1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
// license:BSD-3-Clause
// copyright-holders:Devin Acker
/***************************************************************************
Casio GT913 (uPD913)
This chip powers several late-90s/early-2000s Casio keyboards.
It's based on the H8/300 instruction set, but with different encoding
for many opcodes, as well as:
- Dedicated bank switching instructions
(20-bit external address bus + 3 chip select outputs, can address a total of 4MB)
- Two timers, three 8-bit ports, two 8-bit ADCs
- Keyboard controller w/ key velocity detection
- MIDI UART
- 24-voice DPCM sound
Variants include the uPD912 and GT915/uPD915.
These were later succeeded by the uPD914.
***************************************************************************/
#include "emu.h"
#include "gt913.h"
#include "gt913d.h"
DEFINE_DEVICE_TYPE(GT913, gt913_device, "gt913", "Casio GT913F")
gt913_device::gt913_device(const machine_config &mconfig, const char *tag, device_t *owner, u32 clock) :
h8_device(mconfig, GT913, tag, owner, clock, address_map_constructor(FUNC(gt913_device::map), this)),
device_mixer_interface(mconfig, *this, 2),
m_rom(*this, DEVICE_SELF),
m_data_config("data", ENDIANNESS_BIG, 16, 22, 0),
m_write_ple(*this),
m_intc(*this, "intc"),
m_sound(*this, "gt_sound"),
m_kbd(*this, "kbd"),
m_io_hle(*this, "io_hle"),
m_port(*this, "port%u", 1)
{
m_has_hc = false;
}
std::unique_ptr<util::disasm_interface> gt913_device::create_disassembler()
{
return std::make_unique<gt913_disassembler>();
}
void gt913_device::map(address_map &map)
{
map(0x0000, 0x7fff).rom();
map(0x8000, 0xbfff).rw(FUNC(gt913_device::data_r), FUNC(gt913_device::data_w));
map(0xc000, 0xf7ff).rom();
/* ctk530 writes here to latch LED matrix data, which generates an active high strobe on pin 99 (PLE/P16)
there's otherwise no external address decoding (or the usual read/write strobes) used for the LED latches.
just treat as a 16-bit write-only port for now */
map(0xe000, 0xe001).lw16(NAME([this](u16 data) { m_write_ple(data); }));
map(0xfac0, 0xffbf).ram();
/* ffc0-ffcb: sound */
map(0xffc0, 0xffc5).rw(m_sound, FUNC(gt913_sound_device::data_r), FUNC(gt913_sound_device::data_w));
map(0xffc6, 0xffc7).w(m_sound, FUNC(gt913_sound_device::command_w));
map(0xffca, 0xffcb).r(m_sound, FUNC(gt913_sound_device::status_r));
/* ffd0-ffd5: key controller */
map(0xffd0, 0xffd1).r(m_kbd, FUNC(gt913_kbd_hle_device::read));
map(0xffd2, 0xffd3).rw(m_kbd, FUNC(gt913_kbd_hle_device::status_r), FUNC(gt913_kbd_hle_device::status_w));
/* ffd8-ffdf: timers */
map(0xffd8, 0xffd9).rw(m_io_hle, FUNC(gt913_io_hle_device::timer_control_r), FUNC(gt913_io_hle_device::timer_control_w));
map(0xffdc, 0xffdd).w(m_io_hle, FUNC(gt913_io_hle_device::timer_rate0_w));
