1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
|
// license:BSD-3-Clause
// copyright-holders:Olivier Galibert
// Yamaha SWP30/30B, rompler/dsp combo
#include "emu.h"
#include "swp30.h"
static int scount = 0;
/*
The SWP30 is the combination of a rompler called AWM2 (Advanced Wave
Memory 2) and an effects DSP called MEG (Multiple Effects
Generator). It also includes some routing/mixing capabilities,
moving data between AWM2, MEG and serial inputs and outputs with
volume management capabilities everywhere. Its clock is 33.9MHz and
the output is at 44100Hz stereo (768 cycles per sample pair) per dac
output.
I/O wise, the chip has 8 generic audio serial inputs and 8 outputs
for external plugins, and two dac outputs. The DAC outputs are
stereo, and so is the first generic input. It's unclear whether the
outputs and the other inputs are stereo. The MU100 connects a
stereo ADC to the first input, and routes the third input and output
to the plugin boards, but not the left/right input clock, arguing
for mono.
Registers:
The chip interface presents 4096 16-bits registers in a 64x64 grid.
They all seem to be read/write. Some of this grid is for
per-channel values for AWM2, but parts are isolated and renumbered
for MEG regisrers or for general control functions.
Names we'll use in th rest of the text:
- reg(y, x) is the register at address 2*(y*0x40 + x)
- ch<nn> is reg(channel, xx) for a given AWG2 channel
- sy<nn> is reg(nn/2, 0xe + (nn % 2))
- fp<nnn> is reg(nn/6, 0x21 + 2*(nn % 6))
- of<nn> is reg(nn/2, 0x30 + (nn % 2))
- lfo<nn> is reg(nn/2, 0x3e + (nn % 2)) for nn = 0..17
AWM2:
The AWM2 is in charge of handling the individual channels. It
manages reading the rom, decoding the samples, applying volume and
pitch envelopes and lfos and filtering the result. Each channel is
then sent to the mixer for further processing.
The sound data can be four formats (8 bits, 12 bits, 16 bits, and a
8-bits log format with roughly 10 bits of dynamic). The rom bus is
25 bits address and 32 bits data wide. It applies four filters to
the sample data, two of fixed type (low pass then highpass) and two
free 3-point FIR filters (used for yet another lowpass and
highpass). Envelopes are handled semi-automatically, and the final
panned result is sent to the mixer.
ch00 fixed LPF frequency cutoff index
ch01 fixed LPF frequency cutoff index increment?
ch02 fixed HPF frequency cutoff
ch03 40ff at startup, 5010 always afterwards?
ch04 fixed LPF resonance level
ch05 unknown
ch06 attack, bit 14-8 = step, bit 7 = skip
ch07 decay, bit 14-8 = step, bit 7-0 = target attenuation (top 8 bits)
ch08 release, bit 14-8 = step, bit 7-0 = target attenuation (top 8 bits)
ch09 base volume bit 15 = activate release, bit 14-8 unknown, bit 7-0 = initial attenuation
ch0a-0d unknown, probably something to do with pitch eg
ch10 unknown
ch11 bit 15 = compressed 8-bits mode, 13-0 channel replay frequency, signed 3.10 fixed point,
log2 scale, positive is higher resulting frequency.
ch12-13 bit 31 unknown, 30 unknown, 29-0 = number of samples before the loop point
ch14-15 bit 31 = play sample backwards, 30-0 = number of samples in the loop
ch16-17 bit 31-30 = sample format, 29-25 = loop samples decimal part, 24-0 = loop start address in rom
ch20,22,24 first FIR coefficients
ch26,28,2a second FIR coefficients
ch2c-2f unknown
ch32 pan left/right, 2x8 bits of attenuation
sy02 internal register selector, msb = 0 or 6, lsb = channel
sy03 internal register read port, used for envelope/keyoff management, 6 seems to be current volume
sy0c-0f keyon mask
sy10 write something to trigger a keyon according to the mask
The current attenuation (before panning) is on 26 bits, in 4.22
floating point format, of which only probably the top 8 are used for
actual volume computations (see the Mixer part). The steps are in
4.3 floating-point format, e.g. the value converts to linear as:
step = (8 + bit 2..0) << (bit 7..4)
giving a value between 8 and 0x78000. This value is added or
substracted after each sample.
For attack the actual range of steps is 8..119, giving an increment
of 0x10 to 0x3c000, and a full sweep from -96dB to 0 in 95s (8) to
6.2ms (119).
For decay and release the range is 1..120, e.g. 9 to 0x40000, or
169s to 5.8ms for a full sweep.
MEG:
The MEG is a DSP with 384 program steps connected to a 0x40000
samples ram. Instructions are 64 bits wide, and to each instruction
is associated a 2.14 fixed point value, Every third instruction (pc
multiple of 3) can initiate a memory access to the reverb buffer
which will be completed two instructions later. Each of those
instructions is associated to a 16-bits address offset value.
The DSP also sports 256 rotating registers (e.g. register 1 at run
<n> becomes register 0 at run <n+1>) and 64 fixed registers. The
fixed registers are used to store the results of reading the samples
ram and also communicate with the mixer.
Every 44100th of a second the 384 program steps are run once in
order (no branches) to compute everything.
24 LFO registers are available (possibly more). The LFO registers
internal counters are 22 bits wide. The LSB of the register gives
the increment per sample, encoded in a special 3.5 format.
