( machine(), 1, "sio_interrupt( %s )\n", tag() );
	m_status |= SIO_STATUS_IRQ;
	m_irq_handler(1);
}

void psxsio_device::sio_timer_adjust()
{
	attotime n_time;

	if( ( m_status & SIO_STATUS_TX_EMPTY ) == 0 || m_tx_bits != 0 )
	{
		int n_prescaler;

		switch( m_mode & 3 )
		{
		case 1:
			n_prescaler = 1;
			break;
		case 2:
			n_prescaler = 16;
			break;
		case 3:
			n_prescaler = 64;
			break;
		default:
			n_prescaler = 0;
			break;
		}

		if( m_baud != 0 && n_prescaler != 0 )
		{
			n_time = attotime::from_hz(33868800) * (n_prescaler * m_baud);
			verboselog( machine(), 2, "sio_timer_adjust( %s ) = %s ( %d x %d )\n", tag(), n_time.as_string(), n_prescaler, m_baud );
		}
		else
		{
			n_time = attotime::never;
			verboselog( machine(), 0, "sio_timer_adjust( %s ) invalid baud rate ( %d x %d )\n", tag(), n_prescaler, m_baud );
		}
	}
	else
	{
		n_time = attotime::never;
		verboselog( machine(), 2, "sio_timer_adjust( %s ) finished\n", tag() );
	}

	m_timer->adjust( n_time );
}

void psxsio_device::device_timer(emu_timer &timer, device_timer_id tid, int param, void *ptr)
{
	verboselog( machine(), 2, "sio tick\n" );

	if( m_tx_bits == 0 &&
		( m_control & SIO_CONTROL_TX_ENA ) != 0 &&
		( m_status & SIO_STATUS_TX_EMPTY ) == 0 )
	{
		m_tx_bits = 8;
		m_tx_shift = m_tx_data;

		if( type() == PSX_SIO0 )
		{
			m_rx_bits = 8;
			m_rx_shift = 0;
		}

		m_status |= SIO_STATUS_TX_EMPTY;
		m_status |= SIO_STATUS_TX_RDY;
	}

	if( m_tx_bits != 0 )
	{
		if( type() == PSX_SIO0 )
		{
			m_sck_handler(0);
		}

		m_txd_handler( m_tx_shift & 1 );
		m_tx_shift >>= 1;
		m_tx_bits--;

		if( type() == PSX_SIO0 )
		{
			m_sck_handler(1);
		}

		if( m_tx_bits == 0 &&
			( m_control & SIO_CONTROL_TX_IENA ) != 0 )
		{
			sio_interrupt();
		}
	}

	if( m_rx_bits != 0 )
	{
		m_rx_shift = ( m_rx_shift >> 1 ) | ( m_rxd << 7 );
		m_rx_bits--;

		if( m_rx_bits == 0 )
		{
			if( ( m_status & SIO_STATUS_RX_RDY ) != 0 )
			{
				m_status |= SIO_STATUS_OVERRUN;
			}
			else
			{
				m_rx_data = m_rx_shift;
				m_status |= SIO_STATUS_RX_RDY;
			}

			if( ( m_control & SIO_CONTROL_RX_IENA ) != 0 )
			{
				sio_interrupt();
			}
		}
	}

	sio_timer_adjust();
}

WRITE32_MEMBER( psxsio_device::write )
{
	switch( offset % 4 )
	{
	case 0:
		verboselog( machine(), 1, "psx_sio_w %s data %02x (%08x)\n", tag(), data, mem_mask );
		m_tx_data = data;
		m_status &= ~( SIO_STATUS_TX_RDY );
		m_status &= ~( SIO_STATUS_TX_EMPTY );
		sio_timer_adjust();
		break;
	case 1:
		verboselog( machine(), 0, "psx_sio_w( %08x, %08x, %08x )\n", offset, data, mem_mask );
		break;
	case 2:
		if( ACCESSING_BITS_0_15 )
		{
			m_mode = data & 0xffff;
			verboselog( machine(), 1, "psx_sio_w %s mode %04x\n", tag(), data & 0xffff );
		}
		if( ACCESSING_BITS_16_31 )
		{
			verboselog( machine(), 1, "psx_sio_w %s control %04x\n", tag(), data >> 16 );
			m_control = data >> 16;

