1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
// license:BSD-3-Clause
// copyright-holders:AJR
/**********************************************************************
Mitsubishi M50734 emulation (preliminary)
This microcontroller contains no internal memory, RAM or ROM. The
external bus allows P05 to be programmed as a strobe (DME) for a
separable "data" memory space. On-chip peripherals include an ADC,
UART, various general and special-purpose timers and a stepper
motor controller.
**********************************************************************/
#include "emu.h"
#include "m50734.h"
#define LOG_INIT (1 << 1U)
#define LOG_TIMER (1 << 2U)
#define VERBOSE (0)
#include "logmacro.h"
// device type definition
DEFINE_DEVICE_TYPE(M50734, m50734_device, "m50734", "Mitsubishi M50734")
m50734_device::m50734_device(const machine_config &mconfig, const char *tag, device_t *owner, const XTAL &clock)
: m740_device(mconfig, M50734, tag, owner, clock)
, m_data_config("data", ENDIANNESS_LITTLE, 8, 16, 0)
, m_port_in_cb(*this)
, m_port_out_cb(*this)
, m_analog_in_cb(*this)
, m_port_latch{0, 0, 0, 0}
, m_port_3state{0, 0, 0, 0}
, m_ad_control(0)
, m_ad_register(0)
, m_prescaler_reload{0xff, 0xff, 0xff}
, m_timer_reload{0xff, 0xff, 0xff}
{
program_config.m_internal_map = address_map_constructor(FUNC(m50734_device::internal_map), this);
}
device_memory_interface::space_config_vector m50734_device::memory_space_config() const
{
space_config_vector scv = m740_device::memory_space_config();
if (has_configured_map(AS_DATA))
scv.emplace_back(AS_DATA, &m_data_config);
return scv;
}
void m50734_device::device_resolve_objects()
{
for (int n = 0; n < 4; n++)
m_port_in_cb[n].resolve_safe(m_port_3state[n]);
m_port_in_cb[4].resolve_safe(0);
m_port_out_cb.resolve_all_safe();
m_analog_in_cb.resolve_all_safe(0);
}
template <int N>
TIMER_CALLBACK_MEMBER(m50734_device::timer_interrupt)
{
if (!BIT(m_interrupt_control[1], N * 2 + 1))
{
m_interrupt_control[1] |= 1 << (N * 2 + 1);
if (BIT(m_interrupt_control[1], N * 2))
{
LOGMASKED(LOG_TIMER, "Timer %d interrupt asserted at %s\n", N + 1, machine().time().to_string());
set_input_line(M740_INT2_LINE, ASSERT_LINE);
}
}
// Reload timer and prescaler
m_timer[N]->adjust(clocks_to_attotime(16 * u32(m_prescaler_reload[N] + 1) * (m_timer_reload[N] + 1)));
}
void m50734_device::device_start()
{
m740_device::device_start();
space(has_space(AS_DATA) ? AS_DATA : AS_PROGRAM).specific(m_data);
m_ad_timer = timer_alloc(FUNC(m50734_device::ad_complete), this);
m_timer[0] = timer_alloc(FUNC(m50734_device::timer_interrupt<0>), this);
m_timer[1] = timer_alloc(FUNC(m50734_device::timer_interrupt<1>), this);
m_timer[2] = timer_alloc(FUNC(m50734_device::timer_interrupt<2>), this);
save_item(NAME(m_port_latch));
save_item(NAME(m_port_direction));
save_item(NAME(m_p0_function));
save_item(NAME(m_p2_p3_function));
save_item(NAME(m_ad_control));
save_item(NAME(m_ad_register));
save_item(NAME(m_prescaler_reload));
save_item(NAME(m_timer_reload));
save_item(NAME(m_interrupt_control));
}
void m50734_device::device_reset()
{
m740_device::device_reset();
SP = 0x01ff;
std::fill(std::begin(m_port_direction), std::end(m_port_direction), 0x00);
for (int n = 0; n < 4; n++)
m_port_out_cb[n](m_port_3state[n]);
m_p0_function = 0x00;
m_p2_p3_function = 0x00;
m_ad_control |= 0x04;
m_ad_timer->adjust(attotime::never);
// Reset interrupts
std::fill(std::begin(m_interrupt_control), std::end(m_interrupt_control), 0x00);
set_input_line(M740_INT2_LINE, CLEAR_LINE);
}
void m50734_device::read_dummy(u16 adr)
{
// M50734 outputs RD and WR strobes rather than R/W, so dummy accesses should do nothing
}
u8 m50734_device::read_data(u16 adr)
{
if (BIT(m_p0_function, 5))
return m_data.read_byte(adr);
else
return m740_device::read(adr);
}
void m50734_device::write_data(u16 adr, u8 val)
{
if (BIT(m_p0_function, 5))
m_data.write_byte(adr, val);
else
m740_device::write(adr, val);
}
u8 m50734_device::interrupt_control_r(offs_t offset)
{
return m_interrupt_control[2 - offset];
}
void m50734_device::interrupt_control_w(offs_t offset, u8 data)
{
if (offset == 1)
data &= 0x3f;
u8 old_control = std::exchange(m_interrupt_control[2 - offset], data);
if (offset == 1)
{
bool timer_interrupt = (data & (data >> 1) & 0x15) != 0;