With scale = 3bits and v = 5bits,
step = base[scale] + (v << shift[scale])
base = { 0, 32, 64, 128, 256, 512, 1024, 2048 }
shift = { 0, 0, 1, 2, 3, 4, 5, 6 }
The 21th bit of the counter inverts bits 20-0 on read, those are
interpreted as a 0-1 value, giving a sawtooth wave.
8 mappings can be setup, which allow to manage rotating buffers in
the samples ram easily by automating masking and offset adding. The
register format is: tttttsss oooooooo. 't' is not understood
yet. 's' is the sub-buffer size, defined as 1 << (10+s). The base
offset is o << 10. There are no alignment issues, e.g. you can have
a buffer at 0x28000 which is 0x10000 samples long.
fp<nnn> fixed point 2.14 value associated with instruction nnn
of<nn> 16-bits offset associated with instruction 3*nn
lfo<nn> LFO registers
sy21 MEG program write address
sy22-25 MEG program opcode, msb-first, writing to 25 triggers an auto-increment
sy30-3e even slots only, MEG buffer mappings
Mixer:
The mixer gets the outputs of the AWM2, the MEG (for the previous
sample) and the external inputs, attenuates and sums them according
to its mapping instructions, and pushes the results to the MEG, the
DACs and the external outputs. The attenuations are 8-bits values
in 4.4 floating point format (multiplies by (1-mant/2)*2**(-exp)).
The routing is indicated through triplets of 16-bits values.
ch33 dry (msb) and reverb (lsb) attenuation for an AWM2 channel
ch34 chorus (msb) and variation (lsb) atternuation
ch35-37 routing for an AWM2 channel
*/
DEFINE_DEVICE_TYPE(SWP30, swp30_device, "swp30", "Yamaha SWP30 sound chip")
swp30_device::swp30_device(const machine_config &mconfig, const char *tag, device_t *owner, const XTAL &clock)
: device_t(mconfig, SWP30, tag, owner, clock),
device_sound_interface(mconfig, *this),
device_rom_interface(mconfig, *this),
m_meg(*this, "meg")
{
(void)m_map;
}
void swp30_device::device_add_mconfig(machine_config &config)
{
MEGEMB(config, m_meg);
}
void swp30_device::device_start()
{
m_stream = stream_alloc(0, 2, 44100, STREAM_SYNCHRONOUS);
// Attenuation for panning is 4.4 floating point. That means 0
// to -96.3dB. Since it's a nice range, we assume it's the same
// for other attenuation values. Computed value is 1.16
// format, to avoid overflow
for(int i=0; i<256; i++)
m_linear_attenuation[i] = ((32 - (i & 15)) << (0xf ^ (i >> 4))) >> 4;
// Relative playback frequency of a sample is encoded on signed 14
// bits. The scale is logarithmic, with 0x400 = 1 octave (e.g. *2
// or /2).
for(int i=-0x2000; i<0x2000; i++)
m_sample_increment[i & 0x3fff] = 256 * pow(2, i/1024.0);
// Log to linear 8-bits sample decompression. Statistics say
// that's what it should look like. Note that 0 can be encoded
// both as 0x00 and 0x80, and as it happens 0x80 is never used in
// these samples. Ends up with a 55dB dynamic range, to compare
// with 8bits 48dB, 12bits 72dB and 16bits 96dB.
// Rescale so that it's roughly 16 bits. Range ends up being +/- 78c0.
for(int i=0; i<32; i++) {
m_sample_log8[ i] = i << 0;
m_sample_log8[0x20|i] = (i << 1) + 0x21;
m_sample_log8[0x40|i] = (i << 2) + 0x62;
m_sample_log8[0x60|i] = (i << 3) + 0xe3;
}
for(int i=0; i<128; i++) {
m_sample_log8[i] = m_sample_log8[i] << 6;
m_sample_log8[i | 0x80] = -m_sample_log8[i];
}
save_item(NAME(m_program));
save_item(NAME(m_keyon_mask));
save_item(NAME(m_pre_size));
save_item(NAME(m_post_size));
save_item(NAME(m_address));
save_item(NAME(m_sample_pos));
save_item(NAME(m_sample_history));
save_item(NAME(m_program_pfp));
save_item(NAME(m_program_pint));
save_item(NAME(m_program_plfo));
save_item(NAME(m_base_volume));
save_item(NAME(m_current_volume));
save_item(NAME(m_mode));
save_item(NAME(m_freq));
save_item(NAME(m_pan));
save_item(NAME(m_attack));
save_item(NAME(m_decay));
save_item(NAME(m_release));
save_item(NAME(m_lpf_cutoff));
save_item(NAME(m_lpf_cutoff_inc));
save_item(NAME(m_lpf_reso));
save_item(NAME(m_hpf_cutoff));
save_item(NAME(m_eq_filter));
save_item(NAME(m_routing));
save_item(NAME(m_internal_adr));
save_item(NAME(m_program_address));
save_item(NAME(m_waverom_adr));