map(0xffdf, 0xffdf).w(m_io_hle, FUNC(gt913_io_hle_device::timer_rate1_w));
/* ffe0-ffe7: serial */
map(0xffe0, 0xffe0).w(FUNC(gt913_device::uart_rate_w));
map(0xffe1, 0xffe1).w(m_sci[0], FUNC(h8_sci_device::tdr_w));
map(0xffe2, 0xffe2).select(0x04).rw(FUNC(gt913_device::uart_control_r), FUNC(gt913_device::uart_control_w));
map(0xffe3, 0xffe3).r(m_sci[0], FUNC(h8_sci_device::rdr_r));
map(0xffe5, 0xffe5).w(m_sci[1], FUNC(h8_sci_device::tdr_w));
map(0xffe7, 0xffe7).r(m_sci[1], FUNC(h8_sci_device::rdr_r));
/* ffe9-ffea: ADC */
map(0xffe9, 0xffe9).rw(m_io_hle, FUNC(gt913_io_hle_device::adc_control_r), FUNC(gt913_io_hle_device::adc_control_w));
map(0xffea, 0xffea).r(m_io_hle, FUNC(gt913_io_hle_device::adc_data_r));
/* fff0-fff5: I/O ports */
map(0xfff0, 0xfff0).rw(m_port[0], FUNC(h8_port_device::ddr_r), FUNC(h8_port_device::ddr_w));
// port 2 DDR - ctk601 and gz70sp both seem to use only bit 0 to indicate either all inputs or all outputs
// map(0xfff1, 0xfff1).rw(m_port[1], FUNC(h8_port_device::ddr_r), FUNC(h8_port_device::ddr_w));
map(0xfff1, 0xfff1).lw8(NAME([this](u8 data) { m_port[1]->ddr_w(BIT(data, 0) ? 0xff : 0x00); }));
map(0xfff2, 0xfff2).rw(m_port[0], FUNC(h8_port_device::port_r), FUNC(h8_port_device::dr_w));
map(0xfff3, 0xfff3).rw(m_port[1], FUNC(h8_port_device::port_r), FUNC(h8_port_device::dr_w));
map(0xfff4, 0xfff4).rw(m_port[2], FUNC(h8_port_device::port_r), FUNC(h8_port_device::dr_w));
map(0xfff5, 0xfff5).rw(FUNC(gt913_device::syscr_r), FUNC(gt913_device::syscr_w));
}
void gt913_device::device_add_mconfig(machine_config &config)
{
GT913_INTC(config, m_intc, *this);
GT913_SOUND(config, m_sound, DERIVED_CLOCK(1, 1));
m_sound->set_device_rom_tag(m_rom);
m_sound->add_route(0, *this, 1.0, AUTO_ALLOC_INPUT, 0);
m_sound->add_route(1, *this, 1.0, AUTO_ALLOC_INPUT, 1);
GT913_KBD_HLE(config, m_kbd, 0);
m_kbd->irq_cb().set([this] (int val) {
if(val)
m_intc->internal_interrupt(5);
else
m_intc->clear_interrupt(5);
});
GT913_IO_HLE(config, m_io_hle, *this, m_intc, 6, 7);
H8_SCI(config, m_sci[0], 0, *this, m_intc, 8, 9, 10, 0);
H8_SCI(config, m_sci[1], 1, *this, m_intc, 11, 12, 13, 0);
H8_PORT(config, m_port[0], *this, h8_device::PORT_1, 0x00, 0x00);
H8_PORT(config, m_port[1], *this, h8_device::PORT_2, 0x00, 0x00);
H8_PORT(config, m_port[2], *this, h8_device::PORT_3, 0x00, 0x00);
}
void gt913_device::uart_rate_w(u8 data)
{
// TODO: how is SCI1 baud rate actually selected?
// gz70sp writes 0x7e to ffe4 to select 31250 baud for MIDI, which doesn't seem right
m_sci[0]->brr_w(data >> 2);
m_sci[1]->brr_w(data >> 2);
}
void gt913_device::uart_control_w(offs_t offset, u8 data)
{
const unsigned num = BIT(offset, 2);
/*
upper 4 bits seem to correspond to the upper bits of SSR (Tx/Rx/error status)
lower 4 bits seem to correspond to the upper bits of SCR (Tx/Rx IRQ enable, Tx/Rx enable(?))
