summaryrefslogtreecommitdiffstatshomepage
path: root/src/mame/drivers/pluto5.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/mame/drivers/pluto5.cpp')
-rw-r--r--src/mame/drivers/pluto5.cpp2
1 files changed, 1 insertions, 1 deletions
diff --git a/src/mame/drivers/pluto5.cpp b/src/mame/drivers/pluto5.cpp
index 07f28fed208..2d8aa4366b6 100644
--- a/src/mame/drivers/pluto5.cpp
+++ b/src/mame/drivers/pluto5.cpp
@@ -200,7 +200,7 @@ protected:
required_device<m68340cpu_device> m_maincpu;
public:
DECLARE_DRIVER_INIT(hb);
- virtual void machine_start();
+ virtual void machine_start() override;
};
READ32_MEMBER(pluto5_state::pluto5_mem_r)
a id='n95' href='#n95'>95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Lua 5.3 Reference Manual</TITLE>
<LINK REL="stylesheet" TYPE="text/css" HREF="lua.css">
<LINK REL="stylesheet" TYPE="text/css" HREF="manual.css">
<META HTTP-EQUIV="content-type" CONTENT="text/html; charset=iso-8859-1">
</HEAD>

<BODY>

<H1>
<A HREF="http://www.lua.org/"><IMG SRC="logo.gif" ALT="Lua"></A>
Lua 5.3 Reference Manual
</H1>

<P>
by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes

<P>
<SMALL>
Copyright &copy; 2015 Lua.org, PUC-Rio.
Freely available under the terms of the
<a href="http://www.lua.org/license.html">Lua license</a>.
</SMALL>

<DIV CLASS="menubar">
<A HREF="contents.html#contents">contents</A>
&middot;
<A HREF="contents.html#index">index</A>
&middot;
<A HREF="http://www.lua.org/manual/">other versions</A>
</DIV>

<!-- ====================================================================== -->
<p>

<!-- $Id: manual.of,v 1.153 2015/11/25 16:57:42 roberto Exp $ -->




<h1>1 &ndash; <a name="1">Introduction</a></h1>

<p>
Lua is an extension programming language designed to support
general procedural programming with data description
facilities.
Lua also offers good support for object-oriented programming,
functional programming, and data-driven programming.
Lua is intended to be used as a powerful, lightweight,
embeddable scripting language for any program that needs one.
Lua is implemented as a library, written in <em>clean C</em>,
the common subset of Standard&nbsp;C and C++.


<p>
As an extension language, Lua has no notion of a "main" program:
it only works <em>embedded</em> in a host client,
called the <em>embedding program</em> or simply the <em>host</em>.
The host program can invoke functions to execute a piece of Lua code,
can write and read Lua variables,
and can register C&nbsp;functions to be called by Lua code.
Through the use of C&nbsp;functions, Lua can be augmented to cope with
a wide range of different domains,
thus creating customized programming languages sharing a syntactical framework.
The Lua distribution includes a sample host program called <code>lua</code>,
which uses the Lua library to offer a complete, standalone Lua interpreter,
for interactive or batch use.


<p>
Lua is free software,
and is provided as usual with no guarantees,
as stated in its license.
The implementation described in this manual is available
at Lua's official web site, <code>www.lua.org</code>.


<p>
Like any other reference manual,
this document is dry in places.
For a discussion of the decisions behind the design of Lua,
see the technical papers available at Lua's web site.
For a detailed introduction to programming in Lua,
see Roberto's book, <em>Programming in Lua</em>.



<h1>2 &ndash; <a name="2">Basic Concepts</a></h1>

<p>
This section describes the basic concepts of the language.



<h2>2.1 &ndash; <a name="2.1">Values and Types</a></h2>

<p>
Lua is a <em>dynamically typed language</em>.
This means that
variables do not have types; only values do.
There are no type definitions in the language.
All values carry their own type.


<p>
All values in Lua are <em>first-class values</em>.
This means that all values can be stored in variables,
passed as arguments to other functions, and returned as results.


<p>
There are eight basic types in Lua:
<em>nil</em>, <em>boolean</em>, <em>number</em>,
<em>string</em>, <em>function</em>, <em>userdata</em>,
<em>thread</em>, and <em>table</em>.
The type <em>nil</em> has one single value, <b>nil</b>,
whose main property is to be different from any other value;
it usually represents the absence of a useful value.
The type <em>boolean</em> has two values, <b>false</b> and <b>true</b>.
Both <b>nil</b> and <b>false</b> make a condition false;
any other value makes it true.
The type <em>number</em> represents both
integer numbers and real (floating-point) numbers.
The type <em>string</em> represents immutable sequences of bytes.

Lua is 8-bit clean:
strings can contain any 8-bit value,
including embedded zeros ('<code>\0</code>').
Lua is also encoding-agnostic;
it makes no assumptions about the contents of a string.


<p>
The type <em>number</em> uses two internal representations,
or two subtypes,
one called <em>integer</em> and the other called <em>float</em>.
Lua has explicit rules about when each representation is used,
but it also converts between them automatically as needed (see <a href="#3.4.3">&sect;3.4.3</a>).
Therefore,
the programmer may choose to mostly ignore the difference
between integers and floats
or to assume complete control over the representation of each number.
Standard Lua uses 64-bit integers and double-precision (64-bit) floats,
but you can also compile Lua so that it
uses 32-bit integers and/or single-precision (32-bit) floats.
The option with 32 bits for both integers and floats
is particularly attractive
for small machines and embedded systems.
(See macro <code>LUA_32BITS</code> in file <code>luaconf.h</code>.)


<p>
Lua can call (and manipulate) functions written in Lua and
functions written in C (see <a href="#3.4.10">&sect;3.4.10</a>).
Both are represented by the type <em>function</em>.


<p>
The type <em>userdata</em> is provided to allow arbitrary C&nbsp;data to
be stored in Lua variables.
A userdata value represents a block of raw memory.
There are two kinds of userdata:
<em>full userdata</em>,
which is an object with a block of memory managed by Lua,
and <em>light userdata</em>,
which is simply a C&nbsp;pointer value.
Userdata has no predefined operations in Lua,
except assignment and identity test.
By using <em>metatables</em>,
the programmer can define operations for full userdata values
(see <a href="#2.4">&sect;2.4</a>).
Userdata values cannot be created or modified in Lua,
only through the C&nbsp;API.
This guarantees the integrity of data owned by the host program.


<p>
The type <em>thread</em> represents independent threads of execution
and it is used to implement coroutines (see <a href="#2.6">&sect;2.6</a>).
Lua threads are not related to operating-system threads.
Lua supports coroutines on all systems,
even those that do not support threads natively.


<p>
The type <em>table</em> implements associative arrays,
that is, arrays that can be indexed not only with numbers,
but with any Lua value except <b>nil</b> and NaN.
(<em>Not a Number</em> is a special value used to represent
undefined or unrepresentable numerical results, such as <code>0/0</code>.)
Tables can be <em>heterogeneous</em>;
that is, they can contain values of all types (except <b>nil</b>).
Any key with value <b>nil</b> is not considered part of the table.
Conversely, any key that is not part of a table has
an associated value <b>nil</b>.


<p>
Tables are the sole data-structuring mechanism in Lua;
they can be used to represent ordinary arrays, sequences,
symbol tables, sets, records, graphs, trees, etc.
To represent records, Lua uses the field name as an index.
The language supports this representation by
providing <code>a.name</code> as syntactic sugar for <code>a["name"]</code>.
There are several convenient ways to create tables in Lua
(see <a href="#3.4.9">&sect;3.4.9</a>).


<p>
We use the term <em>sequence</em> to denote a table where
the set of all positive numeric keys is equal to {1..<em>n</em>}
for some non-negative integer <em>n</em>,
which is called the length of the sequence (see <a href="#3.4.7">&sect;3.4.7</a>).


<p>
Like indices,
the values of table fields can be of any type.
In particular,
because functions are first-class values,
table fields can contain functions.
Thus tables can also carry <em>methods</em> (see <a href="#3.4.11">&sect;3.4.11</a>).


<p>
The indexing of tables follows
the definition of raw equality in the language.
The expressions <code>a[i]</code> and <code>a[j]</code>
denote the same table element
if and only if <code>i</code> and <code>j</code> are raw equal
(that is, equal without metamethods).
In particular, floats with integral values
are equal to their respective integers
(e.g., <code>1.0 == 1</code>).
To avoid ambiguities,
any float with integral value used as a key
is converted to its respective integer.
For instance, if you write <code>a[2.0] = true</code>,
the actual key inserted into the table will be the
integer <code>2</code>.
(On the other hand,
2 and "<code>2</code>" are different Lua values and therefore
denote different table entries.)


<p>
Tables, functions, threads, and (full) userdata values are <em>objects</em>:
variables do not actually <em>contain</em> these values,
only <em>references</em> to them.
Assignment, parameter passing, and function returns
always manipulate references to such values;
these operations do not imply any kind of copy.


<p>
The library function <a href="#pdf-type"><code>type</code></a> returns a string describing the type
of a given value (see <a href="#6.1">&sect;6.1</a>).





<h2>2.2 &ndash; <a name="2.2">Environments and the Global Environment</a></h2>

<p>
As will be discussed in <a href="#3.2">&sect;3.2</a> and <a href="#3.3.3">&sect;3.3.3</a>,
any reference to a free name
(that is, a name not bound to any declaration) <code>var</code>
is syntactically translated to <code>_ENV.var</code>.
Moreover, every chunk is compiled in the scope of
an external local variable named <code>_ENV</code> (see <a href="#3.3.2">&sect;3.3.2</a>),
so <code>_ENV</code> itself is never a free name in a chunk.


<p>
Despite the existence of this external <code>_ENV</code> variable and
the translation of free names,
<code>_ENV</code> is a completely regular name.
In particular,
you can define new variables and parameters with that name.
Each reference to a free name uses the <code>_ENV</code> that is
visible at that point in the program,
following the usual visibility rules of Lua (see <a href="#3.5">&sect;3.5</a>).


<p>
Any table used as the value of <code>_ENV</code> is called an <em>environment</em>.


<p>
Lua keeps a distinguished environment called the <em>global environment</em>.
This value is kept at a special index in the C registry (see <a href="#4.5">&sect;4.5</a>).
In Lua, the global variable <a href="#pdf-_G"><code>_G</code></a> is initialized with this same value.
(<a href="#pdf-_G"><code>_G</code></a> is never used internally.)


<p>
When Lua loads a chunk,
the default value for its <code>_ENV</code> upvalue
is the global environment (see <a href="#pdf-load"><code>load</code></a>).
Therefore, by default,
free names in Lua code refer to entries in the global environment
(and, therefore, they are also called <em>global variables</em>).
Moreover, all standard libraries are loaded in the global environment
and some functions there operate on that environment.
You can use <a href="#pdf-load"><code>load</code></a> (or <a href="#pdf-loadfile"><code>loadfile</code></a>)
to load a chunk with a different environment.
(In C, you have to load the chunk and then change the value
of its first upvalue.)





<h2>2.3 &ndash; <a name="2.3">Error Handling</a></h2>

<p>
Because Lua is an embedded extension language,
all Lua actions start from C&nbsp;code in the host program
calling a function from the Lua library.
(When you use Lua standalone,
the <code>lua</code> application is the host program.)
Whenever an error occurs during
the compilation or execution of a Lua chunk,
control returns to the host,
which can take appropriate measures
(such as printing an error message).


<p>
Lua code can explicitly generate an error by calling the
<a href="#pdf-error"><code>error</code></a> function.
If you need to catch errors in Lua,
you can use <a href="#pdf-pcall"><code>pcall</code></a> or <a href="#pdf-xpcall"><code>xpcall</code></a>
to call a given function in <em>protected mode</em>.


<p>
Whenever there is an error,
an <em>error object</em> (also called an <em>error message</em>)
is propagated with information about the error.
Lua itself only generates errors whose error object is a string,
but programs may generate errors with
any value as the error object.
It is up to the Lua program or its host to handle such error objects.


<p>
When you use <a href="#pdf-xpcall"><code>xpcall</code></a> or <a href="#lua_pcall"><code>lua_pcall</code></a>,
you may give a <em>message handler</em>
to be called in case of errors.
This function is called with the original error message
and returns a new error message.
It is called before the error unwinds the stack,
so that it can gather more information about the error,
for instance by inspecting the stack and creating a stack traceback.
This message handler is still protected by the protected call;
so, an error inside the message handler
will call the message handler again.
If this loop goes on for too long,
Lua breaks it and returns an appropriate message.





<h2>2.4 &ndash; <a name="2.4">Metatables and Metamethods</a></h2>

<p>
Every value in Lua can have a <em>metatable</em>.
This <em>metatable</em> is an ordinary Lua table
that defines the behavior of the original value
under certain special operations.
You can change several aspects of the behavior
of operations over a value by setting specific fields in its metatable.
For instance, when a non-numeric value is the operand of an addition,
Lua checks for a function in the field "<code>__add</code>" of the value's metatable.
If it finds one,
Lua calls this function to perform the addition.


<p>
The keys in a metatable are derived from the <em>event</em> names;
the corresponding values are called <em>metamethods</em>.
In the previous example, the event is <code>"add"</code>
and the metamethod is the function that performs the addition.


<p>
You can query the metatable of any value
using the <a href="#pdf-getmetatable"><code>getmetatable</code></a> function.


<p>
You can replace the metatable of tables
using the <a href="#pdf-setmetatable"><code>setmetatable</code></a> function.
You cannot change the metatable of other types from Lua code
(except by using the debug library (<a href="#6.10">&sect;6.10</a>));
you should use the C&nbsp;API for that.


<p>
Tables and full userdata have individual metatables
(although multiple tables and userdata can share their metatables).
Values of all other types share one single metatable per type;
that is, there is one single metatable for all numbers,
one for all strings, etc.
By default, a value has no metatable,
but the string library sets a metatable for the string type (see <a href="#6.4">&sect;6.4</a>).


<p>
A metatable controls how an object behaves in
arithmetic operations, bitwise operations,
order comparisons, concatenation, length operation, calls, and indexing.
A metatable also can define a function to be called
when a userdata or a table is garbage collected (<a href="#2.5">&sect;2.5</a>).


<p>
A detailed list of events controlled by metatables is given next.
Each operation is identified by its corresponding event name.
The key for each event is a string with its name prefixed by
two underscores, '<code>__</code>';
for instance, the key for operation "add" is the
string "<code>__add</code>".
Note that queries for metamethods are always raw;
the access to a metamethod does not invoke other metamethods.


<p>
For the unary operators (negation, length, and bitwise not),
the metamethod is computed and called with a dummy second operand,
equal to the first one.
This extra operand is only to simplify Lua's internals
(by making these operators behave like a binary operation)
and may be removed in future versions.
(For most uses this extra operand is irrelevant.)



<ul>

<li><b>"add": </b>
the <code>+</code> operation.

If any operand for an addition is not a number
(nor a string coercible to a number),
Lua will try to call a metamethod.
First, Lua will check the first operand (even if it is valid).
If that operand does not define a metamethod for the "<code>__add</code>" event,
then Lua will check the second operand.
If Lua can find a metamethod,
it calls the metamethod with the two operands as arguments,
and the result of the call
(adjusted to one value)
is the result of the operation.
Otherwise,
it raises an error.
</li>

<li><b>"sub": </b>
the <code>-</code> operation.

Behavior similar to the "add" operation.
</li>

<li><b>"mul": </b>
the <code>*</code> operation.

Behavior similar to the "add" operation.
</li>

<li><b>"div": </b>
the <code>/</code> operation.

Behavior similar to the "add" operation.
</li>

<li><b>"mod": </b>
the <code>%</code> operation.

Behavior similar to the "add" operation.
</li>

<li><b>"pow": </b>
the <code>^</code> (exponentiation) operation.

Behavior similar to the "add" operation.
</li>

<li><b>"unm": </b>
the <code>-</code> (unary minus) operation.

Behavior similar to the "add" operation.
</li>

<li><b>"idiv": </b>
the <code>//</code> (floor division) operation.

Behavior similar to the "add" operation.
</li>

<li><b>"band": </b>
the <code>&amp;</code> (bitwise and) operation.

Behavior similar to the "add" operation,
except that Lua will try a metamethod
if any operand is neither an integer
nor a value coercible to an integer (see <a href="#3.4.3">&sect;3.4.3</a>).
</li>

<li><b>"bor": </b>
the <code>|</code> (bitwise or) operation.