			if( ( m_control & SIO_CONTROL_RESET ) != 0 )
			{
				verboselog( machine(), 1, "psx_sio_w reset\n" );
				m_status |= SIO_STATUS_TX_EMPTY | SIO_STATUS_TX_RDY;
				m_status &= ~( SIO_STATUS_RX_RDY | SIO_STATUS_OVERRUN | SIO_STATUS_IRQ );
				m_irq_handler(0);

				// toggle DTR to reset controllers, Star Ocean 2, at least, requires it
				// the precise mechanism of the reset is unknown
				// maybe it's related to the bottom 2 bits of control which are usually set
				m_dtr_handler(0);
				m_dtr_handler(1);

				m_tx_bits = 0;
				m_rx_bits = 0;
				m_txd_handler(1);
			}
			if( ( m_control & SIO_CONTROL_IACK ) != 0 )
			{
				verboselog( machine(), 1, "psx_sio_w iack\n" );
				m_status &= ~( SIO_STATUS_IRQ );
				m_control &= ~( SIO_CONTROL_IACK );
				m_irq_handler(0);
			}
			if( ( m_control & SIO_CONTROL_DTR ) != 0 )
			{
				m_dtr_handler(0);
			}
			else
			{
				m_dtr_handler(1);
			}
		}
		break;
	case 3:
		if( ACCESSING_BITS_0_15 )
		{
			verboselog( machine(), 0, "psx_sio_w( %08x, %08x, %08x )\n", offset, data, mem_mask );
		}
		if( ACCESSING_BITS_16_31 )
		{
			m_baud = data >> 16;
			verboselog( machine(), 1, "psx_sio_w %s baud %04x\n", tag(), data >> 16 );
		}
		break;
	default:
		verboselog( machine(), 0, "psx_sio_w( %08x, %08x, %08x )\n", offset, data, mem_mask );
		break;
	}
}

READ32_MEMBER( psxsio_device::read )
{
	UINT32 data;

	switch( offset % 4 )
	{
	case 0:
		data = m_rx_data;
		m_status &= ~( SIO_STATUS_RX_RDY );
		m_rx_data = 0xff;
		verboselog( machine(), 1, "psx_sio_r %s data %02x (%08x)\n", tag(), data, mem_mask );
		break;
	case 1:
		data = m_status;
		if( ACCESSING_BITS_0_15 )
		{
			verboselog( machine(), 1, "psx_sio_r %s status %04x\n", tag(), data & 0xffff );
		}
		if( ACCESSING_BITS_16_31 )
		{
			verboselog( machine(), 0, "psx_sio_r( %08x, %08x ) %08x\n", offset, mem_mask, data );
		}
		break;
	case 2:
		data = ( m_control << 16 ) | m_mode;
		if( ACCESSING_BITS_0_15 )
		{
			verboselog( machine(), 1, "psx_sio_r %s mode %04x\n", tag(), data & 0xffff );
		}
		if( ACCESSING_BITS_16_31 )
		{
			verboselog( machine(), 1, "psx_sio_r %s control %04x\n", tag(), data >> 16 );
		}
		break;
	case 3:
		data = m_baud << 16;
		if( ACCESSING_BITS_0_15 )
		{
			verboselog( machine(), 0, "psx_sio_r( %08x, %08x ) %08x\n", offset, mem_mask, data );
		}
		if( ACCESSING_BITS_16_31 )
		{
			verboselog( machine(), 1, "psx_sio_r %s baud %04x\n", tag(), data >> 16 );
		}
		break;
	default:
		data = 0;
		verboselog( machine(), 0, "psx_sio_r( %08x, %08x ) %08x\n", offset, mem_mask, data );
		break;
	}
	return data;
}