save_item(NAME(m_waverom_mode));
save_item(NAME(m_waverom_access));
save_item(NAME(m_waverom_val));
}
void swp30_device::device_reset()
{
memset(m_program, 0, sizeof(m_program));
m_keyon_mask = 0;
memset(m_pre_size, 0, sizeof(m_pre_size));
memset(m_post_size, 0, sizeof(m_post_size));
memset(m_address, 0, sizeof(m_address));
memset(m_sample_pos, 0, sizeof(m_sample_pos));
memset(m_sample_history, 0, sizeof(m_sample_history));
memset(m_program_pfp, 0, sizeof(m_program_pfp));
memset(m_program_pint, 0, sizeof(m_program_pint));
memset(m_program_plfo, 0, sizeof(m_program_plfo));
memset(m_base_volume, 0, sizeof(m_base_volume));
memset(m_current_volume, 0, sizeof(m_current_volume));
memset(m_mode, IDLE, sizeof(m_mode));
memset(m_freq, 0, sizeof(m_freq));
memset(m_pan, 0, sizeof(m_pan));
memset(m_attack, 0, sizeof(m_attack));
memset(m_decay, 0, sizeof(m_decay));
memset(m_release, 0, sizeof(m_release));
memset(m_lpf_cutoff, 0, sizeof(m_lpf_cutoff));
memset(m_lpf_cutoff_inc, 0, sizeof(m_lpf_cutoff_inc));
memset(m_lpf_reso, 0, sizeof(m_lpf_reso));
memset(m_hpf_cutoff, 0, sizeof(m_hpf_cutoff));
memset(m_eq_filter, 0, sizeof(m_eq_filter));
memset(m_routing, 0, sizeof(m_routing));
m_program_address = 0;
m_waverom_adr = 0;
m_waverom_mode = 0;
m_waverom_access = 0;
m_waverom_val = 0;
}
void swp30_device::map(address_map &map)
{
map(0x0000, 0x1fff).rw(FUNC(swp30_device::snd_r), FUNC(swp30_device::snd_w));
rchan(map, 0x00).rw(FUNC(swp30_device::lpf_cutoff_r), FUNC(swp30_device::lpf_cutoff_w));
rchan(map, 0x01).rw(FUNC(swp30_device::lpf_cutoff_inc_r), FUNC(swp30_device::lpf_cutoff_inc_w));
rchan(map, 0x02).rw(FUNC(swp30_device::hpf_cutoff_r), FUNC(swp30_device::hpf_cutoff_w));
// 03 seems to always get 5010 except at startup where it's 40ff
rchan(map, 0x04).rw(FUNC(swp30_device::lpf_reso_r), FUNC(swp30_device::lpf_reso_w));
// 05 missing
rchan(map, 0x06).rw(FUNC(swp30_device::attack_r), FUNC(swp30_device::attack_w));
rchan(map, 0x07).rw(FUNC(swp30_device::decay_r), FUNC(swp30_device::decay_w));
rchan(map, 0x08).rw(FUNC(swp30_device::release_r), FUNC(swp30_device::release_w));
rchan(map, 0x09).rw(FUNC(swp30_device::base_volume_r), FUNC(swp30_device::base_volume_w));
// 0a-0d missing
// 10 missing
rchan(map, 0x11).rw(FUNC(swp30_device::freq_r), FUNC(swp30_device::freq_w));
rchan(map, 0x12).rw(FUNC(swp30_device::pre_size_h_r), FUNC(swp30_device::pre_size_h_w));
rchan(map, 0x13).rw(FUNC(swp30_device::pre_size_l_r), FUNC(swp30_device::pre_size_l_w));
rchan(map, 0x14).rw(FUNC(swp30_device::post_size_h_r), FUNC(swp30_device::post_size_h_w));
rchan(map, 0x15).rw(FUNC(swp30_device::post_size_l_r), FUNC(swp30_device::post_size_l_w));
rchan(map, 0x16).rw(FUNC(swp30_device::address_h_r), FUNC(swp30_device::address_h_w));
rchan(map, 0x17).rw(FUNC(swp30_device::address_l_r), FUNC(swp30_device::address_l_w));
rchan(map, 0x20).rw(FUNC(swp30_device::eq_filter_r<0>), FUNC(swp30_device::eq_filter_w<0>));
rchan(map, 0x22).rw(FUNC(swp30_device::eq_filter_r<1>), FUNC(swp30_device::eq_filter_w<1>));
rchan(map, 0x24).rw(FUNC(swp30_device::eq_filter_r<2>), FUNC(swp30_device::eq_filter_w<2>));
rchan(map, 0x26).rw(FUNC(swp30_device::eq_filter_r<3>), FUNC(swp30_device::eq_filter_w<3>));
rchan(map, 0x28).rw(FUNC(swp30_device::eq_filter_r<4>), FUNC(swp30_device::eq_filter_w<4>));
rchan(map, 0x2a).rw(FUNC(swp30_device::eq_filter_r<5>), FUNC(swp30_device::eq_filter_w<5>));
// 2c-2f missing
rchan(map, 0x32).rw(FUNC(swp30_device::pan_r), FUNC(swp30_device::pan_w));
rchan(map, 0x33).rw(FUNC(swp30_device::dry_rev_r), FUNC(swp30_device::dry_rev_w));
rchan(map, 0x34).rw(FUNC(swp30_device::cho_var_r), FUNC(swp30_device::cho_var_w));
rchan(map, 0x35).rw(FUNC(swp30_device::routing_r<0>), FUNC(swp30_device::routing_w<0>));
rchan(map, 0x36).rw(FUNC(swp30_device::routing_r<1>), FUNC(swp30_device::routing_w<1>));
rchan(map, 0x37).rw(FUNC(swp30_device::routing_r<2>), FUNC(swp30_device::routing_w<2>));
// 38-3d missing, are special
// Control registers
// These appear as channel slots 0x0e and 0x0f
// 00-01 missing
rctrl(map, 0x02).rw(FUNC(swp30_device::internal_adr_r), FUNC(swp30_device::internal_adr_w));