Behavior similar to the "band" operation.
</li>

<li><b>"bxor": </b>
the <code>~</code> (bitwise exclusive or) operation.

Behavior similar to the "band" operation.
</li>

<li><b>"bnot": </b>
the <code>~</code> (bitwise unary not) operation.

Behavior similar to the "band" operation.
</li>

<li><b>"shl": </b>
the <code>&lt;&lt;</code> (bitwise left shift) operation.

Behavior similar to the "band" operation.
</li>

<li><b>"shr": </b>
the <code>&gt;&gt;</code> (bitwise right shift) operation.

Behavior similar to the "band" operation.
</li>

<li><b>"concat": </b>
the <code>..</code> (concatenation) operation.

Behavior similar to the "add" operation,
except that Lua will try a metamethod
if any operand is neither a string nor a number
(which is always coercible to a string).
</li>

<li><b>"len": </b>
the <code>#</code> (length) operation.

If the object is not a string,
Lua will try its metamethod.
If there is a metamethod,
Lua calls it with the object as argument,
and the result of the call
(always adjusted to one value)
is the result of the operation.
If there is no metamethod but the object is a table,
then Lua uses the table length operation (see <a href="#3.4.7">&sect;3.4.7</a>).
Otherwise, Lua raises an error.
</li>

<li><b>"eq": </b>
the <code>==</code> (equal) operation.

Behavior similar to the "add" operation,
except that Lua will try a metamethod only when the values
being compared are either both tables or both full userdata
and they are not primitively equal.
The result of the call is always converted to a boolean.
</li>

<li><b>"lt": </b>
the <code>&lt;</code> (less than) operation.

Behavior similar to the "add" operation,
except that Lua will try a metamethod only when the values
being compared are neither both numbers nor both strings.
The result of the call is always converted to a boolean.
</li>

<li><b>"le": </b>
the <code>&lt;=</code> (less equal) operation.

Unlike other operations,
the less-equal operation can use two different events.
First, Lua looks for the "<code>__le</code>" metamethod in both operands,
like in the "lt" operation.
If it cannot find such a metamethod,
then it will try the "<code>__lt</code>" event,
assuming that <code>a &lt;= b</code> is equivalent to <code>not (b &lt; a)</code>.
As with the other comparison operators,
the result is always a boolean.
(This use of the "<code>__lt</code>" event can be removed in future versions;
it is also slower than a real "<code>__le</code>" metamethod.)
</li>

<li><b>"index": </b>
The indexing access <code>table[key]</code>.

This event happens when <code>table</code> is not a table or
when <code>key</code> is not present in <code>table</code>.
The metamethod is looked up in <code>table</code>.


<p>
Despite the name,
the metamethod for this event can be either a function or a table.
If it is a function,
it is called with <code>table</code> and <code>key</code> as arguments.
If it is a table,
the final result is the result of indexing this table with <code>key</code>.
(This indexing is regular, not raw,
and therefore can trigger another metamethod.)
</li>

<li><b>"newindex": </b>
The indexing assignment <code>table[key] = value</code>.

Like the index event,
this event happens when <code>table</code> is not a table or
when <code>key</code> is not present in <code>table</code>.
The metamethod is looked up in <code>table</code>.


<p>
Like with indexing,
the metamethod for this event can be either a function or a table.
If it is a function,
it is called with <code>table</code>, <code>key</code>, and <code>value</code> as arguments.
If it is a table,
Lua does an indexing assignment to this table with the same key and value.
(This assignment is regular, not raw,
and therefore can trigger another metamethod.)


<p>
Whenever there is a "newindex" metamethod,
Lua does not perform the primitive assignment.
(If necessary,
the metamethod itself can call <a href="#pdf-rawset"><code>rawset</code></a>
to do the assignment.)
</li>

<li><b>"call": </b>
The call operation <code>func(args)</code>.

This event happens when Lua tries to call a non-function value
(that is, <code>func</code> is not a function).
The metamethod is looked up in <code>func</code>.
If present,
the metamethod is called with <code>func</code> as its first argument,
followed by the arguments of the original call (<code>args</code>).
</li>

</ul>

<p>
It is a good practice to add all needed metamethods to a table
before setting it as a metatable of some object.
In particular, the "<code>__gc</code>" metamethod works only when this order
is followed (see <a href="#2.5.1">&sect;2.5.1</a>).





<h2>2.5 &ndash; <a name="2.5">Garbage Collection</a></h2>

<p>
Lua performs automatic memory management.
This means that
you do not have to worry about allocating memory for new objects
or freeing it when the objects are no longer needed.
Lua manages memory automatically by running
a <em>garbage collector</em> to collect all <em>dead objects</em>
(that is, objects that are no longer accessible from Lua).
All memory used by Lua is subject to automatic management:
strings, tables, userdata, functions, threads, internal structures, etc.


<p>
Lua implements an incremental mark-and-sweep collector.
It uses two numbers to control its garbage-collection cycles:
the <em>garbage-collector pause</em> and
the <em>garbage-collector step multiplier</em>.
Both use percentage points as units
(e.g., a value of 100 means an internal value of 1).


<p>
The garbage-collector pause
controls how long the collector waits before starting a new cycle.
Larger values make the collector less aggressive.
Values smaller than 100 mean the collector will not wait to
start a new cycle.
A value of 200 means that the collector waits for the total memory in use
to double before starting a new cycle.


<p>
The garbage-collector step multiplier
controls the relative speed of the collector relative to
memory allocation.
Larger values make the collector more aggressive but also increase
the size of each incremental step.
You should not use values smaller than 100,
because they make the collector too slow and
can result in the collector never finishing a cycle.
The default is 200,
which means that the collector runs at "twice"
the speed of memory allocation.


<p>
If you set the step multiplier to a very large number
(larger than 10% of the maximum number of
bytes that the program may use),
the collector behaves like a stop-the-world collector.
If you then set the pause to 200,
the collector behaves as in old Lua versions,
doing a complete collection every time Lua doubles its
memory usage.


<p>
You can change these numbers by calling <a href="#lua_gc"><code>lua_gc</code></a> in C
or <a href="#pdf-collectgarbage"><code>collectgarbage</code></a> in Lua.
You can also use these functions to control
the collector directly (e.g., stop and restart it).



<h3>2.5.1 &ndash; <a name="2.5.1">Garbage-Collection Metamethods</a></h3>

<p>
You can set garbage-collector metamethods for tables
and, using the C&nbsp;API,
for full userdata (see <a href="#2.4">&sect;2.4</a>).
These metamethods are also called <em>finalizers</em>.
Finalizers allow you to coordinate Lua's garbage collection
with external resource management
(such as closing files, network or database connections,
or freeing your own memory).


<p>
For an object (table or userdata) to be finalized when collected,
you must <em>mark</em> it for finalization.

You mark an object for finalization when you set its metatable
and the metatable has a field indexed by the string "<code>__gc</code>".
Note that if you set a metatable without a <code>__gc</code> field
and later create that field in the metatable,
the object will not be marked for finalization.


<p>
When a marked object becomes garbage,
it is not collected immediately by the garbage collector.
Instead, Lua puts it in a list.
After the collection,
Lua goes through that list.
For each object in the list,
it checks the object's <code>__gc</code> metamethod:
If it is a function,
Lua calls it with the object as its single argument;
if the metamethod is not a function,
Lua simply ignores it.


<p>
At the end of each garbage-collection cycle,
the finalizers for objects are called in
the reverse order that the objects were marked for finalization,
among those collected in that cycle;
that is, the first finalizer to be called is the one associated
with the object marked last in the program.
The execution of each finalizer may occur at any point during
the execution of the regular code.


<p>
Because the object being collected must still be used by the finalizer,
that object (and other objects accessible only through it)
must be <em>resurrected</em> by Lua.
Usually, this resurrection is transient,
and the object memory is freed in the next garbage-collection cycle.
However, if the finalizer stores the object in some global place
(e.g., a global variable),
then the resurrection is permanent.
Moreover, if the finalizer marks a finalizing object for finalization again,
its finalizer will be called again in the next cycle where the
object is unreachable.
In any case,
the object memory is freed only in a GC cycle where
the object is unreachable and not marked for finalization.


<p>
When you close a state (see <a href="#lua_close"><code>lua_close</code></a>),
Lua calls the finalizers of all objects marked for finalization,
following the reverse order that they were marked.
If any finalizer marks objects for collection during that phase,
these marks have no effect.





<h3>2.5.2 &ndash; <a name="2.5.2">Weak Tables</a></h3>

<p>
A <em>weak table</em> is a table whose elements are
<em>weak references</em>.
A weak reference is ignored by the garbage collector.
In other words,
if the only references to an object are weak references,
then the garbage collector will collect that object.


<p>
A weak table can have weak keys, weak values, or both.
A table with weak values allows the collection of its values,
but prevents the collection of its keys.
A table with both weak keys and weak values allows the collection of
both keys and values.
In any case, if either the key or the value is collected,
the whole pair is removed from the table.
The weakness of a table is controlled by the
<code>__mode</code> field of its metatable.
If the <code>__mode</code> field is a string containing the character&nbsp;'<code>k</code>',
the keys in the table are weak.
If <code>__mode</code> contains '<code>v</code>',
the values in the table are weak.


<p>
A table with weak keys and strong values
is also called an <em>ephemeron table</em>.
In an ephemeron table,
a value is considered reachable only if its key is reachable.
In particular,
if the only reference to a key comes through its value,
the pair is removed.


<p>
Any change in the weakness of a table may take effect only
at the next collect cycle.
In particular, if you change the weakness to a stronger mode,
Lua may still collect some items from that table
before the change takes effect.


<p>
Only objects that have an explicit construction
are removed from weak tables.
Values, such as numbers and light C functions,
are not subject to garbage collection,
and therefore are not removed from weak tables
(unless their associated values are collected).
Although strings are subject to garbage collection,
they do not have an explicit construction,
and therefore are not removed from weak tables.


<p>
Resurrected objects
(that is, objects being finalized
and objects accessible only through objects being finalized)
have a special behavior in weak tables.
They are removed from weak values before running their finalizers,
but are removed from weak keys only in the next collection
after running their finalizers, when such objects are actually freed.
This behavior allows the finalizer to access properties
associated with the object through weak tables.


<p>
If a weak table is among the resurrected objects in a collection cycle,
it may not be properly cleared until the next cycle.







<h2>2.6 &ndash; <a name="2.6">Coroutines</a></h2>

<p>
Lua supports coroutines,
also called <em>collaborative multithreading</em>.
A coroutine in Lua represents an independent thread of execution.
Unlike threads in multithread systems, however,
a coroutine only suspends its execution by explicitly calling
a yield function.


<p>
You create a coroutine by calling <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>.
Its sole argument is a function
that is the main function of the coroutine.
The <code>create</code> function only creates a new coroutine and
returns a handle to it (an object of type <em>thread</em>);
it does not start the coroutine.


<p>
You execute a coroutine by calling <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.
When you first call <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
passing as its first argument
a thread returned by <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>,
the coroutine starts its execution by
calling its main function.
Extra arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> are passed
as arguments to that function.
After the coroutine starts running,
it runs until it terminates or <em>yields</em>.


<p>
A coroutine can terminate its execution in two ways:
normally, when its main function returns
(explicitly or implicitly, after the last instruction);
and abnormally, if there is an unprotected error.
In case of normal termination,
<a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>true</b>,
plus any values returned by the coroutine main function.
In case of errors, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>false</b>
plus an error message.


<p>
A coroutine yields by calling <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>.
When a coroutine yields,
the corresponding <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns immediately,
even if the yield happens inside nested function calls
(that is, not in the main function,
but in a function directly or indirectly called by the main function).
In the case of a yield, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> also returns <b>true</b>,
plus any values passed to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>.
The next time you resume the same coroutine,
it continues its execution from the point where it yielded,
with the call to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a> returning any extra
arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.


<p>
Like <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>,
the <a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> function also creates a coroutine,
but instead of returning the coroutine itself,
it returns a function that, when called, resumes the coroutine.
Any arguments passed to this function
go as extra arguments to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.
<a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> returns all the values returned by <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
except the first one (the boolean error code).
Unlike <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
<a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> does not catch errors;
any error is propagated to the caller.


<p>
As an example of how coroutines work,
consider the following code:

<pre>
     function foo (a)
       print("foo", a)
       return coroutine.yield(2*a)
     end
     
     co = coroutine.create(function (a,b)
           print("co-body", a, b)
           local r = foo(a+1)
           print("co-body", r)
           local r, s = coroutine.yield(a+b, a-b)
           print("co-body", r, s)
           return b, "end"
     end)
     
     print("main", coroutine.resume(co, 1, 10))
     print("main", coroutine.resume(co, "r"))
     print("main", coroutine.resume(co, "x", "y"))
     print("main", coroutine.resume(co, "x", "y"))
</pre><p>
When you run it, it produces the following output:

<pre>
     co-body 1       10
     foo     2
     main    true    4
     co-body r
     main    true    11      -9
     co-body x       y
     main    true    10      end
     main    false   cannot resume dead coroutine
</pre>

<p>
You can also create and manipulate coroutines through the C API:
see functions <a href="#lua_newthread"><code>lua_newthread</code></a>, <a href="#lua_resume"><code>lua_resume</code></a>,
and <a href="#lua_yield"><code>lua_yield</code></a>.





<h1>3 &ndash; <a name="3">The Language</a></h1>

<p>
This section describes the lexis, the syntax, and the semantics of Lua.
In other words,
this section describes
which tokens are valid,
how they can be combined,
and what their combinations mean.


<p>
Language constructs will be explained using the usual extended BNF notation,
in which
{<em>a</em>}&nbsp;means&nbsp;0 or more <em>a</em>'s, and
[<em>a</em>]&nbsp;means an optional <em>a</em>.
Non-terminals are shown like non-terminal,
keywords are shown like <b>kword</b>,
and other terminal symbols are shown like &lsquo;<b>=</b>&rsquo;.
The complete syntax of Lua can be found in <a href="#9">&sect;9</a>
at the end of this manual.



<h2>3.1 &ndash; <a name="3.1">Lexical Conventions</a></h2>

<p>
Lua is a free-form language.
It ignores spaces (including new lines) and comments
between lexical elements (tokens),
except as delimiters between names and keywords.


<p>
<em>Names</em>
(also called <em>identifiers</em>)
in Lua can be any string of letters,
digits, and underscores,
not beginning with a digit and
not being a reserved word.
Identifiers are used to name variables, table fields, and labels.


<p>
The following <em>keywords</em> are reserved
and cannot be used as names:


<pre>
     and       break     do        else      elseif    end
     false     for       function  goto      if        in
     local     nil       not       or        repeat    return
     then      true      until     while
</pre>

<p>
Lua is a case-sensitive language:
<code>and</code> is a reserved word, but <code>And</code> and <code>AND</code>
are two different, valid names.
As a convention,
programs should avoid creating 
names that start with an underscore followed by
one or more uppercase letters (such as <a href="#pdf-_VERSION"><code>_VERSION</code></a>).


<p>
The following strings denote other tokens:

<pre>
     +     -     *     /     %     ^     #
     &amp;     ~     |     &lt;&lt;    &gt;&gt;    //
     ==    ~=    &lt;=    &gt;=    &lt;     &gt;     =
     (     )     {     }     [     ]     ::
     ;     :     ,     .     ..    ...
</pre>

<p>
<em>Literal strings</em>
can be delimited by matching single or double quotes,
and can contain the following C-like escape sequences:
'<code>\a</code>' (bell),
'<code>\b</code>' (backspace),
'<code>\f</code>' (form feed),
'<code>\n</code>' (newline),
'<code>\r</code>' (carriage return),
'<code>\t</code>' (horizontal tab),
'<code>\v</code>' (vertical tab),
'<code>\\</code>' (backslash),
'<code>\"</code>' (quotation mark [double quote]),
and '<code>\'</code>' (apostrophe [single quote]).
A backslash followed by a real newline
results in a newline in the string.
The escape sequence '<code>\z</code>' skips the following span
of white-space characters,
including line breaks;
it is particularly useful to break and indent a long literal string
into multiple lines without adding the newlines and spaces
into the string contents.


<p>
Strings in Lua can contain any 8-bit value, including embedded zeros,
which can be specified as '<code>\0</code>'.
More generally,
we can specify any byte in a literal string by its numeric value.
This can be done
with the escape sequence <code>\x<em>XX</em></code>,
where <em>XX</em> is a sequence of exactly two hexadecimal digits,
or with the escape sequence <code>\<em>ddd</em></code>,
where <em>ddd</em> is a sequence of up to three decimal digits.
(Note that if a decimal escape sequence is to be followed by a digit,
it must be expressed using exactly three digits.)