WRITE_LINE_MEMBER(psxsio_device::write_rxd)
{
	m_rxd = state;
}

WRITE_LINE_MEMBER(psxsio_device::write_dsr)
{
	if (state)
	{
		m_status &= ~SIO_STATUS_DSR;
	}
	else if ((m_status & SIO_STATUS_DSR) == 0)
	{
		m_status |= SIO_STATUS_DSR;

		if( ( m_control & SIO_CONTROL_DSR_IENA ) != 0 )
		{
			sio_interrupt();
		}
	}
}
/span>(NAME(m_filter_frequency)); save_item(NAME(m_filter_modulation)); save_item(NAME(m_filter_resonance)); save_item(NAME(m_pulse_width)); } double cem3394_device::compute_db(double voltage) { // assumes 0.0 == full off, 4.0 == full on, with linear taper, as described in the datasheet // above 4.0, maximum volume if (voltage >= 4.0) return 0.0; // below 0.0, minimum volume else if (voltage <= 0.0) return 90.0; // between 2.5 and 4.0, linear from 20dB to 0dB else if (voltage >= 2.5) return (4.0 - voltage) * (1.0 / 1.5) * 20.0; // between 0.0 and 2.5, exponential to 20dB else { double temp = 20.0 * pow(2.0, 2.5 - voltage); if (temp < 90.0) return 90.0; else return temp; } } stream_buffer::sample_t cem3394_device::compute_db_volume(double voltage) { double temp; // assumes 0.0 == full off, 4.0 == full on, with linear taper, as described in the datasheet // above 4.0, maximum volume if (voltage >= 4.0) return 1.0; // below 0.0, minimum volume else if (voltage <= 0.0) return 0; // between 2.5 and 4.0, linear from 20dB to 0dB else if (voltage >= 2.5) temp = (4.0 - voltage) * (1.0 / 1.5) * 20.0; // between 0.0 and 2.5, exponential to 20dB else { temp = 20.0 * pow(2.0, 2.5 - voltage); if (temp < 50.0) return 0; } // convert from dB to volume and return return powf(0.891251f, temp); } void cem3394_device::set_voltage(int input, double voltage) { double temp; // don't do anything if no change if (voltage == m_values[input]) return; m_values[input] = voltage; // update the stream first m_stream->update(); // switch off the input switch (input) { // frequency varies from -4.0 to +4.0, at 0.75V/octave case VCO_FREQUENCY: temp = m_vco_zero_freq * pow(2.0, -voltage * (1.0 / 0.75)); m_vco_step = temp * m_inv_sample_rate; if (LOG_CONTROL_CHANGES) logerror("VCO_FREQ=%6.3fV -> freq=%f\n", voltage, temp); break; // wave select determines triangle/sawtooth enable case WAVE_SELECT: m_wave_select &= ~(WAVE_TRIANGLE | WAVE_SAWTOOTH); if (voltage >= -0.5 && voltage <= -0.2) m_wave_select |= WAVE_TRIANGLE; else if (voltage >= 0.9 && voltage <= 1.5) m_wave_select |= WAVE_TRIANGLE | WAVE_SAWTOOTH; else if (voltage >= 2.3 && voltage <= 3.9) m_wave_select |= WAVE_SAWTOOTH; if (LOG_CONTROL_CHANGES) logerror("WAVE_SEL=%6.3fV -> tri=%d saw=%d\n", voltage, (m_wave_select & WAVE_TRIANGLE) ? 1 : 0, (m_wave_select & WAVE_SAWTOOTH) ? 