rctrl(map, 0x03).r (FUNC(swp30_device::internal_r));
rctrl(map, 0x04).rw(FUNC(swp30_device::waverom_adr_r<1>), FUNC(swp30_device::waverom_adr_w<1>));
rctrl(map, 0x05).rw(FUNC(swp30_device::waverom_adr_r<0>), FUNC(swp30_device::waverom_adr_w<0>));
rctrl(map, 0x06).rw(FUNC(swp30_device::waverom_mode_r<1>), FUNC(swp30_device::waverom_mode_w<1>));
rctrl(map, 0x07).rw(FUNC(swp30_device::waverom_mode_r<0>), FUNC(swp30_device::waverom_mode_w<0>));
rctrl(map, 0x08).rw(FUNC(swp30_device::waverom_access_r), FUNC(swp30_device::waverom_access_w));
rctrl(map, 0x09).r (FUNC(swp30_device::waverom_busy_r));
rctrl(map, 0x0a).r (FUNC(swp30_device::waverom_val_r<1>));
rctrl(map, 0x0b).r (FUNC(swp30_device::waverom_val_r<0>));
rctrl(map, 0x0c).rw(FUNC(swp30_device::keyon_mask_r<3>), FUNC(swp30_device::keyon_mask_w<3>));
rctrl(map, 0x0d).rw(FUNC(swp30_device::keyon_mask_r<2>), FUNC(swp30_device::keyon_mask_w<2>));
rctrl(map, 0x0e).rw(FUNC(swp30_device::keyon_mask_r<1>), FUNC(swp30_device::keyon_mask_w<1>));
rctrl(map, 0x0f).rw(FUNC(swp30_device::keyon_mask_r<0>), FUNC(swp30_device::keyon_mask_w<0>));
rctrl(map, 0x10).rw(FUNC(swp30_device::keyon_r), FUNC(swp30_device::keyon_w));
// 11-20 missing
rctrl(map, 0x21).rw(FUNC(swp30_device::prg_address_r), FUNC(swp30_device::prg_address_w));
rctrl(map, 0x22).rw(FUNC(swp30_device::prg_r<0>), FUNC(swp30_device::prg_w<0>));
rctrl(map, 0x23).rw(FUNC(swp30_device::prg_r<1>), FUNC(swp30_device::prg_w<1>));
rctrl(map, 0x24).rw(FUNC(swp30_device::prg_r<2>), FUNC(swp30_device::prg_w<2>));
rctrl(map, 0x25).rw(FUNC(swp30_device::prg_r<3>), FUNC(swp30_device::prg_w<3>));
// 26-7f missing
rctrl(map, 0x30).rw(FUNC(swp30_device::map_r<0>), FUNC(swp30_device::map_w<0>));
rctrl(map, 0x32).rw(FUNC(swp30_device::map_r<1>), FUNC(swp30_device::map_w<1>));
rctrl(map, 0x34).rw(FUNC(swp30_device::map_r<2>), FUNC(swp30_device::map_w<2>));
rctrl(map, 0x36).rw(FUNC(swp30_device::map_r<3>), FUNC(swp30_device::map_w<3>));
rctrl(map, 0x38).rw(FUNC(swp30_device::map_r<4>), FUNC(swp30_device::map_w<4>));
rctrl(map, 0x3a).rw(FUNC(swp30_device::map_r<5>), FUNC(swp30_device::map_w<5>));
rctrl(map, 0x3c).rw(FUNC(swp30_device::map_r<6>), FUNC(swp30_device::map_w<6>));
rctrl(map, 0x3e).rw(FUNC(swp30_device::map_r<7>), FUNC(swp30_device::map_w<7>));
// MEG registers
rchan(map, 0x21).rw(FUNC(swp30_device::prg_fp_r<0>), FUNC(swp30_device::prg_fp_w<0>));
rchan(map, 0x23).rw(FUNC(swp30_device::prg_fp_r<1>), FUNC(swp30_device::prg_fp_w<1>));
rchan(map, 0x25).rw(FUNC(swp30_device::prg_fp_r<2>), FUNC(swp30_device::prg_fp_w<2>));
rchan(map, 0x27).rw(FUNC(swp30_device::prg_fp_r<3>), FUNC(swp30_device::prg_fp_w<3>));
rchan(map, 0x29).rw(FUNC(swp30_device::prg_fp_r<4>), FUNC(swp30_device::prg_fp_w<4>));
rchan(map, 0x2b).rw(FUNC(swp30_device::prg_fp_r<5>), FUNC(swp30_device::prg_fp_w<5>));
rchan(map, 0x30).rw(FUNC(swp30_device::prg_off_r<0>), FUNC(swp30_device::prg_off_w<0>));
rchan(map, 0x31).rw(FUNC(swp30_device::prg_off_r<1>), FUNC(swp30_device::prg_off_w<1>));
rchan(map, 0x3e).rw(FUNC(swp30_device::prg_lfo_r<0>), FUNC(swp30_device::prg_lfo_w<0>));
rchan(map, 0x3f).rw(FUNC(swp30_device::prg_lfo_r<1>), FUNC(swp30_device::prg_lfo_w<1>));
}
// Control registers
template<int sel> u16 swp30_device::keyon_mask_r()
{
return m_keyon_mask >> (16*sel);
}
template<int sel> void swp30_device::keyon_mask_w(u16 data)
{
m_keyon_mask = (m_keyon_mask & ~(u64(0xffff) << (16*sel))) | (u64(data) << (16*sel));
}
u16 swp30_device::keyon_r()
{
return 0;
}
void swp30_device::keyon_w(u16)
{
for(int i=0; i<64; i++) {
u64 mask = u64(1) << i;
if(m_keyon_mask & mask) {
m_sample_pos[i] = -s32(m_pre_size[i] << 8);
m_current_volume[i] = (m_base_volume[i] & 0xff) << (26-8);
change_mode(i, m_base_volume[i] & 0x8000 ? RELEASE : m_attack[i] & 0x80 ? DECAY : ATTACK);
if(1)
logerror("[%08d] keyon %02x %08x %08x %08x vol %04x env %04x %04x %04x pan %04x disp %04x %04x\n", scount, i, m_pre_size[i], m_post_size[i], m_address[i], m_base_volume[i], m_attack[i], m_decay[i], m_release[i], m_pan[i], m_dry_rev[i], m_cho_var[i]);
}
}
m_keyon_mask = 0;