<p>
The UTF-8 encoding of a Unicode character
can be inserted in a literal string with
the escape sequence <code>\u{<em>XXX</em>}</code>
(note the mandatory enclosing brackets),
where <em>XXX</em> is a sequence of one or more hexadecimal digits
representing the character code point.


<p>
Literal strings can also be defined using a long format
enclosed by <em>long brackets</em>.
We define an <em>opening long bracket of level <em>n</em></em> as an opening
square bracket followed by <em>n</em> equal signs followed by another
opening square bracket.
So, an opening long bracket of level&nbsp;0 is written as <code>[[</code>, 
an opening long bracket of level&nbsp;1 is written as <code>[=[</code>, 
and so on.
A <em>closing long bracket</em> is defined similarly;
for instance,
a closing long bracket of level&nbsp;4 is written as  <code>]====]</code>.
A <em>long literal</em> starts with an opening long bracket of any level and
ends at the first closing long bracket of the same level.
It can contain any text except a closing bracket of the same level.
Literals in this bracketed form can run for several lines,
do not interpret any escape sequences,
and ignore long brackets of any other level.
Any kind of end-of-line sequence
(carriage return, newline, carriage return followed by newline,
or newline followed by carriage return)
is converted to a simple newline.


<p>
Any byte in a literal string not
explicitly affected by the previous rules represents itself.
However, Lua opens files for parsing in text mode,
and the system file functions may have problems with
some control characters.
So, it is safer to represent
non-text data as a quoted literal with
explicit escape sequences for non-text characters.


<p>
For convenience,
when the opening long bracket is immediately followed by a newline,
the newline is not included in the string.
As an example, in a system using ASCII
(in which '<code>a</code>' is coded as&nbsp;97,
newline is coded as&nbsp;10, and '<code>1</code>' is coded as&nbsp;49),
the five literal strings below denote the same string:

<pre>
     a = 'alo\n123"'
     a = "alo\n123\""
     a = '\97lo\10\04923"'
     a = [[alo
     123"]]
     a = [==[
     alo
     123"]==]
</pre>

<p>
A <em>numeric constant</em> (or <em>numeral</em>)
can be written with an optional fractional part
and an optional decimal exponent,
marked by a letter '<code>e</code>' or '<code>E</code>'.
Lua also accepts hexadecimal constants,
which start with <code>0x</code> or <code>0X</code>.
Hexadecimal constants also accept an optional fractional part
plus an optional binary exponent,
marked by a letter '<code>p</code>' or '<code>P</code>'.
A numeric constant with a fractional dot or an exponent 
denotes a float;
otherwise it denotes an integer.
Examples of valid integer constants are

<pre>
     3   345   0xff   0xBEBADA
</pre><p>
Examples of valid float constants are

<pre>
     3.0     3.1416     314.16e-2     0.31416E1     34e1
     0x0.1E  0xA23p-4   0X1.921FB54442D18P+1
</pre>

<p>
A <em>comment</em> starts with a double hyphen (<code>--</code>)
anywhere outside a string.
If the text immediately after <code>--</code> is not an opening long bracket,
the comment is a <em>short comment</em>,
which runs until the end of the line.
Otherwise, it is a <em>long comment</em>,
which runs until the corresponding closing long bracket.
Long comments are frequently used to disable code temporarily.





<h2>3.2 &ndash; <a name="3.2">Variables</a></h2>

<p>
Variables are places that store values.
There are three kinds of variables in Lua:
global variables, local variables, and table fields.


<p>
A single name can denote a global variable or a local variable
(or a function's formal parameter,
which is a particular kind of local variable):

<pre>
	var ::= Name
</pre><p>
Name denotes identifiers, as defined in <a href="#3.1">&sect;3.1</a>.


<p>
Any variable name is assumed to be global unless explicitly declared
as a local (see <a href="#3.3.7">&sect;3.3.7</a>).
Local variables are <em>lexically scoped</em>:
local variables can be freely accessed by functions
defined inside their scope (see <a href="#3.5">&sect;3.5</a>).


<p>
Before the first assignment to a variable, its value is <b>nil</b>.


<p>
Square brackets are used to index a table:

<pre>
	var ::= prefixexp &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo;
</pre><p>
The meaning of accesses to table fields can be changed via metatables.
An access to an indexed variable <code>t[i]</code> is equivalent to
a call <code>gettable_event(t,i)</code>.
(See <a href="#2.4">&sect;2.4</a> for a complete description of the
<code>gettable_event</code> function.
This function is not defined or callable in Lua.
We use it here only for explanatory purposes.)


<p>
The syntax <code>var.Name</code> is just syntactic sugar for
<code>var["Name"]</code>:

<pre>
	var ::= prefixexp &lsquo;<b>.</b>&rsquo; Name
</pre>

<p>
An access to a global variable <code>x</code>
is equivalent to <code>_ENV.x</code>.
Due to the way that chunks are compiled,
<code>_ENV</code> is never a global name (see <a href="#2.2">&sect;2.2</a>).





<h2>3.3 &ndash; <a name="3.3">Statements</a></h2>

<p>
Lua supports an almost conventional set of statements,
similar to those in Pascal or C.
This set includes
assignments, control structures, function calls,
and variable declarations.



<h3>3.3.1 &ndash; <a name="3.3.1">Blocks</a></h3>

<p>
A block is a list of statements,
which are executed sequentially:

<pre>
	block ::= {stat}
</pre><p>
Lua has <em>empty statements</em>
that allow you to separate statements with semicolons,
start a block with a semicolon
or write two semicolons in sequence:

<pre>
	stat ::= &lsquo;<b>;</b>&rsquo;
</pre>

<p>
Function calls and assignments
can start with an open parenthesis.
This possibility leads to an ambiguity in Lua's grammar.
Consider the following fragment:

<pre>
     a = b + c
     (print or io.write)('done')
</pre><p>
The grammar could see it in two ways:

<pre>
     a = b + c(print or io.write)('done')
     
     a = b + c; (print or io.write)('done')
</pre><p>
The current parser always sees such constructions
in the first way,
interpreting the open parenthesis
as the start of the arguments to a call.
To avoid this ambiguity,
it is a good practice to always precede with a semicolon
statements that start with a parenthesis:

<pre>
     ;(print or io.write)('done')
</pre>

<p>
A block can be explicitly delimited to produce a single statement:

<pre>
	stat ::= <b>do</b> block <b>end</b>
</pre><p>
Explicit blocks are useful
to control the scope of variable declarations.
Explicit blocks are also sometimes used to
add a <b>return</b> statement in the middle
of another block (see <a href="#3.3.4">&sect;3.3.4</a>).





<h3>3.3.2 &ndash; <a name="3.3.2">Chunks</a></h3>

<p>
The unit of compilation of Lua is called a <em>chunk</em>.
Syntactically,
a chunk is simply a block:

<pre>
	chunk ::= block
</pre>

<p>
Lua handles a chunk as the body of an anonymous function
with a variable number of arguments
(see <a href="#3.4.11">&sect;3.4.11</a>).
As such, chunks can define local variables,
receive arguments, and return values.
Moreover, such anonymous function is compiled as in the
scope of an external local variable called <code>_ENV</code> (see <a href="#2.2">&sect;2.2</a>).
The resulting function always has <code>_ENV</code> as its only upvalue,
even if it does not use that variable.


<p>
A chunk can be stored in a file or in a string inside the host program.
To execute a chunk,
Lua first <em>loads</em> it,
precompiling the chunk's code into instructions for a virtual machine,
and then Lua executes the compiled code
with an interpreter for the virtual machine.


<p>
Chunks can also be precompiled into binary form;
see program <code>luac</code> and function <a href="#pdf-string.dump"><code>string.dump</code></a> for details.
Programs in source and compiled forms are interchangeable;
Lua automatically detects the file type and acts accordingly (see <a href="#pdf-load"><code>load</code></a>).





<h3>3.3.3 &ndash; <a name="3.3.3">Assignment</a></h3>

<p>
Lua allows multiple assignments.
Therefore, the syntax for assignment
defines a list of variables on the left side
and a list of expressions on the right side.
The elements in both lists are separated by commas:

<pre>
	stat ::= varlist &lsquo;<b>=</b>&rsquo; explist
	varlist ::= var {&lsquo;<b>,</b>&rsquo; var}
	explist ::= exp {&lsquo;<b>,</b>&rsquo; exp}
</pre><p>
Expressions are discussed in <a href="#3.4">&sect;3.4</a>.


<p>
Before the assignment,
the list of values is <em>adjusted</em> to the length of
the list of variables.
If there are more values than needed,
the excess values are thrown away.
If there are fewer values than needed,
the list is extended with as many  <b>nil</b>'s as needed.
If the list of expressions ends with a function call,
then all values returned by that call enter the list of values,
before the adjustment
(except when the call is enclosed in parentheses; see <a href="#3.4">&sect;3.4</a>).


<p>
The assignment statement first evaluates all its expressions
and only then the assignments are performed.
Thus the code

<pre>
     i = 3
     i, a[i] = i+1, 20
</pre><p>
sets <code>a[3]</code> to 20, without affecting <code>a[4]</code>
because the <code>i</code> in <code>a[i]</code> is evaluated (to 3)
before it is assigned&nbsp;4.
Similarly, the line

<pre>
     x, y = y, x
</pre><p>
exchanges the values of <code>x</code> and <code>y</code>,
and

<pre>
     x, y, z = y, z, x
</pre><p>
cyclically permutes the values of <code>x</code>, <code>y</code>, and <code>z</code>.


<p>
The meaning of assignments to global variables
and table fields can be changed via metatables.
An assignment to an indexed variable <code>t[i] = val</code> is equivalent to
<code>settable_event(t,i,val)</code>.
(See <a href="#2.4">&sect;2.4</a> for a complete description of the
<code>settable_event</code> function.
This function is not defined or callable in Lua.
We use it here only for explanatory purposes.)


<p>
An assignment to a global name <code>x = val</code>
is equivalent to the assignment
<code>_ENV.x = val</code> (see <a href="#2.2">&sect;2.2</a>).





<h3>3.3.4 &ndash; <a name="3.3.4">Control Structures</a></h3><p>
The control structures
<b>if</b>, <b>while</b>, and <b>repeat</b> have the usual meaning and
familiar syntax:




<pre>
	stat ::= <b>while</b> exp <b>do</b> block <b>end</b>
	stat ::= <b>repeat</b> block <b>until</b> exp
	stat ::= <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b>
</pre><p>
Lua also has a <b>for</b> statement, in two flavors (see <a href="#3.3.5">&sect;3.3.5</a>).


<p>
The condition expression of a
control structure can return any value.
Both <b>false</b> and <b>nil</b> are considered false.
All values different from <b>nil</b> and <b>false</b> are considered true
(in particular, the number 0 and the empty string are also true).


<p>
In the <b>repeat</b>&ndash;<b>until</b> loop,
the inner block does not end at the <b>until</b> keyword,
but only after the condition.
So, the condition can refer to local variables
declared inside the loop block.


<p>
The <b>goto</b> statement transfers the program control to a label.
For syntactical reasons,
labels in Lua are considered statements too:



<pre>
	stat ::= <b>goto</b> Name
	stat ::= label
	label ::= &lsquo;<b>::</b>&rsquo; Name &lsquo;<b>::</b>&rsquo;
</pre>

<p>
A label is visible in the entire block where it is defined,
except
inside nested blocks where a label with the same name is defined and
inside nested functions.
A goto may jump to any visible label as long as it does not
enter into the scope of a local variable.


<p>
Labels and empty statements are called <em>void statements</em>,
as they perform no actions.


<p>
The <b>break</b> statement terminates the execution of a
<b>while</b>, <b>repeat</b>, or <b>for</b> loop,
skipping to the next statement after the loop:


<pre>
	stat ::= <b>break</b>
</pre><p>
A <b>break</b> ends the innermost enclosing loop.


<p>
The <b>return</b> statement is used to return values
from a function or a chunk
(which is an anonymous function).

Functions can return more than one value,
so the syntax for the <b>return</b> statement is

<pre>
	stat ::= <b>return</b> [explist] [&lsquo;<b>;</b>&rsquo;]
</pre>

<p>
The <b>return</b> statement can only be written
as the last statement of a block.
If it is really necessary to <b>return</b> in the middle of a block,
then an explicit inner block can be used,
as in the idiom <code>do return end</code>,
because now <b>return</b> is the last statement in its (inner) block.





<h3>3.3.5 &ndash; <a name="3.3.5">For Statement</a></h3>

<p>

The <b>for</b> statement has two forms:
one numerical and one generic.


<p>
The numerical <b>for</b> loop repeats a block of code while a
control variable runs through an arithmetic progression.
It has the following syntax:

<pre>
	stat ::= <b>for</b> Name &lsquo;<b>=</b>&rsquo; exp &lsquo;<b>,</b>&rsquo; exp [&lsquo;<b>,</b>&rsquo; exp] <b>do</b> block <b>end</b>
</pre><p>
The <em>block</em> is repeated for <em>name</em> starting at the value of
the first <em>exp</em>, until it passes the second <em>exp</em> by steps of the
third <em>exp</em>.
More precisely, a <b>for</b> statement like

<pre>
     for v = <em>e1</em>, <em>e2</em>, <em>e3</em> do <em>block</em> end
</pre><p>
is equivalent to the code:

<pre>
     do
       local <em>var</em>, <em>limit</em>, <em>step</em> = tonumber(<em>e1</em>), tonumber(<em>e2</em>), tonumber(<em>e3</em>)
       if not (<em>var</em> and <em>limit</em> and <em>step</em>) then error() end
       <em>var</em> = <em>var</em> - <em>step</em>
       while true do
         <em>var</em> = <em>var</em> + <em>step</em>
         if (<em>step</em> &gt;= 0 and <em>var</em> &gt; <em>limit</em>) or (<em>step</em> &lt; 0 and <em>var</em> &lt; <em>limit</em>) then
           break
         end
         local v = <em>var</em>
         <em>block</em>
       end
     end
</pre>

<p>
Note the following:

<ul>

<li>
All three control expressions are evaluated only once,
before the loop starts.
They must all result in numbers.
</li>

<li>
<code><em>var</em></code>, <code><em>limit</em></code>, and <code><em>step</em></code> are invisible variables.
The names shown here are for explanatory purposes only.
</li>

<li>
If the third expression (the step) is absent,
then a step of&nbsp;1 is used.
</li>

<li>
You can use <b>break</b> and <b>goto</b> to exit a <b>for</b> loop.
</li>

<li>
The loop variable <code>v</code> is local to the loop body.
If you need its value after the loop,
assign it to another variable before exiting the loop.
</li>

</ul>

<p>
The generic <b>for</b> statement works over functions,
called <em>iterators</em>.
On each iteration, the iterator function is called to produce a new value,
stopping when this new value is <b>nil</b>.
The generic <b>for</b> loop has the following syntax:

<pre>
	stat ::= <b>for</b> namelist <b>in</b> explist <b>do</b> block <b>end</b>
	namelist ::= Name {&lsquo;<b>,</b>&rsquo; Name}
</pre><p>
A <b>for</b> statement like

<pre>
     for <em>var_1</em>, &middot;&middot;&middot;, <em>var_n</em> in <em>explist</em> do <em>block</em> end
</pre><p>
is equivalent to the code:

<pre>
     do
       local <em>f</em>, <em>s</em>, <em>var</em> = <em>explist</em>
       while true do
         local <em>var_1</em>, &middot;&middot;&middot;, <em>var_n</em> = <em>f</em>(<em>s</em>, <em>var</em>)
         if <em>var_1</em> == nil then break end
         <em>var</em> = <em>var_1</em>
         <em>block</em>
       end
     end
</pre><p>
Note the following:

<ul>

<li>
<code><em>explist</em></code> is evaluated only once.
Its results are an <em>iterator</em> function,
a <em>state</em>,
and an initial value for the first <em>iterator variable</em>.
</li>

<li>
<code><em>f</em></code>, <code><em>s</em></code>, and <code><em>var</em></code> are invisible variables.
The names are here for explanatory purposes only.
</li>

<li>
You can use <b>break</b> to exit a <b>for</b> loop.
</li>

<li>
The loop variables <code><em>var_i</em></code> are local to the loop;
you cannot use their values after the <b>for</b> ends.
If you need these values,
then assign them to other variables before breaking or exiting the loop.
</li>

</ul>




<h3>3.3.6 &ndash; <a name="3.3.6">Function Calls as Statements</a></h3><p>
To allow possible side-effects,
function calls can be executed as statements:

<pre>
	stat ::= functioncall
</pre><p>
In this case, all returned values are thrown away.
Function calls are explained in <a href="#3.4.10">&sect;3.4.10</a>.