*/
m_sci[num]->ssr_w(data & 0xf0);
m_sci[num]->scr_w((data & 0x0f) << 4);
}
u8 gt913_device::uart_control_r(offs_t offset)
{
const unsigned num = BIT(offset, 2);
return (m_sci[num]->ssr_r() & 0xf0) | (m_sci[num]->scr_r() >> 4);
}
void gt913_device::syscr_w(u8 data)
{
// NMI active edge
m_intc->set_nmi_edge(BIT(data, 2));
m_syscr = data;
}
u8 gt913_device::syscr_r()
{
return m_syscr;
}
void gt913_device::data_w(offs_t offset, u8 data)
{
m_data.write_byte(offset | (m_banknum & 0xff) << 14, data);
}
u8 gt913_device::data_r(offs_t offset)
{
return m_data.read_byte(offset | (m_banknum & 0xff) << 14);
}
u8 gt913_device::read8ib(u32 adr)
{
if(BIT(m_syscr, 0))
// indirect bank disabled
return m_program.read_byte(adr);
else if((m_IR[0] & 0x0070) == 0)
// indirect bank enabled, using bankh for r0
return m_data.read_byte(adr | ((m_banknum >> 6) << 16));
else
// indirect bank enabled, using bankl for other regs
return m_data.read_byte(adr | ((m_banknum & 0x3f) << 16));
}
void gt913_device::write8ib(u32 adr, u8 data)
{
if(BIT(m_syscr, 0))
// indirect bank disabled
m_program.write_byte(adr, data);
else if((m_IR[0] & 0x0070) == 0)
// indirect bank enabled, using bankh for r0
m_data.write_byte(adr | ((m_banknum >> 6) << 16), data);
else
// indirect bank enabled, using bankl for other regs
m_data.write_byte(adr | ((m_banknum & 0x3f) << 16), data);
}
u16 gt913_device::read16ib(u32 adr)
{
adr &= ~1;
if(BIT(m_syscr, 0))
// indirect bank disabled
return m_program.read_word(adr);
else if((m_IR[0] & 0x0070) == 0)
// indirect bank enabled, using bankh for r0
return m_data.read_word(adr | ((m_banknum >> 6) << 16));
else
// indirect bank enabled, using bankl for other regs
return m_data.read_word(adr | ((m_banknum & 0x3f) << 16));
}
void gt913_device::write16ib(u32 adr, u16 data)
{
adr &= ~1;
if(BIT(m_syscr, 0))
// indirect bank disabled
m_program.write_word(adr, data);
else if((m_IR[0] & 0x0070) == 0)
// indirect bank enabled, using bankh for r0
m_data.write_word(adr | ((m_banknum >> 6) << 16), data);
else
// indirect bank enabled, using bankl for other regs
m_data.write_word(adr | ((m_banknum & 0x3f) << 16), data);
}
void gt913_device::irq_setup()
{
m_CCR |= F_H;
}
void gt913_device::update_irq_filter()
{
if(m_CCR & F_H)
m_intc->set_filter(2, -1);
else
m_intc->set_filter(0, -1);
}
void gt913_device::interrupt_taken()
{
standard_irq_callback(m_intc->interrupt_taken(m_taken_irq_vector), m_NPC);
}
void gt913_device::internal_update(u64 current_time)
{
u64 event_time = 0;
add_event(event_time, m_sci[0]->internal_update(current_time));
add_event(event_time, m_sci[1]->internal_update(current_time));
recompute_bcount(event_time);
}
void gt913_device::notify_standby(int state)
{
m_sci[0]->notify_standby(state);
m_sci[1]->notify_standby(state);
}
void gt913_device::execute_set_input(int inputnum, int state)
{
m_intc->set_input(inputnum, state);
}
device_memory_interface::space_config_vector gt913_device::memory_space_config() const
{
return space_config_vector{
std::make_pair(AS_PROGRAM, &m_program_config),
std::make_pair(AS_DATA, &m_data_config)
};
}
void gt913_device::device_start()
{
h8_device::device_start();
space(AS_DATA).specific(m_data);
save_item(NAME(m_banknum));
save_item(NAME(m_syscr));
}
void gt913_device::device_reset()
{
h8_device::device_reset();
m_banknum = 0;
m_syscr = 0;
}
#include "cpu/h8/gt913.hxx"
|