}
u16 swp30_device::prg_address_r()
{
return m_program_address;
}
void swp30_device::prg_address_w(u16 data)
{
m_program_address = data;
if(m_program_address >= 0x180)
m_program_address = 0;
}
template<int sel> u16 swp30_device::prg_r()
{
constexpr offs_t shift = 48-16*sel;
return m_meg->prg_r(m_program_address) >> shift;
}
template<int sel> void swp30_device::prg_w(u16 data)
{
constexpr offs_t shift = 48-16*sel;
constexpr u64 mask = ~(u64(0xffff) << shift);
m_meg->prg_w(m_program_address, (m_meg->prg_r(m_program_address) & mask) | (u64(data) << shift));
if(sel == 3) {
if(0)
logerror("program %03x %016x\n", m_program_address, m_program[m_program_address]);
m_program_address ++;
if(m_program_address == 0x180)
m_program_address = 0;
}
}
template<int sel> u16 swp30_device::map_r()
{
return m_meg->map_r(sel);
}
template<int sel> void swp30_device::map_w(u16 data)
{
m_meg->map_w(sel, data);
}
template<int sel> void swp30_device::waverom_adr_w(u16 data)
{
if(sel)
m_waverom_adr = (m_waverom_adr & 0x0000ffff) | (data << 16);
else
m_waverom_adr = (m_waverom_adr & 0xffff0000) | data;
}
template<int sel> u16 swp30_device::waverom_adr_r()
{
return m_waverom_adr >> (16*sel);
}
template<int sel> void swp30_device::waverom_mode_w(u16 data)
{
if(sel)
m_waverom_mode = (m_waverom_mode & 0x0000ffff) | (data << 16);
else
m_waverom_mode = (m_waverom_mode & 0xffff0000) | data;
}
template<int sel> u16 swp30_device::waverom_mode_r()
{
return m_waverom_mode >> (16*sel);
}
void swp30_device::waverom_access_w(u16 data)
{
m_waverom_access = data;
if(data == 0x8000) {
m_waverom_val = read_dword(m_waverom_adr << 2);
logerror("waverom read adr=%08x mode=%08x -> %08x\n", m_waverom_adr, m_waverom_mode, m_waverom_val);
}
}
u16 swp30_device::waverom_access_r()
{
return m_waverom_access;
}
u16 swp30_device::waverom_busy_r()
{
// 0 = busy reading the rom, non-0 = finished
return 0xffff;
}
template<int sel> u16 swp30_device::waverom_val_r()
{
return m_waverom_val >> (16*sel);
}
// AWM2 per-channel registers
u16 swp30_device::lpf_cutoff_r(offs_t offset)
{
return m_lpf_cutoff[offset >> 6];
}
void swp30_device::lpf_cutoff_w(offs_t offset, u16 data)
{
u8 chan = offset >> 6;
if(0 && m_lpf_cutoff[chan] != data)
logerror("chan %02x lpf cutoff %04x\n", chan, data);
m_lpf_cutoff[chan] = data;
}
u16 swp30_device::lpf_cutoff_inc_r(offs_t offset)
{
return m_lpf_cutoff_inc[offset >> 6];
}
void swp30_device::lpf_cutoff_inc_w(offs_t offset, u16 data)
{
u8 chan = offset >> 6;
if(0 && m_lpf_cutoff_inc[chan] != data)
logerror("chan %02x lpf cutoff increment %04x\n", chan, data);
m_lpf_cutoff_inc[chan] = data;
}
u16 swp30_device::hpf_cutoff_r(offs_t offset)
{
return m_hpf_cutoff[offset >> 6];
}
void swp30_device::hpf_cutoff_w(offs_t offset, u16 data)
{
u8 chan = offset >> 6;
if(0 && m_hpf_cutoff[chan] != data)
logerror("chan %02x hpf cutoff %04x\n", chan, data);
m_hpf_cutoff[chan] = data;
}
u16 swp30_device::lpf_reso_r(offs_t offset)
{
return m_lpf_reso[offset >> 6];
}
void swp30_device::lpf_reso_w(offs_t offset, u16 data)
{
u8 chan = offset >> 6;
if(0 && m_lpf_reso[chan] != data)
logerror("chan %02x lpf resonance %04x\n", chan, data);
m_lpf_reso[chan] = data;
}
template<int coef> u16 swp30_device::eq_filter_r(offs_t offset)
{
return m_eq_filter[offset >> 6][coef];
}
template<int coef> void swp30_device::eq_filter_w(offs_t offset, u16 data)
{
m_eq_filter[offset >> 6][coef] = data;
}
template<int sel> u16 swp30_device::routing_r(offs_t offset)
{
return m_routing[offset >> 6][sel];
}
template<int sel> void swp30_device::routing_w(offs_t offset, u16 data)
{
m_routing[offset >> 6][sel] = data;
}
u16 swp30_device::base_volume_r(offs_t offset)
{
return m_base_volume[offset >> 6];
}
void swp30_device::base_volume_w(offs_t offset, u16 data)
{
u8 chan = offset >> 6;
if(1 && m_base_volume[chan] != data)
logerror("snd chan %02x volume %02x %02x\n", chan, data >> 8, data & 0xff);
m_base_volume[chan] = data;
if((data & 0x8000) && m_mode[chan] != IDLE && m_mode[chan] != RELEASE)
change_mode(chan, RELEASE);
}
u16 swp30_device::pan_r(offs_t offset)
{
return m_pan[offset >> 6];