<h3>3.3.7 &ndash; <a name="3.3.7">Local Declarations</a></h3><p>
Local variables can be declared anywhere inside a block.
The declaration can include an initial assignment:

<pre>
	stat ::= <b>local</b> namelist [&lsquo;<b>=</b>&rsquo; explist]
</pre><p>
If present, an initial assignment has the same semantics
of a multiple assignment (see <a href="#3.3.3">&sect;3.3.3</a>).
Otherwise, all variables are initialized with <b>nil</b>.


<p>
A chunk is also a block (see <a href="#3.3.2">&sect;3.3.2</a>),
and so local variables can be declared in a chunk outside any explicit block.


<p>
The visibility rules for local variables are explained in <a href="#3.5">&sect;3.5</a>.







<h2>3.4 &ndash; <a name="3.4">Expressions</a></h2>

<p>
The basic expressions in Lua are the following:

<pre>
	exp ::= prefixexp
	exp ::= <b>nil</b> | <b>false</b> | <b>true</b>
	exp ::= Numeral
	exp ::= LiteralString
	exp ::= functiondef
	exp ::= tableconstructor
	exp ::= &lsquo;<b>...</b>&rsquo;
	exp ::= exp binop exp
	exp ::= unop exp
	prefixexp ::= var | functioncall | &lsquo;<b>(</b>&rsquo; exp &lsquo;<b>)</b>&rsquo;
</pre>

<p>
Numerals and literal strings are explained in <a href="#3.1">&sect;3.1</a>;
variables are explained in <a href="#3.2">&sect;3.2</a>;
function definitions are explained in <a href="#3.4.11">&sect;3.4.11</a>;
function calls are explained in <a href="#3.4.10">&sect;3.4.10</a>;
table constructors are explained in <a href="#3.4.9">&sect;3.4.9</a>.
Vararg expressions,
denoted by three dots ('<code>...</code>'), can only be used when
directly inside a vararg function;
they are explained in <a href="#3.4.11">&sect;3.4.11</a>.


<p>
Binary operators comprise arithmetic operators (see <a href="#3.4.1">&sect;3.4.1</a>),
bitwise operators (see <a href="#3.4.2">&sect;3.4.2</a>),
relational operators (see <a href="#3.4.4">&sect;3.4.4</a>), logical operators (see <a href="#3.4.5">&sect;3.4.5</a>),
and the concatenation operator (see <a href="#3.4.6">&sect;3.4.6</a>).
Unary operators comprise the unary minus (see <a href="#3.4.1">&sect;3.4.1</a>),
the unary bitwise not (see <a href="#3.4.2">&sect;3.4.2</a>),
the unary logical <b>not</b> (see <a href="#3.4.5">&sect;3.4.5</a>),
and the unary <em>length operator</em> (see <a href="#3.4.7">&sect;3.4.7</a>).


<p>
Both function calls and vararg expressions can result in multiple values.
If a function call is used as a statement (see <a href="#3.3.6">&sect;3.3.6</a>),
then its return list is adjusted to zero elements,
thus discarding all returned values.
If an expression is used as the last (or the only) element
of a list of expressions,
then no adjustment is made
(unless the expression is enclosed in parentheses).
In all other contexts,
Lua adjusts the result list to one element,
either discarding all values except the first one
or adding a single <b>nil</b> if there are no values.


<p>
Here are some examples:

<pre>
     f()                -- adjusted to 0 results
     g(f(), x)          -- f() is adjusted to 1 result
     g(x, f())          -- g gets x plus all results from f()
     a,b,c = f(), x     -- f() is adjusted to 1 result (c gets nil)
     a,b = ...          -- a gets the first vararg parameter, b gets
                        -- the second (both a and b can get nil if there
                        -- is no corresponding vararg parameter)
     
     a,b,c = x, f()     -- f() is adjusted to 2 results
     a,b,c = f()        -- f() is adjusted to 3 results
     return f()         -- returns all results from f()
     return ...         -- returns all received vararg parameters
     return x,y,f()     -- returns x, y, and all results from f()
     {f()}              -- creates a list with all results from f()
     {...}              -- creates a list with all vararg parameters
     {f(), nil}         -- f() is adjusted to 1 result
</pre>

<p>
Any expression enclosed in parentheses always results in only one value.
Thus,
<code>(f(x,y,z))</code> is always a single value,
even if <code>f</code> returns several values.
(The value of <code>(f(x,y,z))</code> is the first value returned by <code>f</code>
or <b>nil</b> if <code>f</code> does not return any values.)



<h3>3.4.1 &ndash; <a name="3.4.1">Arithmetic Operators</a></h3><p>
Lua supports the following arithmetic operators:

<ul>
<li><b><code>+</code>: </b>addition</li>
<li><b><code>-</code>: </b>subtraction</li>
<li><b><code>*</code>: </b>multiplication</li>
<li><b><code>/</code>: </b>float division</li>
<li><b><code>//</code>: </b>floor division</li>
<li><b><code>%</code>: </b>modulo</li>
<li><b><code>^</code>: </b>exponentiation</li>
<li><b><code>-</code>: </b>unary minus</li>
</ul>

<p>
With the exception of exponentiation and float division,
the arithmetic operators work as follows:
If both operands are integers,
the operation is performed over integers and the result is an integer.
Otherwise, if both operands are numbers
or strings that can be converted to
numbers (see <a href="#3.4.3">&sect;3.4.3</a>),
then they are converted to floats,
the operation is performed following the usual rules
for floating-point arithmetic
(usually the IEEE 754 standard),
and the result is a float.


<p>
Exponentiation and float division (<code>/</code>)
always convert their operands to floats
and the result is always a float.
Exponentiation uses the ISO&nbsp;C function <code>pow</code>,
so that it works for non-integer exponents too.


<p>
Floor division (<code>//</code>) is a division 
that rounds the quotient towards minus infinity,
that is, the floor of the division of its operands.


<p>
Modulo is defined as the remainder of a division
that rounds the quotient towards minus infinity (floor division).


<p>
In case of overflows in integer arithmetic,
all operations <em>wrap around</em>,
according to the usual rules of two-complement arithmetic.
(In other words,
they return the unique representable integer
that is equal modulo <em>2<sup>64</sup></em> to the mathematical result.)



<h3>3.4.2 &ndash; <a name="3.4.2">Bitwise Operators</a></h3><p>
Lua supports the following bitwise operators:

<ul>
<li><b><code>&amp;</code>: </b>bitwise and</li>
<li><b><code>&#124;</code>: </b>bitwise or</li>
<li><b><code>~</code>: </b>bitwise exclusive or</li>
<li><b><code>&gt;&gt;</code>: </b>right shift</li>
<li><b><code>&lt;&lt;</code>: </b>left shift</li>
<li><b><code>~</code>: </b>unary bitwise not</li>
</ul>

<p>
All bitwise operations convert its operands to integers
(see <a href="#3.4.3">&sect;3.4.3</a>),
operate on all bits of those integers,
and result in an integer.


<p>
Both right and left shifts fill the vacant bits with zeros.
Negative displacements shift to the other direction;
displacements with absolute values equal to or higher than
the number of bits in an integer
result in zero (as all bits are shifted out).





<h3>3.4.3 &ndash; <a name="3.4.3">Coercions and Conversions</a></h3><p>
Lua provides some automatic conversions between some
types and representations at run time.
Bitwise operators always convert float operands to integers.
Exponentiation and float division
always convert integer operands to floats.
All other arithmetic operations applied to mixed numbers
(integers and floats) convert the integer operand to a float;
this is called the <em>usual rule</em>.
The C API also converts both integers to floats and
floats to integers, as needed.
Moreover, string concatenation accepts numbers as arguments,
besides strings. 


<p>
Lua also converts strings to numbers,
whenever a number is expected.


<p>
In a conversion from integer to float,
if the integer value has an exact representation as a float,
that is the result.
Otherwise,
the conversion gets the nearest higher or
the nearest lower representable value.
This kind of conversion never fails.


<p>
The conversion from float to integer
checks whether the float has an exact representation as an integer
(that is, the float has an integral value and
it is in the range of integer representation).
If it does, that representation is the result.
Otherwise, the conversion fails.


<p>
The conversion from strings to numbers goes as follows:
First, the string is converted to an integer or a float,
following its syntax and the rules of the Lua lexer.
(The string may have also leading and trailing spaces and a sign.)
Then, the resulting number (float or integer)
is converted to the type (float or integer) required by the context
(e.g., the operation that forced the conversion).


<p>
The conversion from numbers to strings uses a
non-specified human-readable format.
For complete control over how numbers are converted to strings,
use the <code>format</code> function from the string library
(see <a href="#pdf-string.format"><code>string.format</code></a>).





<h3>3.4.4 &ndash; <a name="3.4.4">Relational Operators</a></h3><p>
Lua supports the following relational operators:

<ul>
<li><b><code>==</code>: </b>equality</li>
<li><b><code>~=</code>: </b>inequality</li>
<li><b><code>&lt;</code>: </b>less than</li>
<li><b><code>&gt;</code>: </b>greater than</li>
<li><b><code>&lt;=</code>: </b>less or equal</li>
<li><b><code>&gt;=</code>: </b>greater or equal</li>
</ul><p>
These operators always result in <b>false</b> or <b>true</b>.


<p>
Equality (<code>==</code>) first compares the type of its operands.
If the types are different, then the result is <b>false</b>.
Otherwise, the values of the operands are compared.
Strings are compared in the obvious way.
Numbers are equal if they denote the same mathematical value.


<p>
Tables, userdata, and threads
are compared by reference:
two objects are considered equal only if they are the same object.
Every time you create a new object
(a table, userdata, or thread),
this new object is different from any previously existing object.
Closures with the same reference are always equal.
Closures with any detectable difference
(different behavior, different definition) are always different.


<p>
You can change the way that Lua compares tables and userdata
by using the "eq" metamethod (see <a href="#2.4">&sect;2.4</a>).


<p>
Equality comparisons do not convert strings to numbers
or vice versa.
Thus, <code>"0"==0</code> evaluates to <b>false</b>,
and <code>t[0]</code> and <code>t["0"]</code> denote different
entries in a table.


<p>
The operator <code>~=</code> is exactly the negation of equality (<code>==</code>).


<p>
The order operators work as follows.
If both arguments are numbers,
then they are compared according to their mathematical values
(regardless of their subtypes).
Otherwise, if both arguments are strings,
then their values are compared according to the current locale.
Otherwise, Lua tries to call the "lt" or the "le"
metamethod (see <a href="#2.4">&sect;2.4</a>).
A comparison <code>a &gt; b</code> is translated to <code>b &lt; a</code>
and <code>a &gt;= b</code> is translated to <code>b &lt;= a</code>.


<p>
Following the IEEE 754 standard,
NaN is considered neither smaller than,
nor equal to, nor greater than any value (including itself).





<h3>3.4.5 &ndash; <a name="3.4.5">Logical Operators</a></h3><p>
The logical operators in Lua are
<b>and</b>, <b>or</b>, and <b>not</b>.
Like the control structures (see <a href="#3.3.4">&sect;3.3.4</a>),
all logical operators consider both <b>false</b> and <b>nil</b> as false
and anything else as true.


<p>
The negation operator <b>not</b> always returns <b>false</b> or <b>true</b>.
The conjunction operator <b>and</b> returns its first argument
if this value is <b>false</b> or <b>nil</b>;
otherwise, <b>and</b> returns its second argument.
The disjunction operator <b>or</b> returns its first argument
if this value is different from <b>nil</b> and <b>false</b>;
otherwise, <b>or</b> returns its second argument.
Both <b>and</b> and <b>or</b> use short-circuit evaluation;
that is,
the second operand is evaluated only if necessary.
Here are some examples:

<pre>
     10 or 20            --&gt; 10
     10 or error()       --&gt; 10
     nil or "a"          --&gt; "a"
     nil and 10          --&gt; nil
     false and error()   --&gt; false
     false and nil       --&gt; false
     false or nil        --&gt; nil
     10 and 20           --&gt; 20
</pre><p>
(In this manual,
<code>--&gt;</code> indicates the result of the preceding expression.)





<h3>3.4.6 &ndash; <a name="3.4.6">Concatenation</a></h3><p>
The string concatenation operator in Lua is
denoted by two dots ('<code>..</code>').
If both operands are strings or numbers, then they are converted to
strings according to the rules described in <a href="#3.4.3">&sect;3.4.3</a>.
Otherwise, the <code>__concat</code> metamethod is called (see <a href="#2.4">&sect;2.4</a>).





<h3>3.4.7 &ndash; <a name="3.4.7">The Length Operator</a></h3>

<p>
The length operator is denoted by the unary prefix operator <code>#</code>.
The length of a string is its number of bytes
(that is, the usual meaning of string length when each
character is one byte).


<p>
A program can modify the behavior of the length operator for
any value but strings through the <code>__len</code> metamethod (see <a href="#2.4">&sect;2.4</a>).


<p>
Unless a <code>__len</code> metamethod is given,
the length of a table <code>t</code> is only defined if the
table is a <em>sequence</em>,
that is,
the set of its positive numeric keys is equal to <em>{1..n}</em>
for some non-negative integer <em>n</em>.
In that case, <em>n</em> is its length.
Note that a table like

<pre>
     {10, 20, nil, 40}
</pre><p>
is not a sequence, because it has the key <code>4</code>
but does not have the key <code>3</code>.
(So, there is no <em>n</em> such that the set <em>{1..n}</em> is equal
to the set of positive numeric keys of that table.)
Note, however, that non-numeric keys do not interfere
with whether a table is a sequence.





<h3>3.4.8 &ndash; <a name="3.4.8">Precedence</a></h3><p>
Operator precedence in Lua follows the table below,
from lower to higher priority:

<pre>
     or
     and
     &lt;     &gt;     &lt;=    &gt;=    ~=    ==
     |
     ~
     &amp;
     &lt;&lt;    &gt;&gt;
     ..
     +     -
     *     /     //    %
     unary operators (not   #     -     ~)
     ^
</pre><p>
As usual,
you can use parentheses to change the precedences of an expression.
The concatenation ('<code>..</code>') and exponentiation ('<code>^</code>')
operators are right associative.
All other binary operators are left associative.





<h3>3.4.9 &ndash; <a name="3.4.9">Table Constructors</a></h3><p>
Table constructors are expressions that create tables.
Every time a constructor is evaluated, a new table is created.
A constructor can be used to create an empty table
or to create a table and initialize some of its fields.
The general syntax for constructors is

<pre>
	tableconstructor ::= &lsquo;<b>{</b>&rsquo; [fieldlist] &lsquo;<b>}</b>&rsquo;
	fieldlist ::= field {fieldsep field} [fieldsep]
	field ::= &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo; &lsquo;<b>=</b>&rsquo; exp | Name &lsquo;<b>=</b>&rsquo; exp | exp
	fieldsep ::= &lsquo;<b>,</b>&rsquo; | &lsquo;<b>;</b>&rsquo;
</pre>

<p>
Each field of the form <code>[exp1] = exp2</code> adds to the new table an entry
with key <code>exp1</code> and value <code>exp2</code>.
A field of the form <code>name = exp</code> is equivalent to
<code>["name"] = exp</code>.
Finally, fields of the form <code>exp</code> are equivalent to
<code>[i] = exp</code>, where <code>i</code> are consecutive integers
starting with 1.
Fields in the other formats do not affect this counting.
For example,

<pre>
     a = { [f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45 }
</pre><p>
is equivalent to

<pre>
     do
       local t = {}
       t[f(1)] = g
       t[1] = "x"         -- 1st exp
       t[2] = "y"         -- 2nd exp
       t.x = 1            -- t["x"] = 1
       t[3] = f(x)        -- 3rd exp
       t[30] = 23
       t[4] = 45          -- 4th exp
       a = t
     end
</pre>

<p>
The order of the assignments in a constructor is undefined.
(This order would be relevant only when there are repeated keys.)