1 : 0); break; // pulse width determines duty cycle; 0.0 means 0%, 2.0 means 100% case PULSE_WIDTH: if (voltage < 0.0) { m_pulse_width = 0; m_wave_select &= ~WAVE_PULSE; } else { m_pulse_width = voltage * 0.5; if (LIMIT_WIDTH) m_pulse_width = MINIMUM_WIDTH + (MAXIMUM_WIDTH - MINIMUM_WIDTH) * m_pulse_width; m_wave_select |= WAVE_PULSE; } if (LOG_CONTROL_CHANGES) logerror("PULSE_WI=%6.3fV -> raw=%f adj=%f\n", voltage, voltage * 0.5, m_pulse_width); break; // final gain is pretty self-explanatory; 0.0 means ~90dB, 4.0 means 0dB case FINAL_GAIN: m_volume = compute_db_volume(voltage); if (LOG_CONTROL_CHANGES) logerror("TOT_GAIN=%6.3fV -> vol=%f\n", voltage, m_volume); break; // mixer balance is a pan between the external input and the internal input // 0.0 is equal parts of both; positive values favor external, negative favor internal case MIXER_BALANCE: if (voltage >= 0.0) { m_mixer_internal = compute_db_volume(3.55 - voltage); m_mixer_external = compute_db_volume(3.55 + 0.45 * (voltage * 0.25)); } else { m_mixer_internal = compute_db_volume(3.55 - 0.45 * (voltage * 0.25)); m_mixer_external = compute_db_volume(3.55 + voltage); } if (LOG_CONTROL_CHANGES) logerror(" BALANCE=%6.3fV -> int=%f ext=%f\n", voltage, m_mixer_internal, m_mixer_external); break; // filter frequency varies from -3.0 to +4.0, at 0.375V/octave case FILTER_FREQENCY: m_filter_frequency = m_filter_zero_freq * pow(2.0, -voltage * (1.0 / 0.375)); if (LOG_CONTROL_CHANGES) logerror("FLT_FREQ=%6.3fV -> freq=%f\n", voltage, m_filter_frequency); break; // modulation depth is 0.01*freq at 0V and 2.0*freq at 3.5V case MODULATION_AMOUNT: if (voltage < 0.0) m_filter_modulation = 0.01; else if (voltage > 3.5) m_filter_modulation = 1.99; else m_filter_modulation = (voltage * (1.0 / 3.5)) * 1.98 + 0.01; if (LOG_CONTROL_CHANGES) logerror("FLT_MODU=%6.3fV -> mod=%f\n", voltage, m_filter_modulation); break; // this is not yet implemented case FILTER_RESONANCE: if (voltage < 0.0) m_filter_resonance = 0.0; else if (voltage > 2.5) m_filter_resonance = 1.0; else m_filter_resonance = voltage * (1.0 / 2.5); if (LOG_CONTROL_CHANGES) logerror("FLT_RESO=%6.3fV -> mod=%f\n", voltage, m_filter_resonance); break; } } double cem3394_device::get_parameter(int input) { double voltage = m_values[input]; switch (input) { case VCO_FREQUENCY: return m_vco_zero_freq * pow(2.0, -voltage * (1.0 / 0.75)); case WAVE_SELECT: return voltage; case PULSE_WIDTH: if (voltage <= 0.0) return 0.0; else if (voltage >= 2.0) return 1.0; else return voltage * 0.5; case FINAL_GAIN: return compute_db(voltage); case MIXER_BALANCE: return voltage * 0.25; case MODULATION_AMOUNT: if (voltage < 0.0) return 0.01; else if (voltage > 3.5) return 1.99; else return (voltage * (1.0 / 3.5)) * 1.98 + 0.01; case FILTER_RESONANCE: if (voltage < 0.0) return 0.0; else if (voltage > 2.5) return 1.0; else return voltage * (1.0 / 2.5); case FILTER_FREQENCY: return m_filter_zero_freq * pow(2.0, -voltage * (1.0 / 0.375)); } return 0.0; }