}
void swp30_device::pan_w(offs_t offset, u16 data)
{
u8 chan = offset >> 6;
if(0 && m_pan[chan] != data)
logerror("snd chan %02x pan l %02x r %02x\n", chan, data >> 8, data & 0xff);
m_pan[chan] = data;
}
u16 swp30_device::dry_rev_r(offs_t offset)
{
return m_dry_rev[offset >> 6];
}
void swp30_device::dry_rev_w(offs_t offset, u16 data)
{
u8 chan = offset >> 6;
if(0 && m_dry_rev[chan] != data)
logerror("snd chan %02x dry %02x rev %02x\n", chan, data >> 8, data & 0xff);
m_dry_rev[chan] = data;
}
u16 swp30_device::cho_var_r(offs_t offset)
{
return m_cho_var[offset >> 6];
}
void swp30_device::cho_var_w(offs_t offset, u16 data)
{
u8 chan = offset >> 6;
if(0 && m_cho_var[chan] != data)
logerror("snd chan %02x cho %02x var %02x\n", chan, data >> 8, data & 0xff);
m_cho_var[chan] = data;
}
u16 swp30_device::freq_r(offs_t offset)
{
return m_freq[offset >> 6];
}
void swp30_device::freq_w(offs_t offset, u16 data)
{
u8 chan = offset >> 6;
// delta is 4*256 per octave, positive means higher freq, e.g 4.10 format.
s16 v = data & 0x2000 ? data | 0xc000 : data;
if(0 && m_freq[chan] != data)
logerror("snd chan %02x freq %c%c %d.%03x\n", chan, data & 0x8000 ? '#' : '.', data & 0x4000 ? '#' : '.', v / 1024, (v < 0 ? -v : v) & 0x3ff);
m_freq[chan] = data;
}
u16 swp30_device::attack_r(offs_t offset)
{
return m_attack[offset >> 6];
}
void swp30_device::attack_w(offs_t offset, u16 data)
{
m_attack[offset >> 6] = data;
}
u16 swp30_device::decay_r(offs_t offset)
{
return m_decay[offset >> 6];
}
void swp30_device::decay_w(offs_t offset, u16 data)
{
m_decay[offset >> 6] = data;
}
u16 swp30_device::release_r(offs_t offset)
{
return m_release[offset >> 6];
}
void swp30_device::release_w(offs_t offset, u16 data)
{
m_release[offset >> 6] = data;
}
u16 swp30_device::pre_size_h_r(offs_t offset)
{
return m_pre_size[offset >> 6] >> 16;
}
u16 swp30_device::pre_size_l_r(offs_t offset)
{
return m_pre_size[offset >> 6];
}
void swp30_device::pre_size_h_w(offs_t offset, u16 data)
{
u8 chan = offset >> 6;
m_pre_size[chan] = (m_pre_size[chan] & 0x0000ffff) | (data << 16);
}
void swp30_device::pre_size_l_w(offs_t offset, u16 data)
{
u8 chan = offset >> 6;
m_pre_size[chan] = (m_pre_size[chan] & 0xffff0000) | data;
if(0)
logerror("snd chan %02x pre-size %02x %06x\n", chan, m_pre_size[chan] >> 24, m_pre_size[chan] & 0xffffff);
}
u16 swp30_device::post_size_h_r(offs_t offset)
{
return m_post_size[offset >> 6] >> 16;
}
u16 swp30_device::post_size_l_r(offs_t offset)
{
return m_post_size[offset >> 6];
}
void swp30_device::post_size_h_w(offs_t offset, u16 data)
{
u8 chan = offset >> 6;
m_post_size[chan] = (m_post_size[chan] & 0x0000ffff) | (data << 16);
}
void swp30_device::post_size_l_w(offs_t offset, u16 data)
{
u8 chan = offset >> 6;
m_post_size[chan] = (m_post_size[chan] & 0xffff0000) | data;
if(0)
logerror("snd chan %02x post-size %02x %06x\n", chan, m_post_size[chan] >> 24, m_post_size[chan] & 0xffffff);
}
u16 swp30_device::address_h_r(offs_t offset)
{
return m_address[offset >> 6] >> 16;
}
u16 swp30_device::address_l_r(offs_t offset)
{
return m_address[offset >> 6];
}
void swp30_device::address_h_w(offs_t offset, u16 data)
{
u8 chan = offset >> 6;
m_address[chan] = (m_address[chan] & 0x0000ffff) | (data << 16);
}
void swp30_device::address_l_w(offs_t offset, u16 data)
{
u8 chan = offset >> 6;
static const char *const formats[4] = { "l16", "l12", "l8", "x8" };
m_address[chan] = (m_address[chan] & 0xffff0000) | data;
if(0)
logerror("snd chan %02x format %s flags %02x address %06x\n", chan, formats[m_address[chan] >> 30], (m_address[chan] >> 24) & 0x3f, m_address[chan] & 0xffffff);
}
u16 swp30_device::internal_adr_r()
{
return m_internal_adr;
}
void swp30_device::internal_adr_w(u16 data)
{
m_internal_adr = data;
}
u16 swp30_device::internal_r()
{
u8 chan = m_internal_adr & 0x3f;
switch(m_internal_adr >> 8) {
case 0:
return m_mode[chan] == IDLE ? 0xffff : m_current_volume[chan] >> (26-14);
case 4:
// used at 44c4
// tests & 0x4000 only
// logerror("read %02x.4\n", chan);
return 0xffff;
case 6:
// used at 3e7c
// tests & 0x8000 only, keyoff?