<p>
If the last field in the list has the form <code>exp</code>
and the expression is a function call or a vararg expression,
then all values returned by this expression enter the list consecutively
(see <a href="#3.4.10">&sect;3.4.10</a>).


<p>
The field list can have an optional trailing separator,
as a convenience for machine-generated code.





<h3>3.4.10 &ndash; <a name="3.4.10">Function Calls</a></h3><p>
A function call in Lua has the following syntax:

<pre>
	functioncall ::= prefixexp args
</pre><p>
In a function call,
first prefixexp and args are evaluated.
If the value of prefixexp has type <em>function</em>,
then this function is called
with the given arguments.
Otherwise, the prefixexp "call" metamethod is called,
having as first parameter the value of prefixexp,
followed by the original call arguments
(see <a href="#2.4">&sect;2.4</a>).


<p>
The form

<pre>
	functioncall ::= prefixexp &lsquo;<b>:</b>&rsquo; Name args
</pre><p>
can be used to call "methods".
A call <code>v:name(<em>args</em>)</code>
is syntactic sugar for <code>v.name(v,<em>args</em>)</code>,
except that <code>v</code> is evaluated only once.


<p>
Arguments have the following syntax:

<pre>
	args ::= &lsquo;<b>(</b>&rsquo; [explist] &lsquo;<b>)</b>&rsquo;
	args ::= tableconstructor
	args ::= LiteralString
</pre><p>
All argument expressions are evaluated before the call.
A call of the form <code>f{<em>fields</em>}</code> is
syntactic sugar for <code>f({<em>fields</em>})</code>;
that is, the argument list is a single new table.
A call of the form <code>f'<em>string</em>'</code>
(or <code>f"<em>string</em>"</code> or <code>f[[<em>string</em>]]</code>)
is syntactic sugar for <code>f('<em>string</em>')</code>;
that is, the argument list is a single literal string.


<p>
A call of the form <code>return <em>functioncall</em></code> is called
a <em>tail call</em>.
Lua implements <em>proper tail calls</em>
(or <em>proper tail recursion</em>):
in a tail call,
the called function reuses the stack entry of the calling function.
Therefore, there is no limit on the number of nested tail calls that
a program can execute.
However, a tail call erases any debug information about the
calling function.
Note that a tail call only happens with a particular syntax,
where the <b>return</b> has one single function call as argument;
this syntax makes the calling function return exactly
the returns of the called function.
So, none of the following examples are tail calls:

<pre>
     return (f(x))        -- results adjusted to 1
     return 2 * f(x)
     return x, f(x)       -- additional results
     f(x); return         -- results discarded
     return x or f(x)     -- results adjusted to 1
</pre>




<h3>3.4.11 &ndash; <a name="3.4.11">Function Definitions</a></h3>

<p>
The syntax for function definition is

<pre>
	functiondef ::= <b>function</b> funcbody
	funcbody ::= &lsquo;<b>(</b>&rsquo; [parlist] &lsquo;<b>)</b>&rsquo; block <b>end</b>
</pre>

<p>
The following syntactic sugar simplifies function definitions:

<pre>
	stat ::= <b>function</b> funcname funcbody
	stat ::= <b>local</b> <b>function</b> Name funcbody
	funcname ::= Name {&lsquo;<b>.</b>&rsquo; Name} [&lsquo;<b>:</b>&rsquo; Name]
</pre><p>
The statement

<pre>
     function f () <em>body</em> end
</pre><p>
translates to

<pre>
     f = function () <em>body</em> end
</pre><p>
The statement

<pre>
     function t.a.b.c.f () <em>body</em> end
</pre><p>
translates to

<pre>
     t.a.b.c.f = function () <em>body</em> end
</pre><p>
The statement

<pre>
     local function f () <em>body</em> end
</pre><p>
translates to

<pre>
     local f; f = function () <em>body</em> end
</pre><p>
not to

<pre>
     local f = function () <em>body</em> end
</pre><p>
(This only makes a difference when the body of the function
contains references to <code>f</code>.)


<p>
A function definition is an executable expression,
whose value has type <em>function</em>.
When Lua precompiles a chunk,
all its function bodies are precompiled too.
Then, whenever Lua executes the function definition,
the function is <em>instantiated</em> (or <em>closed</em>).
This function instance (or <em>closure</em>)
is the final value of the expression.


<p>
Parameters act as local variables that are
initialized with the argument values:

<pre>
	parlist ::= namelist [&lsquo;<b>,</b>&rsquo; &lsquo;<b>...</b>&rsquo;] | &lsquo;<b>...</b>&rsquo;
</pre><p>
When a function is called,
the list of arguments is adjusted to
the length of the list of parameters,
unless the function is a <em>vararg function</em>,
which is indicated by three dots ('<code>...</code>')
at the end of its parameter list.
A vararg function does not adjust its argument list;
instead, it collects all extra arguments and supplies them
to the function through a <em>vararg expression</em>,
which is also written as three dots.
The value of this expression is a list of all actual extra arguments,
similar to a function with multiple results.
If a vararg expression is used inside another expression
or in the middle of a list of expressions,
then its return list is adjusted to one element.
If the expression is used as the last element of a list of expressions,
then no adjustment is made
(unless that last expression is enclosed in parentheses).


<p>
As an example, consider the following definitions:

<pre>
     function f(a, b) end
     function g(a, b, ...) end
     function r() return 1,2,3 end
</pre><p>
Then, we have the following mapping from arguments to parameters and
to the vararg expression:

<pre>
     CALL            PARAMETERS
     
     f(3)             a=3, b=nil
     f(3, 4)          a=3, b=4
     f(3, 4, 5)       a=3, b=4
     f(r(), 10)       a=1, b=10
     f(r())           a=1, b=2
     
     g(3)             a=3, b=nil, ... --&gt;  (nothing)
     g(3, 4)          a=3, b=4,   ... --&gt;  (nothing)
     g(3, 4, 5, 8)    a=3, b=4,   ... --&gt;  5  8
     g(5, r())        a=5, b=1,   ... --&gt;  2  3
</pre>

<p>
Results are returned using the <b>return</b> statement (see <a href="#3.3.4">&sect;3.3.4</a>).
If control reaches the end of a function
without encountering a <b>return</b> statement,
then the function returns with no results.


<p>

There is a system-dependent limit on the number of values
that a function may return.
This limit is guaranteed to be larger than 1000.


<p>
The <em>colon</em> syntax
is used for defining <em>methods</em>,
that is, functions that have an implicit extra parameter <code>self</code>.
Thus, the statement

<pre>
     function t.a.b.c:f (<em>params</em>) <em>body</em> end
</pre><p>
is syntactic sugar for

<pre>
     t.a.b.c.f = function (self, <em>params</em>) <em>body</em> end
</pre>






<h2>3.5 &ndash; <a name="3.5">Visibility Rules</a></h2>

<p>

Lua is a lexically scoped language.
The scope of a local variable begins at the first statement after
its declaration and lasts until the last non-void statement
of the innermost block that includes the declaration.
Consider the following example:

<pre>
     x = 10                -- global variable
     do                    -- new block
       local x = x         -- new 'x', with value 10
       print(x)            --&gt; 10
       x = x+1
       do                  -- another block
         local x = x+1     -- another 'x'
         print(x)          --&gt; 12
       end
       print(x)            --&gt; 11
     end
     print(x)              --&gt; 10  (the global one)
</pre>

<p>
Notice that, in a declaration like <code>local x = x</code>,
the new <code>x</code> being declared is not in scope yet,
and so the second <code>x</code> refers to the outside variable.


<p>
Because of the lexical scoping rules,
local variables can be freely accessed by functions
defined inside their scope.
A local variable used by an inner function is called
an <em>upvalue</em>, or <em>external local variable</em>,
inside the inner function.


<p>
Notice that each execution of a <b>local</b> statement
defines new local variables.
Consider the following example:

<pre>
     a = {}
     local x = 20
     for i=1,10 do
       local y = 0
       a[i] = function () y=y+1; return x+y end
     end
</pre><p>
The loop creates ten closures
(that is, ten instances of the anonymous function).
Each of these closures uses a different <code>y</code> variable,
while all of them share the same <code>x</code>.





<h1>4 &ndash; <a name="4">The Application Program Interface</a></h1>

<p>

This section describes the C&nbsp;API for Lua, that is,
the set of C&nbsp;functions available to the host program to communicate
with Lua.
All API functions and related types and constants
are declared in the header file <a name="pdf-lua.h"><code>lua.h</code></a>.


<p>
Even when we use the term "function",
any facility in the API may be provided as a macro instead.
Except where stated otherwise,
all such macros use each of their arguments exactly once
(except for the first argument, which is always a Lua state),
and so do not generate any hidden side-effects.


<p>
As in most C&nbsp;libraries,
the Lua API functions do not check their arguments for validity or consistency.
However, you can change this behavior by compiling Lua
with the macro <a name="pdf-LUA_USE_APICHECK"><code>LUA_USE_APICHECK</code></a> defined.



<h2>4.1 &ndash; <a name="4.1">The Stack</a></h2>

<p>
Lua uses a <em>virtual stack</em> to pass values to and from C.
Each element in this stack represents a Lua value
(<b>nil</b>, number, string, etc.).


<p>
Whenever Lua calls C, the called function gets a new stack,
which is independent of previous stacks and of stacks of
C&nbsp;functions that are still active.
This stack initially contains any arguments to the C&nbsp;function
and it is where the C&nbsp;function pushes its results
to be returned to the caller (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).


<p>
For convenience,
most query operations in the API do not follow a strict stack discipline.
Instead, they can refer to any element in the stack
by using an <em>index</em>:
A positive index represents an absolute stack position
(starting at&nbsp;1);
a negative index represents an offset relative to the top of the stack.
More specifically, if the stack has <em>n</em> elements,
then index&nbsp;1 represents the first element
(that is, the element that was pushed onto the stack first)
and
index&nbsp;<em>n</em> represents the last element;
index&nbsp;-1 also represents the last element
(that is, the element at the&nbsp;top)
and index <em>-n</em> represents the first element.





<h2>4.2 &ndash; <a name="4.2">Stack Size</a></h2>

<p>
When you interact with the Lua API,
you are responsible for ensuring consistency.
In particular,
<em>you are responsible for controlling stack overflow</em>.
You can use the function <a href="#lua_checkstack"><code>lua_checkstack</code></a>
to ensure that the stack has enough space for pushing new elements.


<p>
Whenever Lua calls C,
it ensures that the stack has space for
at least <a name="pdf-LUA_MINSTACK"><code>LUA_MINSTACK</code></a> extra slots.
<code>LUA_MINSTACK</code> is defined as 20,
so that usually you do not have to worry about stack space
unless your code has loops pushing elements onto the stack.


<p>
When you call a Lua function
without a fixed number of results (see <a href="#lua_call"><code>lua_call</code></a>),
Lua ensures that the stack has enough space for all results,
but it does not ensure any extra space.
So, before pushing anything in the stack after such a call
you should use <a href="#lua_checkstack"><code>lua_checkstack</code></a>.





<h2>4.3 &ndash; <a name="4.3">Valid and Acceptable Indices</a></h2>

<p>
Any function in the API that receives stack indices
works only with <em>valid indices</em> or <em>acceptable indices</em>.


<p>
A <em>valid index</em> is an index that refers to a
position that stores a modifiable Lua value.
It comprises stack indices between&nbsp;1 and the stack top
(<code>1 &le; abs(index) &le; top</code>)

plus <em>pseudo-indices</em>,
which represent some positions that are accessible to C&nbsp;code
but that are not in the stack.
Pseudo-indices are used to access the registry (see <a href="#4.5">&sect;4.5</a>)
and the upvalues of a C&nbsp;function (see <a href="#4.4">&sect;4.4</a>).


<p>
Functions that do not need a specific mutable position,
but only a value (e.g., query functions),
can be called with acceptable indices.
An <em>acceptable index</em> can be any valid index,
but it also can be any positive index after the stack top
within the space allocated for the stack,
that is, indices up to the stack size.
(Note that 0 is never an acceptable index.)
Except when noted otherwise,
functions in the API work with acceptable indices.


<p>
Acceptable indices serve to avoid extra tests
against the stack top when querying the stack.
For instance, a C&nbsp;function can query its third argument
without the need to first check whether there is a third argument,
that is, without the need to check whether 3 is a valid index.


<p>
For functions that can be called with acceptable indices,
any non-valid index is treated as if it
contains a value of a virtual type <a name="pdf-LUA_TNONE"><code>LUA_TNONE</code></a>,
which behaves like a nil value.





<h2>4.4 &ndash; <a name="4.4">C Closures</a></h2>

<p>
When a C&nbsp;function is created,
it is possible to associate some values with it,
thus creating a <em>C&nbsp;closure</em>
(see <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a>);
these values are called <em>upvalues</em> and are
accessible to the function whenever it is called.


<p>
Whenever a C&nbsp;function is called,
its upvalues are located at specific pseudo-indices.
These pseudo-indices are produced by the macro
<a href="#lua_upvalueindex"><code>lua_upvalueindex</code></a>.
The first upvalue associated with a function is at index
<code>lua_upvalueindex(1)</code>, and so on.
Any access to <code>lua_upvalueindex(<em>n</em>)</code>,
where <em>n</em> is greater than the number of upvalues of the
current function
(but not greater than 256,
which is one plus the maximum number of upvalues in a closure),
produces an acceptable but invalid index.





<h2>4.5 &ndash; <a name="4.5">Registry</a></h2>

<p>
Lua provides a <em>registry</em>,
a predefined table that can be used by any C&nbsp;code to
store whatever Lua values it needs to store.
The registry table is always located at pseudo-index
<a name="pdf-LUA_REGISTRYINDEX"><code>LUA_REGISTRYINDEX</code></a>.
Any C&nbsp;library can store data into this table,
but it must take care to choose keys
that are different from those used
by other libraries, to avoid collisions.
Typically, you should use as key a string containing your library name,
or a light userdata with the address of a C&nbsp;object in your code,
or any Lua object created by your code.
As with variable names,
string keys starting with an underscore followed by
uppercase letters are reserved for Lua.


<p>
The integer keys in the registry are used
by the reference mechanism (see <a href="#luaL_ref"><code>luaL_ref</code></a>)
and by some predefined values.
Therefore, integer keys must not be used for other purposes.


<p>
When you create a new Lua state,
its registry comes with some predefined values.
These predefined values are indexed with integer keys
defined as constants in <code>lua.h</code>.
The following constants are defined:

<ul>
<li><b><a name="pdf-LUA_RIDX_MAINTHREAD"><code>LUA_RIDX_MAINTHREAD</code></a>: </b> At this index the registry has
the main thread of the state.
(The main thread is the one created together with the state.)
</li>

<li><b><a name="pdf-LUA_RIDX_GLOBALS"><code>LUA_RIDX_GLOBALS</code></a>: </b> At this index the registry has
the global environment.
</li>
</ul>




<h2>4.6 &ndash; <a name="4.6">Error Handling in C</a></h2>

<p>
Internally, Lua uses the C <code>longjmp</code> facility to handle errors.
(Lua will use exceptions if you compile it as C++;
search for <code>LUAI_THROW</code> in the source code for details.)
When Lua faces any error
(such as a memory allocation error, type errors, syntax errors,
and runtime errors)
it <em>raises</em> an error;
that is, it does a long jump.
A <em>protected environment</em> uses <code>setjmp</code>
to set a recovery point;
any error jumps to the most recent active recovery point.


<p>
If an error happens outside any protected environment,
Lua calls a <em>panic function</em> (see <a href="#lua_atpanic"><code>lua_atpanic</code></a>)
and then calls <code>abort</code>,
thus exiting the host application.
Your panic function can avoid this exit by
never returning
(e.g., doing a long jump to your own recovery point outside Lua).


<p>
The panic function runs as if it were a message handler (see <a href="#2.3">&sect;2.3</a>);
in particular, the error message is at the top of the stack.
However, there is no guarantee about stack space.
To push anything on the stack,
the panic function must first check the available space (see <a href="#4.2">&sect;4.2</a>).


<p>
Most functions in the API can raise an error,
for instance due to a memory allocation error.
The documentation for each function indicates whether
it can raise errors.


<p>
Inside a C&nbsp;function you can raise an error by calling <a href="#lua_error"><code>lua_error</code></a>.