bool old_interrupt = (old_control & (old_control >> 1) & 0x15) != 0;
if (timer_interrupt != old_interrupt)
{
LOGMASKED(LOG_TIMER, "%s: Timer interrupt %sactivated by write to interrupt control register 2 ($%02X -> $%02X)\n", machine().describe_context(), timer_interrupt ? "": "de", old_control, data);
set_input_line(M740_INT2_LINE, timer_interrupt ? ASSERT_LINE : CLEAR_LINE);
}
}
}
template <int N>
u8 m50734_device::port_r(offs_t offset)
{
if (BIT(offset, 0))
return m_port_direction[N];
else if (m_port_direction[0] == 0xff)
return m_port_latch[N];
else
return (m_port_in_cb[N]() & ~m_port_direction[N]) | (m_port_latch[N] & m_port_direction[N]);
}
template <int N>
void m50734_device::port_w(offs_t offset, u8 data)
{
if (BIT(offset, 0))
{
if (m_port_direction[N] != data)
{
LOGMASKED(LOG_INIT, "%s: Port P%d direction = $%02X\n", machine().describe_context(), N, data);
m_port_direction[N] = data;
m_port_out_cb[N]((data & m_port_latch[N]) | (m_port_3state[N] & ~m_port_direction[N]));
}
}
else if (((std::exchange(m_port_latch[N], data) ^ data) & m_port_direction[N]) != 0)
m_port_out_cb[N]((data & m_port_direction[N]) | (m_port_3state[N] & ~m_port_direction[N]));
}
u8 m50734_device::p4_r()
{
// P4 has only 4 pins and no output drivers
return m_port_in_cb[4]() & 0x0f;
}
u8 m50734_device::p0_function_r()
{
return m_p0_function;
}
void m50734_device::p0_function_w(u8 data)
{
LOGMASKED(LOG_INIT, "%s: Port P0 function = $%02X\n", machine().describe_context(), data);
m_p0_function = data;
}
u8 m50734_device::p2_p3_function_r()
{
return m_p2_p3_function;
}
void m50734_device::p2_p3_function_w(u8 data)
{
LOGMASKED(LOG_INIT, "%s: Port P2/P3 function = $%02X\n", machine().describe_context(), data);
m_p2_p3_function = data & 0xc7;
}
u8 m50734_device::ad_control_r()
{
return m_ad_control;
}
void m50734_device::ad_control_w(u8 data)
{
m_ad_control = data & 0x03;
m_ad_timer->adjust(cycles_to_attotime(72)); // 36 µsec at 8 MHz
}
TIMER_CALLBACK_MEMBER(m50734_device::ad_complete)
{
m_ad_register = m_analog_in_cb[m_ad_control & 0x03]();
m_ad_control |= 0x04;
}
u8 m50734_device::ad_r()
{
return m_ad_register;
}
u8 m50734_device::timer_r(offs_t offset)
{
if (!m_timer[offset >> 1]->enabled())
return 0;
u32 ticks = attotime_to_clocks(m_timer[offset >> 1]->remaining()) / 16;
u8 pre = m_prescaler_reload[offset >> 1];
if (BIT(offset, 0))
return std::min<u32>(ticks / (pre + 1), 0xff);
else
return ticks % (pre + 1);
}
void m50734_device::timer_w(offs_t offset, u8 data)
{
u32 ticks = m_timer[offset >> 1]->enabled() ? attotime_to_clocks(m_timer[offset >> 1]->remaining()) / 16 : 0x10000;
u8 pre = m_prescaler_reload[offset >> 1];
if (BIT(offset, 0))
{
LOGMASKED(LOG_INIT, "%s: Reload timer %d latch = %d\n", machine().describe_context(), (offset >> 1) + 1, data);
m_timer_reload[offset >> 1] = data;
m_timer[offset >> 1]->adjust(clocks_to_attotime(16 * (data * pre + (ticks % (pre + 1)) + 1)));
}
else
{
LOGMASKED(LOG_INIT, "%s: Reload prescaler %d latch = %d\n", machine().describe_context(), (offset >> 1) + 1, data);
m_prescaler_reload[offset >> 1] = data;
m_timer[offset >> 1]->adjust(clocks_to_attotime(16 * (data + 1) * (std::min<u32>(ticks / (pre + 1), 0xff) + 1)));
}
}
void m50734_device::internal_map(address_map &map)
{
// TODO: other timers, UART, etc.
map(0x00dc, 0x00e1).rw(FUNC(m50734_device::timer_r), FUNC(m50734_device::timer_w));
map(0x00e9, 0x00e9).rw(FUNC(m50734_device::ad_control_r), FUNC(m50734_device::ad_control_w));
map(0x00ea, 0x00ea).r(FUNC(m50734_device::ad_r));
map(0x00eb, 0x00eb).r(FUNC(m50734_device::p4_r));
map(0x00ed, 0x00ed).rw(FUNC(m50734_device::p2_p3_function_r), FUNC(m50734_device::p2_p3_function_w));
map(0x00ee, 0x00ef).rw(FUNC(m50734_device::port_r<3>), FUNC(m50734_device::port_w<3>));
map(0x00f0, 0x00f1).rw(FUNC(m50734_device::port_r<2>), FUNC(m50734_device::port_w<2>));
map(0x00f3, 0x00f4).rw(FUNC(m50734_device::port_r<1>), FUNC(m50734_device::port_w<1>));
map(0x00f5, 0x00f5).rw(FUNC(m50734_device::p0_function_r), FUNC(m50734_device::p0_function_w));
map(0x00f6, 0x00f7).rw(FUNC(m50734_device::port_r<0>), FUNC(m50734_device::port_w<0>));
map(0x00fd, 0x00ff).rw(FUNC(m50734_device::interrupt_control_r), FUNC(m50734_device::interrupt_control_w));
}
|