logerror("read %02x.6\n", chan);
return 0x0000;
}
logerror("%s internal_r port %x channel %02x sample %d\n", machine().time().to_string(), m_internal_adr >> 8, m_internal_adr & 0x1f, scount);
machine().debug_break();
return 0;
}
// MEG registers forwarding
template<int sel> u16 swp30_device::prg_fp_r(offs_t offset)
{
return m_meg->fp_r((offset >> 6)*6 + sel);
}
template<int sel> void swp30_device::prg_fp_w(offs_t offset, u16 data)
{
m_meg->fp_w((offset >> 6)*6 + sel, data);
}
template<int sel> u16 swp30_device::prg_off_r(offs_t offset)
{
return m_meg->offset_r((offset >> 6)*2 + sel);
}
template<int sel> void swp30_device::prg_off_w(offs_t offset, u16 data)
{
m_meg->offset_w((offset >> 6)*2 + sel, data);
}
template<int sel> u16 swp30_device::prg_lfo_r(offs_t offset)
{
return m_meg->lfo_r((offset >> 6)*2 + sel);
}
template<int sel> void swp30_device::prg_lfo_w(offs_t offset, u16 data)
{
m_meg->lfo_w((offset >> 6)*2 + sel, data);
}
// Catch-all
static u16 rr[0x40*0x40];
u16 swp30_device::snd_r(offs_t offset)
{
if(0) {
int chan = (offset >> 6) & 0x3f;
int slot = offset & 0x3f;
std::string preg = "-";
if(slot >= 0x21 && slot <= 0x2b && (slot & 1))
preg = util::string_format("fp%03x", (slot-0x21)/2 + 6*chan);
else if(slot == 0x30 || slot == 0x31)
preg = util::string_format("dt%02x", (slot-0x30) + 2*chan);
else if(slot == 0x0e || slot == 0x0f)
preg = util::string_format("ct%02x", (slot-0x0e) + 2*chan);
else
preg = util::string_format("%02x.%02x", chan, slot);
logerror("snd_r [%04x %04x] %-5s, %04x\n", offset, offset*2, preg, rr[offset]);
}
if(0 && offset == 0x080f)
machine().debug_break();
if(offset == 0x080f)
return 0;
return rr[offset];
}
void swp30_device::snd_w(offs_t offset, u16 data)
{
if(rr[offset] == data)
return;
rr[offset] = data;
int chan = (offset >> 6) & 0x3f;
int slot = offset & 0x3f;
if(offset == 0x04e)
return;
if(0 && slot == 0x03)
machine().debug_break();
std::string preg = "-";
if(slot >= 0x21 && slot <= 0x2b && (slot & 1))
preg = util::string_format("fp%03x", (slot-0x21)/2 + 6*chan);
else if(slot == 0x0e || slot == 0x0f)
preg = util::string_format("sy%02x", (slot-0x0e) + 2*chan);
else if(slot == 0x30 || slot == 0x31)
preg = util::string_format("dt%02x", (slot-0x30) + 2*chan);
else if(slot == 0x38)
preg = util::string_format("vl%02x", chan);
else if(slot == 0x3e || slot == 0x3f)
preg = util::string_format("lf%02x", (slot-0x3e) + 2*chan);
else
preg = util::string_format("%02x.%02x", chan, slot);
// if((slot >= 0xa && slot <= 0xd) || (slot >= 0x2c && slot <= 0x2f))
// machine().debug_break();
logerror("snd_w [%04x %04x] %-5s, %04x\n", offset, offset*2, preg, data);
}
// Synthesis
void swp30_device::change_mode(int channel, u8 mode)
{
if(1)
logerror("[%08d] channel %02x mode %s\n", scount, channel,
mode == IDLE ? "idle" :
mode == ATTACK ? "attack" :
mode == DECAY ? "decay" :
mode == SUSTAIN ? "sustain" :
mode == RELEASE ? "release" :
"?");
m_mode[channel] = mode;
if(mode == IDLE || mode == SUSTAIN) {
m_step_volume[channel] = 0;
return;
}
u16 reg = mode == ATTACK ? m_attack[channel] & 0xff00 : mode == DECAY ? m_decay[channel] : m_release[channel];
u32 target = (reg & 0xff) << (26-8);
s32 step = (8 + ((reg >> 8) & 7)) << ((reg >> 11) & 15);
if(mode != ATTACK)
step *= 8;
if(target < m_current_volume[channel])
step = -step;
m_target_volume[channel] = target;
m_step_volume[channel] = step;
if(1) {
double delay = (double(target) - double(m_current_volume[channel])) / (44100*step);
logerror(" -> time until hit %f seconds\n", delay);
}
}
void swp30_device::sound_stream_update(sound_stream &stream, std::vector<read_stream_view> const &inputs, std::vector<write_stream_view> &outputs)
{
if(outputs[0].samples() != 1)
fatalerror("Sync stream not sync?\n");
scount++;
// Accumulate on 64 bits, shift/clamp at the end
s64 dry_left = 0, dry_right = 0;
// Loop on channels
for(int channel = 0; channel < 64; channel++)
if(m_mode[channel] != IDLE) {
// First, read the sample
// - Find the base sample index and base address
s32 spos = m_sample_pos[channel] >> 8;
offs_t base_address = (m_address[channel] & 0x1ffffff) << 2;
// - Read/decompress the sample
s16 samp = 0;
switch(m_address[channel] >> 30) {
case 0: { // 16-bits linear
offs_t adr = base_address + (spos << 1);
samp = read_word(adr);
break;
}
case 1: { // 12-bits linear
offs_t adr = base_address + (spos >> 2)*6;
switch(spos & 3) {
case 0: { // .abc .... ....