<h2>4.7 &ndash; <a name="4.7">Handling Yields in C</a></h2>

<p>
Internally, Lua uses the C <code>longjmp</code> facility to yield a coroutine.
Therefore, if a C function <code>foo</code> calls an API function
and this API function yields
(directly or indirectly by calling another function that yields),
Lua cannot return to <code>foo</code> any more,
because the <code>longjmp</code> removes its frame from the C stack.


<p>
To avoid this kind of problem,
Lua raises an error whenever it tries to yield across an API call,
except for three functions:
<a href="#lua_yieldk"><code>lua_yieldk</code></a>, <a href="#lua_callk"><code>lua_callk</code></a>, and <a href="#lua_pcallk"><code>lua_pcallk</code></a>.
All those functions receive a <em>continuation function</em>
(as a parameter named <code>k</code>) to continue execution after a yield.


<p>
We need to set some terminology to explain continuations.
We have a C function called from Lua which we will call
the <em>original function</em>.
This original function then calls one of those three functions in the C API,
which we will call the <em>callee function</em>,
that then yields the current thread.
(This can happen when the callee function is <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
or when the callee function is either <a href="#lua_callk"><code>lua_callk</code></a> or <a href="#lua_pcallk"><code>lua_pcallk</code></a>
and the function called by them yields.)


<p>
Suppose the running thread yields while executing the callee function.
After the thread resumes,
it eventually will finish running the callee function.
However,
the callee function cannot return to the original function,
because its frame in the C stack was destroyed by the yield.
Instead, Lua calls a <em>continuation function</em>,
which was given as an argument to the callee function.
As the name implies,
the continuation function should continue the task
of the original function.


<p>
As an illustration, consider the following function:

<pre>
     int original_function (lua_State *L) {
       ...     /* code 1 */
       status = lua_pcall(L, n, m, h);  /* calls Lua */
       ...     /* code 2 */
     }
</pre><p>
Now we want to allow
the Lua code being run by <a href="#lua_pcall"><code>lua_pcall</code></a> to yield.
First, we can rewrite our function like here:

<pre>
     int k (lua_State *L, int status, lua_KContext ctx) {
       ...  /* code 2 */
     }
     
     int original_function (lua_State *L) {
       ...     /* code 1 */
       return k(L, lua_pcall(L, n, m, h), ctx);
     }
</pre><p>
In the above code,
the new function <code>k</code> is a
<em>continuation function</em> (with type <a href="#lua_KFunction"><code>lua_KFunction</code></a>),
which should do all the work that the original function
was doing after calling <a href="#lua_pcall"><code>lua_pcall</code></a>.
Now, we must inform Lua that it must call <code>k</code> if the Lua code
being executed by <a href="#lua_pcall"><code>lua_pcall</code></a> gets interrupted in some way
(errors or yielding),
so we rewrite the code as here,
replacing <a href="#lua_pcall"><code>lua_pcall</code></a> by <a href="#lua_pcallk"><code>lua_pcallk</code></a>:

<pre>
     int original_function (lua_State *L) {
       ...     /* code 1 */
       return k(L, lua_pcallk(L, n, m, h, ctx2, k), ctx1);
     }
</pre><p>
Note the external, explicit call to the continuation:
Lua will call the continuation only if needed, that is,
in case of errors or resuming after a yield.
If the called function returns normally without ever yielding,
<a href="#lua_pcallk"><code>lua_pcallk</code></a> (and <a href="#lua_callk"><code>lua_callk</code></a>) will also return normally.
(Of course, instead of calling the continuation in that case,
you can do the equivalent work directly inside the original function.)


<p>
Besides the Lua state,
the continuation function has two other parameters:
the final status of the call plus the context value (<code>ctx</code>) that
was passed originally to <a href="#lua_pcallk"><code>lua_pcallk</code></a>.
(Lua does not use this context value;
it only passes this value from the original function to the
continuation function.)
For <a href="#lua_pcallk"><code>lua_pcallk</code></a>,
the status is the same value that would be returned by <a href="#lua_pcallk"><code>lua_pcallk</code></a>,
except that it is <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> when being executed after a yield
(instead of <a href="#pdf-LUA_OK"><code>LUA_OK</code></a>).
For <a href="#lua_yieldk"><code>lua_yieldk</code></a> and <a href="#lua_callk"><code>lua_callk</code></a>,
the status is always <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> when Lua calls the continuation.
(For these two functions,
Lua will not call the continuation in case of errors,
because they do not handle errors.)
Similarly, when using <a href="#lua_callk"><code>lua_callk</code></a>,
you should call the continuation function
with <a href="#pdf-LUA_OK"><code>LUA_OK</code></a> as the status.
(For <a href="#lua_yieldk"><code>lua_yieldk</code></a>, there is not much point in calling
directly the continuation function,
because <a href="#lua_yieldk"><code>lua_yieldk</code></a> usually does not return.)


<p>
Lua treats the continuation function as if it were the original function.
The continuation function receives the same Lua stack
from the original function,
in the same state it would be if the callee function had returned.
(For instance,
after a <a href="#lua_callk"><code>lua_callk</code></a> the function and its arguments are
removed from the stack and replaced by the results from the call.)
It also has the same upvalues.
Whatever it returns is handled by Lua as if it were the return
of the original function.





<h2>4.8 &ndash; <a name="4.8">Functions and Types</a></h2>

<p>
Here we list all functions and types from the C&nbsp;API in
alphabetical order.
Each function has an indicator like this:
<span class="apii">[-o, +p, <em>x</em>]</span>


<p>
The first field, <code>o</code>,
is how many elements the function pops from the stack.
The second field, <code>p</code>,
is how many elements the function pushes onto the stack.
(Any function always pushes its results after popping its arguments.)
A field in the form <code>x|y</code> means the function can push (or pop)
<code>x</code> or <code>y</code> elements,
depending on the situation;
an interrogation mark '<code>?</code>' means that
we cannot know how many elements the function pops/pushes
by looking only at its arguments
(e.g., they may depend on what is on the stack).
The third field, <code>x</code>,
tells whether the function may raise errors:
'<code>-</code>' means the function never raises any error;
'<code>m</code>' means the function may raise memory errors;
'<code>e</code>' means the function may raise errors;
'<code>v</code>' means the function may raise an error on purpose.



<hr><h3><a name="lua_absindex"><code>lua_absindex</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_absindex (lua_State *L, int idx);</pre>

<p>
Converts the acceptable index <code>idx</code>
into an equivalent absolute index
(that is, one that does not depend on the stack top).





<hr><h3><a name="lua_Alloc"><code>lua_Alloc</code></a></h3>
<pre>typedef void * (*lua_Alloc) (void *ud,
                             void *ptr,
                             size_t osize,
                             size_t nsize);</pre>

<p>
The type of the memory-allocation function used by Lua states.
The allocator function must provide a
functionality similar to <code>realloc</code>,
but not exactly the same.
Its arguments are
<code>ud</code>, an opaque pointer passed to <a href="#lua_newstate"><code>lua_newstate</code></a>;
<code>ptr</code>, a pointer to the block being allocated/reallocated/freed;
<code>osize</code>, the original size of the block or some code about what
is being allocated;
and <code>nsize</code>, the new size of the block.


<p>
When <code>ptr</code> is not <code>NULL</code>,
<code>osize</code> is the size of the block pointed by <code>ptr</code>,
that is, the size given when it was allocated or reallocated.


<p>
When <code>ptr</code> is <code>NULL</code>,
<code>osize</code> encodes the kind of object that Lua is allocating.
<code>osize</code> is any of
<a href="#pdf-LUA_TSTRING"><code>LUA_TSTRING</code></a>, <a href="#pdf-LUA_TTABLE"><code>LUA_TTABLE</code></a>, <a href="#pdf-LUA_TFUNCTION"><code>LUA_TFUNCTION</code></a>,
<a href="#pdf-LUA_TUSERDATA"><code>LUA_TUSERDATA</code></a>, or <a href="#pdf-LUA_TTHREAD"><code>LUA_TTHREAD</code></a> when (and only when)
Lua is creating a new object of that type.
When <code>osize</code> is some other value,
Lua is allocating memory for something else.


<p>
Lua assumes the following behavior from the allocator function:


<p>
When <code>nsize</code> is zero,
the allocator must behave like <code>free</code>
and return <code>NULL</code>.


<p>
When <code>nsize</code> is not zero,
the allocator must behave like <code>realloc</code>.
The allocator returns <code>NULL</code>
if and only if it cannot fulfill the request.
Lua assumes that the allocator never fails when
<code>osize &gt;= nsize</code>.


<p>
Here is a simple implementation for the allocator function.
It is used in the auxiliary library by <a href="#luaL_newstate"><code>luaL_newstate</code></a>.

<pre>
     static void *l_alloc (void *ud, void *ptr, size_t osize,
                                                size_t nsize) {
       (void)ud;  (void)osize;  /* not used */
       if (nsize == 0) {
         free(ptr);
         return NULL;
       }
       else
         return realloc(ptr, nsize);
     }
</pre><p>
Note that Standard&nbsp;C ensures
that <code>free(NULL)</code> has no effect and that
<code>realloc(NULL,size)</code> is equivalent to <code>malloc(size)</code>.
This code assumes that <code>realloc</code> does not fail when shrinking a block.
(Although Standard&nbsp;C does not ensure this behavior,
it seems to be a safe assumption.)





<hr><h3><a name="lua_arith"><code>lua_arith</code></a></h3><p>
<span class="apii">[-(2|1), +1, <em>e</em>]</span>
<pre>void lua_arith (lua_State *L, int op);</pre>

<p>
Performs an arithmetic or bitwise operation over the two values
(or one, in the case of negations)
at the top of the stack,
with the value at the top being the second operand,
pops these values, and pushes the result of the operation.
The function follows the semantics of the corresponding Lua operator
(that is, it may call metamethods).


<p>
The value of <code>op</code> must be one of the following constants:

<ul>

<li><b><a name="pdf-LUA_OPADD"><code>LUA_OPADD</code></a>: </b> performs addition (<code>+</code>)</li>
<li><b><a name="pdf-LUA_OPSUB"><code>LUA_OPSUB</code></a>: </b> performs subtraction (<code>-</code>)</li>
<li><b><a name="pdf-LUA_OPMUL"><code>LUA_OPMUL</code></a>: </b> performs multiplication (<code>*</code>)</li>
<li><b><a name="pdf-LUA_OPDIV"><code>LUA_OPDIV</code></a>: </b> performs float division (<code>/</code>)</li>
<li><b><a name="pdf-LUA_OPIDIV"><code>LUA_OPIDIV</code></a>: </b> performs floor division (<code>//</code>)</li>
<li><b><a name="pdf-LUA_OPMOD"><code>LUA_OPMOD</code></a>: </b> performs modulo (<code>%</code>)</li>
<li><b><a name="pdf-LUA_OPPOW"><code>LUA_OPPOW</code></a>: </b> performs exponentiation (<code>^</code>)</li>
<li><b><a name="pdf-LUA_OPUNM"><code>LUA_OPUNM</code></a>: </b> performs mathematical negation (unary <code>-</code>)</li>
<li><b><a name="pdf-LUA_OPBNOT"><code>LUA_OPBNOT</code></a>: </b> performs bitwise negation (<code>~</code>)</li>
<li><b><a name="pdf-LUA_OPBAND"><code>LUA_OPBAND</code></a>: </b> performs bitwise and (<code>&amp;</code>)</li>
<li><b><a name="pdf-LUA_OPBOR"><code>LUA_OPBOR</code></a>: </b> performs bitwise or (<code>|</code>)</li>
<li><b><a name="pdf-LUA_OPBXOR"><code>LUA_OPBXOR</code></a>: </b> performs bitwise exclusive or (<code>~</code>)</li>
<li><b><a name="pdf-LUA_OPSHL"><code>LUA_OPSHL</code></a>: </b> performs left shift (<code>&lt;&lt;</code>)</li>
<li><b><a name="pdf-LUA_OPSHR"><code>LUA_OPSHR</code></a>: </b> performs right shift (<code>&gt;&gt;</code>)</li>

</ul>




<hr><h3><a name="lua_atpanic"><code>lua_atpanic</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf);</pre>

<p>
Sets a new panic function and returns the old one (see <a href="#4.6">&sect;4.6</a>).





<hr><h3><a name="lua_call"><code>lua_call</code></a></h3><p>
<span class="apii">[-(nargs+1), +nresults, <em>e</em>]</span>
<pre>void lua_call (lua_State *L, int nargs, int nresults);</pre>

<p>
Calls a function.


<p>
To call a function you must use the following protocol:
first, the function to be called is pushed onto the stack;
then, the arguments to the function are pushed
in direct order;
that is, the first argument is pushed first.
Finally you call <a href="#lua_call"><code>lua_call</code></a>;
<code>nargs</code> is the number of arguments that you pushed onto the stack.
All arguments and the function value are popped from the stack
when the function is called.
The function results are pushed onto the stack when the function returns.
The number of results is adjusted to <code>nresults</code>,
unless <code>nresults</code> is <a name="pdf-LUA_MULTRET"><code>LUA_MULTRET</code></a>.
In this case, all results from the function are pushed.
Lua takes care that the returned values fit into the stack space,
but it does not ensure any extra space in the stack.
The function results are pushed onto the stack in direct order
(the first result is pushed first),
so that after the call the last result is on the top of the stack.


<p>
Any error inside the called function is propagated upwards
(with a <code>longjmp</code>).


<p>
The following example shows how the host program can do the
equivalent to this Lua code:

<pre>
     a = f("how", t.x, 14)
</pre><p>
Here it is in&nbsp;C:

<pre>
     lua_getglobal(L, "f");                  /* function to be called */
     lua_pushliteral(L, "how");                       /* 1st argument */
     lua_getglobal(L, "t");                    /* table to be indexed */
     lua_getfield(L, -1, "x");        /* push result of t.x (2nd arg) */
     lua_remove(L, -2);                  /* remove 't' from the stack */
     lua_pushinteger(L, 14);                          /* 3rd argument */
     lua_call(L, 3, 1);     /* call 'f' with 3 arguments and 1 result */
     lua_setglobal(L, "a");                         /* set global 'a' */
</pre><p>
Note that the code above is <em>balanced</em>:
at its end, the stack is back to its original configuration.
This is considered good programming practice.





<hr><h3><a name="lua_callk"><code>lua_callk</code></a></h3><p>
<span class="apii">[-(nargs + 1), +nresults, <em>e</em>]</span>
<pre>void lua_callk (lua_State *L,
                int nargs,
                int nresults,
                lua_KContext ctx,
                lua_KFunction k);</pre>

<p>
This function behaves exactly like <a href="#lua_call"><code>lua_call</code></a>,
but allows the called function to yield (see <a href="#4.7">&sect;4.7</a>).





<hr><h3><a name="lua_CFunction"><code>lua_CFunction</code></a></h3>
<pre>typedef int (*lua_CFunction) (lua_State *L);</pre>

<p>
Type for C&nbsp;functions.


<p>
In order to communicate properly with Lua,
a C&nbsp;function must use the following protocol,
which defines the way parameters and results are passed:
a C&nbsp;function receives its arguments from Lua in its stack
in direct order (the first argument is pushed first).
So, when the function starts,
<code>lua_gettop(L)</code> returns the number of arguments received by the function.
The first argument (if any) is at index 1
and its last argument is at index <code>lua_gettop(L)</code>.
To return values to Lua, a C&nbsp;function just pushes them onto the stack,
in direct order (the first result is pushed first),
and returns the number of results.
Any other value in the stack below the results will be properly
discarded by Lua.
Like a Lua function, a C&nbsp;function called by Lua can also return
many results.


<p>
As an example, the following function receives a variable number
of numeric arguments and returns their average and their sum:

<pre>
     static int foo (lua_State *L) {
       int n = lua_gettop(L);    /* number of arguments */
       lua_Number sum = 0.0;
       int i;
       for (i = 1; i &lt;= n; i++) {
         if (!lua_isnumber(L, i)) {
           lua_pushliteral(L, "incorrect argument");
           lua_error(L);
         }
         sum += lua_tonumber(L, i);
       }
       lua_pushnumber(L, sum/n);        /* first result */
       lua_pushnumber(L, sum);         /* second result */
       return 2;                   /* number of results */
     }
</pre>




<hr><h3><a name="lua_checkstack"><code>lua_checkstack</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_checkstack (lua_State *L, int n);</pre>

<p>
Ensures that the stack has space for at least <code>n</code> extra slots
(that is, that you can safely push up to <code>n</code> values into it).
It returns false if it cannot fulfill the request,
either because it would cause the stack
to be larger than a fixed maximum size
(typically at least several thousand elements) or
because it cannot allocate memory for the extra space.
This function never shrinks the stack;
if the stack already has space for the extra slots,
it is left unchanged.