u16 w0 = read_word(adr);
samp = (w0 & 0x0fff) << 4;
break;
}
case 1: { // C... ..AB ....
u16 w0 = read_word(adr);
u16 w1 = read_word(adr+2);
samp = ((w0 & 0xf000) >> 8) | ((w1 & 0x00ff) << 8);
break;
}
case 2: { // .... bc.. ...a
u16 w0 = read_word(adr+2);
u16 w1 = read_word(adr+4);
samp = ((w0 & 0xff00) >> 4) | ((w1 & 0x000f) << 12);
break;
}
case 3: { // .... .... ABC.
u16 w1 = read_word(adr+4);
samp = w1 & 0xfff0;
break;
}
}
break;
}
case 2: // 8-bits linear
samp = read_byte(base_address + spos) << 8;
break;
case 3: // 8-bits logarithmic
samp = m_sample_log8[read_byte(base_address + spos)];
break;
}
//logerror("sample %02x %06x [%d] %+5d %04x %04x %04x\n", channel, base_address >> 2, m_address[channel] >> 30, spos, samp & 0xffff, m_volume[channel], m_pan[channel]);
// Second, step the sample pos, loop/deactivate as needed
m_sample_pos[channel] += m_sample_increment[m_freq[channel] & 0x3fff];
s32 loop_size = (m_post_size[channel] << 8) | ((m_address[channel] >> 22) & 0xf8);
if(m_sample_pos[channel] >= loop_size) {
// We reached the loop point, stop if loop size is zero,
// otherwise loop
if(!loop_size)
change_mode(channel, IDLE);
else
do
m_sample_pos[channel] -= loop_size;
while(m_sample_pos[channel] >= loop_size);
}
// Third, filter the sample
// - missing lpf_cutoff, lpf_reso, hpf_cutoff
// - eq lowpass
s32 samp1 = (samp * m_eq_filter[channel][2] + m_sample_history[channel][0][0] * m_eq_filter[channel][1] + m_sample_history[channel][0][1] * m_eq_filter[channel][0]) >> 13;
m_sample_history[channel][0][1] = m_sample_history[channel][0][0];
m_sample_history[channel][0][0] = samp;
// - eq highpass
s32 samp2 = (samp1 * m_eq_filter[channel][5] + m_sample_history[channel][1][0] * m_eq_filter[channel][4] + m_sample_history[channel][1][1] * m_eq_filter[channel][3]) >> 13;
m_sample_history[channel][1][1] = m_sample_history[channel][1][0];
m_sample_history[channel][1][0] = samp1;
// Fourth, establish the 8 volumes (only 2 for now, need the MEG) and update the envelope
u32 raw_vol = m_current_volume[channel];
u32 vol = raw_vol >> (26-8);
u32 base_l = vol + (m_pan[channel] >> 8);
u32 base_r = vol + (m_pan[channel] & 0xff);
u32 dry_l = base_l + (m_dry_rev[channel] >> 8);
u32 dry_r = base_r + (m_dry_rev[channel] >> 8);
s32 step = m_step_volume[channel];
u32 target = m_target_volume[channel];
if(0) {
u8 mode = m_mode[channel];
logerror("[%08d] channel %02x state %s vol=%07x step=%c%07x target=%07x\n",
scount,
channel,
mode == IDLE ? "idle" :
mode == ATTACK ? "attack" :
mode == DECAY ? "decay" :
mode == SUSTAIN ? "sustain" :
mode == RELEASE ? "release" :
"?",
raw_vol,
step < 0 ? '-' : '+',
step < 0 ? -step : step,
target);
}
if(step) {
raw_vol += step;
if((step < 0 && (raw_vol <= target || raw_vol & 0x80000000)) ||
(step > 0 && raw_vol >= target)) {
raw_vol = target;
m_current_volume[channel] = raw_vol;
// IDLE and SUSTAIN have zero step.
// current volume must be updated before calling change_mode
switch(m_mode[channel]) {
case ATTACK: change_mode(channel, DECAY); break;
case DECAY: change_mode(channel, SUSTAIN); break;
case RELEASE: change_mode(channel, IDLE); break;
}
} else
m_current_volume[channel] = raw_vol;
}
// Fifth, add to the (dry) accumulators
dry_left += samp2 * m_linear_attenuation[std::min(0xffu, dry_l)];
dry_right += samp2 * m_linear_attenuation[std::min(0xffu, dry_r)];
// Missing: reverb, chorus, effects in general
}
// Samples are 16 bits, there are up to 64 of them, and the accumulators are fixed-point signed 48.16
// Global EQ is missing (it's done in the MEG)
dry_left >>= 14;
outputs[0].put_int_clamp(0, dry_left, 32768);
dry_right >>= 14;
outputs[1].put_int_clamp(0, dry_right, 32768);
}
|