<hr><h3><a name="lua_close"><code>lua_close</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>void lua_close (lua_State *L);</pre>

<p>
Destroys all objects in the given Lua state
(calling the corresponding garbage-collection metamethods, if any)
and frees all dynamic memory used by this state.
On several platforms, you may not need to call this function,
because all resources are naturally released when the host program ends.
On the other hand, long-running programs that create multiple states,
such as daemons or web servers,
will probably need to close states as soon as they are not needed.





<hr><h3><a name="lua_compare"><code>lua_compare</code></a></h3><p>
<span class="apii">[-0, +0, <em>e</em>]</span>
<pre>int lua_compare (lua_State *L, int index1, int index2, int op);</pre>

<p>
Compares two Lua values.
Returns 1 if the value at index <code>index1</code> satisfies <code>op</code>
when compared with the value at index <code>index2</code>,
following the semantics of the corresponding Lua operator
(that is, it may call metamethods).
Otherwise returns&nbsp;0.
Also returns&nbsp;0 if any of the indices is not valid.


<p>
The value of <code>op</code> must be one of the following constants:

<ul>

<li><b><a name="pdf-LUA_OPEQ"><code>LUA_OPEQ</code></a>: </b> compares for equality (<code>==</code>)</li>
<li><b><a name="pdf-LUA_OPLT"><code>LUA_OPLT</code></a>: </b> compares for less than (<code>&lt;</code>)</li>
<li><b><a name="pdf-LUA_OPLE"><code>LUA_OPLE</code></a>: </b> compares for less or equal (<code>&lt;=</code>)</li>

</ul>




<hr><h3><a name="lua_concat"><code>lua_concat</code></a></h3><p>
<span class="apii">[-n, +1, <em>e</em>]</span>
<pre>void lua_concat (lua_State *L, int n);</pre>

<p>
Concatenates the <code>n</code> values at the top of the stack,
pops them, and leaves the result at the top.
If <code>n</code>&nbsp;is&nbsp;1, the result is the single value on the stack
(that is, the function does nothing);
if <code>n</code> is 0, the result is the empty string.
Concatenation is performed following the usual semantics of Lua
(see <a href="#3.4.6">&sect;3.4.6</a>).





<hr><h3><a name="lua_copy"><code>lua_copy</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>void lua_copy (lua_State *L, int fromidx, int toidx);</pre>

<p>
Copies the element at index <code>fromidx</code>
into the valid index <code>toidx</code>,
replacing the value at that position.
Values at other positions are not affected.





<hr><h3><a name="lua_createtable"><code>lua_createtable</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>void lua_createtable (lua_State *L, int narr, int nrec);</pre>

<p>
Creates a new empty table and pushes it onto the stack.
Parameter <code>narr</code> is a hint for how many elements the table
will have as a sequence;
parameter <code>nrec</code> is a hint for how many other elements
the table will have.
Lua may use these hints to preallocate memory for the new table.
This preallocation is useful for performance when you know in advance
how many elements the table will have.
Otherwise you can use the function <a href="#lua_newtable"><code>lua_newtable</code></a>.





<hr><h3><a name="lua_dump"><code>lua_dump</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_dump (lua_State *L,
                        lua_Writer writer,
                        void *data,
                        int strip);</pre>

<p>
Dumps a function as a binary chunk.
Receives a Lua function on the top of the stack
and produces a binary chunk that,
if loaded again,
results in a function equivalent to the one dumped.
As it produces parts of the chunk,
<a href="#lua_dump"><code>lua_dump</code></a> calls function <code>writer</code> (see <a href="#lua_Writer"><code>lua_Writer</code></a>)
with the given <code>data</code>
to write them.


<p>
If <code>strip</code> is true,
the binary representation may not include all debug information
about the function,
to save space.


<p>
The value returned is the error code returned by the last
call to the writer;
0&nbsp;means no errors.


<p>
This function does not pop the Lua function from the stack.





<hr><h3><a name="lua_error"><code>lua_error</code></a></h3><p>
<span class="apii">[-1, +0, <em>v</em>]</span>
<pre>int lua_error (lua_State *L);</pre>

<p>
Generates a Lua error,
using the value at the top of the stack as the error object.
This function does a long jump,
and therefore never returns
(see <a href="#luaL_error"><code>luaL_error</code></a>).





<hr><h3><a name="lua_gc"><code>lua_gc</code></a></h3><p>
<span class="apii">[-0, +0, <em>e</em>]</span>
<pre>int lua_gc (lua_State *L, int what, int data);</pre>

<p>
Controls the garbage collector.


<p>
This function performs several tasks,
according to the value of the parameter <code>what</code>:

<ul>

<li><b><code>LUA_GCSTOP</code>: </b>
stops the garbage collector.
</li>

<li><b><code>LUA_GCRESTART</code>: </b>
restarts the garbage collector.
</li>

<li><b><code>LUA_GCCOLLECT</code>: </b>
performs a full garbage-collection cycle.
</li>

<li><b><code>LUA_GCCOUNT</code>: </b>
returns the current amount of memory (in Kbytes) in use by Lua.
</li>

<li><b><code>LUA_GCCOUNTB</code>: </b>
returns the remainder of dividing the current amount of bytes of
memory in use by Lua by 1024.
</li>

<li><b><code>LUA_GCSTEP</code>: </b>
performs an incremental step of garbage collection.
</li>

<li><b><code>LUA_GCSETPAUSE</code>: </b>
sets <code>data</code> as the new value
for the <em>pause</em> of the collector (see <a href="#2.5">&sect;2.5</a>)
and returns the previous value of the pause.
</li>

<li><b><code>LUA_GCSETSTEPMUL</code>: </b>
sets <code>data</code> as the new value for the <em>step multiplier</em> of
the collector (see <a href="#2.5">&sect;2.5</a>)
and returns the previous value of the step multiplier.
</li>

<li><b><code>LUA_GCISRUNNING</code>: </b>
returns a boolean that tells whether the collector is running
(i.e., not stopped).
</li>

</ul>

<p>
For more details about these options,
see <a href="#pdf-collectgarbage"><code>collectgarbage</code></a>.





<hr><h3><a name="lua_getallocf"><code>lua_getallocf</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>lua_Alloc lua_getallocf (lua_State *L, void **ud);</pre>

<p>
Returns the memory-allocation function of a given state.
If <code>ud</code> is not <code>NULL</code>, Lua stores in <code>*ud</code> the
opaque pointer given when the memory-allocator function was set.





<hr><h3><a name="lua_getfield"><code>lua_getfield</code></a></h3><p>
<span class="apii">[-0, +1, <em>e</em>]</span>
<pre>int lua_getfield (lua_State *L, int index, const char *k);</pre>

<p>
Pushes onto the stack the value <code>t[k]</code>,
where <code>t</code> is the value at the given index.
As in Lua, this function may trigger a metamethod
for the "index" event (see <a href="#2.4">&sect;2.4</a>).


<p>
Returns the type of the pushed value.





<hr><h3><a name="lua_getextraspace"><code>lua_getextraspace</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>void *lua_getextraspace (lua_State *L);</pre>

<p>
Returns a pointer to a raw memory area associated with the
given Lua state.
The application can use this area for any purpose;
Lua does not use it for anything.


<p>
Each new thread has this area initialized with a copy
of the area of the main thread.


<p>
By default, this area has the size of a pointer to void,
but you can recompile Lua with a different size for this area.
(See <code>LUA_EXTRASPACE</code> in <code>luaconf.h</code>.)





<hr><h3><a name="lua_getglobal"><code>lua_getglobal</code></a></h3><p>
<span class="apii">[-0, +1, <em>e</em>]</span>
<pre>int lua_getglobal (lua_State *L, const char *name);</pre>

<p>
Pushes onto the stack the value of the global <code>name</code>.
Returns the type of that value.





<hr><h3><a name="lua_geti"><code>lua_geti</code></a></h3><p>
<span class="apii">[-0, +1, <em>e</em>]</span>
<pre>int lua_geti (lua_State *L, int index, lua_Integer i);</pre>

<p>
Pushes onto the stack the value <code>t[i]</code>,
where <code>t</code> is the value at the given index.
As in Lua, this function may trigger a metamethod
for the "index" event (see <a href="#2.4">&sect;2.4</a>).


<p>
Returns the type of the pushed value.





<hr><h3><a name="lua_getmetatable"><code>lua_getmetatable</code></a></h3><p>
<span class="apii">[-0, +(0|1), &ndash;]</span>
<pre>int lua_getmetatable (lua_State *L, int index);</pre>

<p>
If the value at the given index has a metatable,
the function pushes that metatable onto the stack and returns&nbsp;1.
Otherwise,
the function returns&nbsp;0 and pushes nothing on the stack.





<hr><h3><a name="lua_gettable"><code>lua_gettable</code></a></h3><p>
<span class="apii">[-1, +1, <em>e</em>]</span>
<pre>int lua_gettable (lua_State *L, int index);</pre>

<p>
Pushes onto the stack the value <code>t[k]</code>,
where <code>t</code> is the value at the given index
and <code>k</code> is the value at the top of the stack.


<p>
This function pops the key from the stack,
pushing the resulting value in its place.
As in Lua, this function may trigger a metamethod
for the "index" event (see <a href="#2.4">&sect;2.4</a>).


<p>
Returns the type of the pushed value.





<hr><h3><a name="lua_gettop"><code>lua_gettop</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_gettop (lua_State *L);</pre>

<p>
Returns the index of the top element in the stack.
Because indices start at&nbsp;1,
this result is equal to the number of elements in the stack;
in particular, 0&nbsp;means an empty stack.





<hr><h3><a name="lua_getuservalue"><code>lua_getuservalue</code></a></h3><p>
<span class="apii">[-0, +1, &ndash;]</span>
<pre>int lua_getuservalue (lua_State *L, int index);</pre>

<p>
Pushes onto the stack the Lua value associated with the userdata
at the given index.


<p>
Returns the type of the pushed value.





<hr><h3><a name="lua_insert"><code>lua_insert</code></a></h3><p>
<span class="apii">[-1, +1, &ndash;]</span>
<pre>void lua_insert (lua_State *L, int index);</pre>

<p>
Moves the top element into the given valid index,
shifting up the elements above this index to open space.
This function cannot be called with a pseudo-index,
because a pseudo-index is not an actual stack position.





<hr><h3><a name="lua_Integer"><code>lua_Integer</code></a></h3>
<pre>typedef ... lua_Integer;</pre>

<p>
The type of integers in Lua.


<p>
By default this type is <code>long long</code>,
(usually a 64-bit two-complement integer),
but that can be changed to <code>long</code> or <code>int</code>
(usually a 32-bit two-complement integer).
(See <code>LUA_INT_TYPE</code> in <code>luaconf.h</code>.)


<p>
Lua also defines the constants
<a name="pdf-LUA_MININTEGER"><code>LUA_MININTEGER</code></a> and <a name="pdf-LUA_MAXINTEGER"><code>LUA_MAXINTEGER</code></a>,
with the minimum and the maximum values that fit in this type.





<hr><h3><a name="lua_isboolean"><code>lua_isboolean</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_isboolean (lua_State *L, int index);</pre>

<p>
Returns 1 if the value at the given index is a boolean,
and 0&nbsp;otherwise.





<hr><h3><a name="lua_iscfunction"><code>lua_iscfunction</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_iscfunction (lua_State *L, int index);</pre>

<p>
Returns 1 if the value at the given index is a C&nbsp;function,
and 0&nbsp;otherwise.





<hr><h3><a name="lua_isfunction"><code>lua_isfunction</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_isfunction (lua_State *L, int index);</pre>

<p>
Returns 1 if the value at the given index is a function
(either C or Lua), and 0&nbsp;otherwise.





<hr><h3><a name="lua_isinteger"><code>lua_isinteger</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_isinteger (lua_State *L, int index);</pre>

<p>
Returns 1 if the value at the given index is an integer
(that is, the value is a number and is represented as an integer),
and 0&nbsp;otherwise.





<hr><h3><a name="lua_islightuserdata"><code>lua_islightuserdata</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_islightuserdata (lua_State *L, int index);</pre>

<p>
Returns 1 if the value at the given index is a light userdata,
and 0&nbsp;otherwise.





<hr><h3><a name="lua_isnil"><code>lua_isnil</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_isnil (lua_State *L, int index);</pre>

<p>
Returns 1 if the value at the given index is <b>nil</b>,
and 0&nbsp;otherwise.





<hr><h3><a name="lua_isnone"><code>lua_isnone</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_isnone (lua_State *L, int index);</pre>

<p>
Returns 1 if the given index is not valid,
and 0&nbsp;otherwise.





<hr><h3><a name="lua_isnoneornil"><code>lua_isnoneornil</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_isnoneornil (lua_State *L, int index);</pre>

<p>
Returns 1 if the given index is not valid
or if the value at this index is <b>nil</b>,
and 0&nbsp;otherwise.





<hr><h3><a name="lua_isnumber"><code>lua_isnumber</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_isnumber (lua_State *L, int index);</pre>

<p>
Returns 1 if the value at the given index is a number
or a string convertible to a number,
and 0&nbsp;otherwise.





<hr><h3><a name="lua_isstring"><code>lua_isstring</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_isstring (lua_State *L, int index);</pre>

<p>
Returns 1 if the value at the given index is a string
or a number (which is always convertible to a string),
and 0&nbsp;otherwise.





<hr><h3><a name="lua_istable"><code>lua_istable</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_istable (lua_State *L, int index);</pre>

<p>
Returns 1 if the value at the given index is a table,
and 0&nbsp;otherwise.





<hr><h3><a name="lua_isthread"><code>lua_isthread</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_isthread (lua_State *L, int index);</pre>

<p>
Returns 1 if the value at the given index is a thread,
and 0&nbsp;otherwise.





<hr><h3><a name="lua_isuserdata"><code>lua_isuserdata</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_isuserdata (lua_State *L, int index);</pre>

<p>
Returns 1 if the value at the given index is a userdata
(either full or light), and 0&nbsp;otherwise.





<hr><h3><a name="lua_isyieldable"><code>lua_isyieldable</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_isyieldable (lua_State *L);</pre>

<p>
Returns 1 if the given coroutine can yield,
and 0&nbsp;otherwise.





<hr><h3><a name="lua_KContext"><code>lua_KContext</code></a></h3>
<pre>typedef ... lua_KContext;</pre>

<p>
The type for continuation-function contexts.
It must be a numeric type.
This type is defined as <code>intptr_t</code>
when <code>intptr_t</code> is available,
so that it can store pointers too.
Otherwise, it is defined as <code>ptrdiff_t</code>.





<hr><h3><a name="lua_KFunction"><code>lua_KFunction</code></a></h3>
<pre>typedef int (*lua_KFunction) (lua_State *L, int status, lua_KContext ctx);</pre>

<p>
Type for continuation functions (see <a href="#4.7">&sect;4.7</a>).





<hr><h3><a name="lua_len"><code>lua_len</code></a></h3><p>
<span class="apii">[-0, +1, <em>e</em>]</span>
<pre>void lua_len (lua_State *L, int index);</pre>

<p>
Returns the length of the value at the given index.
It is equivalent to the '<code>#</code>' operator in Lua (see <a href="#3.4.7">&sect;3.4.7</a>) and
may trigger a metamethod for the "length" event (see <a href="#2.4">&sect;2.4</a>).
The result is pushed on the stack.





<hr><h3><a name="lua_load"><code>lua_load</code></a></h3><p>
<span class="apii">[-0, +1, &ndash;]</span>
<pre>int lua_load (lua_State *L,
              lua_Reader reader,
              void *data,
              const char *chunkname,
              const char *mode);</pre>

<p>
Loads a Lua chunk without running it.
If there are no errors,
<code>lua_load</code> pushes the compiled chunk as a Lua
function on top of the stack.
Otherwise, it pushes an error message.


<p>
The return values of <code>lua_load</code> are:

<ul>

<li><b><a href="#pdf-LUA_OK"><code>LUA_OK</code></a>: </b> no errors;</li>

<li><b><a name="pdf-LUA_ERRSYNTAX"><code>LUA_ERRSYNTAX</code></a>: </b>
syntax error during precompilation;</li>

<li><b><a href="#pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>: </b>
memory allocation error;</li>

<li><b><a href="#pdf-LUA_ERRGCMM"><code>LUA_ERRGCMM</code></a>: </b>
error while running a <code>__gc</code> metamethod.
(This error has no relation with the chunk being loaded.
It is generated by the garbage collector.)
</li>

</ul>

<p>
The <code>lua_load</code> function uses a user-supplied <code>reader</code> function
to read the chunk (see <a href="#lua_Reader"><code>lua_Reader</code></a>).
The <code>data</code> argument is an opaque value passed to the reader function.


<p>
The <code>chunkname</code> argument gives a name to the chunk,
which is used for error messages and in debug information (see <a href="#4.9">&sect;4.9</a>).


<p>
<code>lua_load</code> automatically detects whether the chunk is text or binary
and loads it accordingly (see program <code>luac</code>).
The string <code>mode</code> works as in function <a href="#pdf-load"><code>load</code></a>,
with the addition that
a <code>NULL</code> value is equivalent to the string "<code>bt</code>".


<p>
<code>lua_load</code> uses the stack internally,
so the reader function must always leave the stack
unmodified when returning.


<p>
If the resulting function has upvalues,
its first upvalue is set to the value of the global environment
stored at index <code>LUA_RIDX_GLOBALS</code> in the registry (see <a href="#4.5">&sect;4.5</a>).
When loading main chunks,
this upvalue will be the <code>_ENV</code> variable (see <a href="#2.2">&sect;2.2</a>).
Other upvalues are initialized with <b>nil</b>.





<hr><h3><a name="lua_newstate"><code>lua_newstate</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>lua_State *lua_newstate (lua_Alloc f, void *ud);</pre>

<p>
Creates a new thread running in a new, independent state.
Returns <code>NULL</code> if it cannot create the thread or the state
(due to lack of memory).
The argument <code>f</code> is the allocator function;
Lua does all memory allocation for this state through this function.
The second argument, <code>ud</code>, is an opaque pointer that Lua
passes to the allocator in every call.





<hr><h3><a name="lua_newtable"><code>lua_newtable</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>void lua_newtable (lua_State *L);</pre>

<p>
Creates a new empty table and pushes it onto the stack.
It is equivalent to <code>lua_createtable(L, 0, 0)</code>.





<hr><h3><a name="lua_newthread"><code>lua_newthread</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>lua_State *lua_newthread (lua_State *L);</pre>

<p>
Creates a new thread, pushes it on the stack,
and returns a pointer to a <a href="#lua_State"><code>lua_State</code></a> that represents this new thread.
The new thread returned by this function shares with the original thread
its global environment,
but has an independent execution stack.


<p>
There is no explicit function to close or to destroy a thread.
Threads are subject to garbage collection,
like any Lua object.





<hr><h3><a name="lua_newuserdata"><code>lua_newuserdata</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>void *lua_newuserdata (lua_State *L, size_t size);</pre>

<p>
This function allocates a new block of memory with the given size,
pushes onto the stack a new full userdata with the block address,
and returns this address.
The host program can freely use this memory.





<hr><h3><a name="lua_next"><code>lua_next</code></a></h3><p>
<span class="apii">[-1, +(2|0), <em>e</em>]</span>
<pre>int lua_next (lua_State *L, int index);</pre>

<p>
Pops a key from the stack,
and pushes a key&ndash;value pair from the table at the given index
(the "next" pair after the given key).
If there are no more elements in the table,
then <a href="#lua_next"><code>lua_next</code></a> returns 0 (and pushes nothing).


<p>
A typical traversal looks like this:

<pre>
     /* table is in the stack at index 't' */
     lua_pushnil(L);  /* first key */
     while (lua_next(L, t) != 0) {
       /* uses 'key' (at index -2) and 'value' (at index -1) */
       printf("%s - %s\n",
              lua_typename(L, lua_type(L, -2)),
              lua_typename(L, lua_type(L, -1)));
       /* removes 'value'; keeps 'key' for next iteration */
       lua_pop(L, 1);
     }
</pre>

<p>
While traversing a table,
do not call <a href="#lua_tolstring"><code>lua_tolstring</code></a> directly on a key,
unless you know that the key is actually a string.
Recall that <a href="#lua_tolstring"><code>lua_tolstring</code></a> may change
the value at the given index;
this confuses the next call to <a href="#lua_next"><code>lua_next</code></a>.


<p>
See function <a href="#pdf-next"><code>next</code></a> for the caveats of modifying
the table during its traversal.





<hr><h3><a name="lua_Number"><code>lua_Number</code></a></h3>
<pre>typedef ... lua_Number;</pre>

<p>
The type of floats in Lua.


<p>
By default this type is double,
but that can be changed to a single float or a long double.
(See <code>LUA_FLOAT_TYPE</code> in <code>luaconf.h</code>.)





<hr><h3><a name="lua_numbertointeger"><code>lua_numbertointeger</code></a></h3>
<pre>int lua_numbertointeger (lua_Number n, lua_Integer *p);</pre>

<p>
Converts a Lua float to a Lua integer.
This macro assumes that <code>n</code> has an integral value.
If that value is within the range of Lua integers,
it is converted to an integer and assigned to <code>*p</code>.
The macro results in a boolean indicating whether the
conversion was successful.
(Note that this range test can be tricky to do
correctly without this macro,
due to roundings.)


<p>
This macro may evaluate its arguments more than once.





<hr><h3><a name="lua_pcall"><code>lua_pcall</code></a></h3><p>
<span class="apii">[-(nargs + 1), +(nresults|1), &ndash;]</span>
<pre>int lua_pcall (lua_State *L, int nargs, int nresults, int msgh);</pre>

<p>
Calls a function in protected mode.


<p>
Both <code>nargs</code> and <code>nresults</code> have the same meaning as
in <a href="#lua_call"><code>lua_call</code></a>.
If there are no errors during the call,
<a href="#lua_pcall"><code>lua_pcall</code></a> behaves exactly like <a href="#lua_call"><code>lua_call</code></a>.
However, if there is any error,
<a href="#lua_pcall"><code>lua_pcall</code></a> catches it,
pushes a single value on the stack (the error message),
and returns an error code.
Like <a href="#lua_call"><code>lua_call</code></a>,
<a href="#lua_pcall"><code>lua_pcall</code></a> always removes the function
and its arguments from the stack.


<p>
If <code>msgh</code> is 0,
then the error message returned on the stack
is exactly the original error message.
Otherwise, <code>msgh</code> is the stack index of a
<em>message handler</em>.
(This index cannot be a pseudo-index.)
In case of runtime errors,
this function will be called with the error message
and its return value will be the message
returned on the stack by <a href="#lua_pcall"><code>lua_pcall</code></a>.


<p>
Typically, the message handler is used to add more debug
information to the error message, such as a stack traceback.
Such information cannot be gathered after the return of <a href="#lua_pcall"><code>lua_pcall</code></a>,
since by then the stack has unwound.


<p>
The <a href="#lua_pcall"><code>lua_pcall</code></a> function returns one of the following constants
(defined in <code>lua.h</code>):

<ul>

<li><b><a name="pdf-LUA_OK"><code>LUA_OK</code></a> (0): </b>
success.</li>

<li><b><a name="pdf-LUA_ERRRUN"><code>LUA_ERRRUN</code></a>: </b>
a runtime error.
</li>

<li><b><a name="pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>: </b>
memory allocation error.
For such errors, Lua does not call the message handler.
</li>

<li><b><a name="pdf-LUA_ERRERR"><code>LUA_ERRERR</code></a>: </b>
error while running the message handler.
</li>

<li><b><a name="pdf-LUA_ERRGCMM"><code>LUA_ERRGCMM</code></a>: </b>
error while running a <code>__gc</code> metamethod.
(This error typically has no relation with the function being called.)
</li>

</ul>




<hr><h3><a name="lua_pcallk"><code>lua_pcallk</code></a></h3><p>
<span class="apii">[-(nargs + 1), +(nresults|1), &ndash;]</span>
<pre>int lua_pcallk (lua_State *L,
                int nargs,
                int nresults,
                int msgh,
                lua_KContext ctx,
                lua_KFunction k);</pre>

<p>
This function behaves exactly like <a href="#lua_pcall"><code>lua_pcall</code></a>,
but allows the called function to yield (see <a href="#4.7">&sect;4.7</a>).





<hr><h3><a name="lua_pop"><code>lua_pop</code></a></h3><p>
<span class="apii">[-n, +0, &ndash;]</span>
<pre>void lua_pop (lua_State *L, int n);</pre>

<p>
Pops <code>n</code> elements from the stack.





<hr><h3><a name="lua_pushboolean"><code>lua_pushboolean</code></a></h3><p>
<span class="apii">[-0, +1, &ndash;]</span>
<pre>void lua_pushboolean (lua_State *L, int b);</pre>

<p>
Pushes a boolean value with value <code>b</code> onto the stack.





<hr><h3><a name="lua_pushcclosure"><code>lua_pushcclosure</code></a></h3><p>
<span class="apii">[-n, +1, <em>m</em>]</span>
<pre>void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n);</pre>

<p>
Pushes a new C&nbsp;closure onto the stack.


<p>
When a C&nbsp;function is created,
it is possible to associate some values with it,
thus creating a C&nbsp;closure (see <a href="#4.4">&sect;4.4</a>);
these values are then accessible to the function whenever it is called.
To associate values with a C&nbsp;function,
first these values must be pushed onto the stack
(when there are multiple values, the first value is pushed first).
Then <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a>
is called to create and push the C&nbsp;function onto the stack,
with the argument <code>n</code> telling how many values will be
associated with the function.
<a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a> also pops these values from the stack.


<p>
The maximum value for <code>n</code> is 255.


<p>
When <code>n</code> is zero,
this function creates a <em>light C function</em>,
which is just a pointer to the C&nbsp;function.
In that case, it never raises a memory error.





<hr><h3><a name="lua_pushcfunction"><code>lua_pushcfunction</code></a></h3><p>
<span class="apii">[-0, +1, &ndash;]</span>
<pre>void lua_pushcfunction (lua_State *L, lua_CFunction f);</pre>

<p>
Pushes a C&nbsp;function onto the stack.
This function receives a pointer to a C function
and pushes onto the stack a Lua value of type <code>function</code> that,
when called, invokes the corresponding C&nbsp;function.


<p>
Any function to be callable by Lua must
follow the correct protocol to receive its parameters
and return its results (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).





<hr><h3><a name="lua_pushfstring"><code>lua_pushfstring</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>const char *lua_pushfstring (lua_State *L, const char *fmt, ...);</pre>

<p>
Pushes onto the stack a formatted string
and returns a pointer to this string.
It is similar to the ISO&nbsp;C function <code>sprintf</code>,
but has some important differences:

<ul>

<li>
You do not have to allocate space for the result:
the result is a Lua string and Lua takes care of memory allocation
(and deallocation, through garbage collection).
</li>

<li>
The conversion specifiers are quite restricted.
There are no flags, widths, or precisions.
The conversion specifiers can only be
'<code>%%</code>' (inserts the character '<code>%</code>'),
'<code>%s</code>' (inserts a zero-terminated string, with no size restrictions),
'<code>%f</code>' (inserts a <a href="#lua_Number"><code>lua_Number</code></a>),
'<code>%I</code>' (inserts a <a href="#lua_Integer"><code>lua_Integer</code></a>),
'<code>%p</code>' (inserts a pointer as a hexadecimal numeral),
'<code>%d</code>' (inserts an <code>int</code>),
'<code>%c</code>' (inserts an <code>int</code> as a one-byte character), and
'<code>%U</code>' (inserts a <code>long int</code> as a UTF-8 byte sequence).
</li>

</ul>




<hr><h3><a name="lua_pushglobaltable"><code>lua_pushglobaltable</code></a></h3><p>
<span class="apii">[-0, +1, &ndash;]</span>
<pre>void lua_pushglobaltable (lua_State *L);</pre>

<p>
Pushes the global environment onto the stack.





<hr><h3><a name="lua_pushinteger"><code>lua_pushinteger</code></a></h3><p>
<span class="apii">[-0, +1, &ndash;]</span>
<pre>void lua_pushinteger (lua_State *L, lua_Integer n);</pre>

<p>
Pushes an integer with value <code>n</code> onto the stack.





<hr><h3><a name="lua_pushlightuserdata"><code>lua_pushlightuserdata</code></a></h3><p>
<span class="apii">[-0, +1, &ndash;]</span>
<pre>void lua_pushlightuserdata (lua_State *L, void *p);</pre>

<p>
Pushes a light userdata onto the stack.


<p>
Userdata represent C&nbsp;values in Lua.
A <em>light userdata</em> represents a pointer, a <code>void*</code>.
It is a value (like a number):
you do not create it, it has no individual metatable,
and it is not collected (as it was never created).
A light userdata is equal to "any"
light userdata with the same C&nbsp;address.





<hr><h3><a name="lua_pushliteral"><code>lua_pushliteral</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>const char *lua_pushliteral (lua_State *L, const char *s);</pre>

<p>
This macro is equivalent to <a href="#lua_pushstring"><code>lua_pushstring</code></a>,
but should be used only when <code>s</code> is a literal string.





<hr><h3><a name="lua_pushlstring"><code>lua_pushlstring</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>const char *lua_pushlstring (lua_State *L, const char *s, size_t len);</pre>

<p>
Pushes the string pointed to by <code>s</code> with size <code>len</code>
onto the stack.
Lua makes (or reuses) an internal copy of the given string,
so the memory at <code>s</code> can be freed or reused immediately after
the function returns.
The string can contain any binary data,
including embedded zeros.


<p>
Returns a pointer to the internal copy of the string.





<hr><h3><a name="lua_pushnil"><code>lua_pushnil</code></a></h3><p>
<span class="apii">[-0, +1, &ndash;]</span>
<pre>void lua_pushnil (lua_State *L);</pre>

<p>
Pushes a nil value onto the stack.





<hr><h3><a name="lua_pushnumber"><code>lua_pushnumber</code></a></h3><p>
<span class="apii">[-0, +1, &ndash;]</span>
<pre>void lua_pushnumber (lua_State *L, lua_Number n);</pre>

<p>
Pushes a float with value <code>n</code> onto the stack.





<hr><h3><a name="lua_pushstring"><code>lua_pushstring</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>const char *lua_pushstring (lua_State *L, const char *s);</pre>

<p>
Pushes the zero-terminated string pointed to by <code>s</code>
onto the stack.
Lua makes (or reuses) an internal copy of the given string,
so the memory at <code>s</code> can be freed or reused immediately after
the function returns.


<p>
Returns a pointer to the internal copy of the string.


<p>
If <code>s</code> is <code>NULL</code>, pushes <b>nil</b> and returns <code>NULL</code>.





<hr><h3><a name="lua_pushthread"><code>lua_pushthread</code></a></h3><p>
<span class="apii">[-0, +1, &ndash;]</span>
<pre>int lua_pushthread (lua_State *L);</pre>

<p>
Pushes the thread represented by <code>L</code> onto the stack.
Returns 1 if this thread is the main thread of its state.





<hr><h3><a name="lua_pushvalue"><code>lua_pushvalue</code></a></h3><p>
<span class="apii">[-0, +1, &ndash;]</span>
<pre>void lua_pushvalue (lua_State *L, int index);</pre>

<p>
Pushes a copy of the element at the given index
onto the stack.





<hr><h3><a name="lua_pushvfstring"><code>lua_pushvfstring</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>const char *lua_pushvfstring (lua_State *L,
                              const char *fmt,
                              va_list argp);</pre>

<p>
Equivalent to <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>, except that it receives a <code>va_list</code>
instead of a variable number of arguments.





<hr><h3><a name="lua_rawequal"><code>lua_rawequal</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_rawequal (lua_State *L, int index1, int index2);</pre>

<p>
Returns 1 if the two values in indices <code>index1</code> and
<code>index2</code> are primitively equal
(that is, without calling metamethods).
Otherwise returns&nbsp;0.
Also returns&nbsp;0 if any of the indices are not valid.





<hr><h3><a name="lua_rawget"><code>lua_rawget</code></a></h3><p>
<span class="apii">[-1, +1, &ndash;]</span>
<pre>int lua_rawget (lua_State *L, int index);</pre>

<p>
Similar to <a href="#lua_gettable"><code>lua_gettable</code></a>, but does a raw access
(i.e., without metamethods).





<hr><h3><a name="lua_rawgeti"><code>lua_rawgeti</code></a></h3><p>
<span class="apii">[-0, +1, &ndash;]</span>
<pre>int lua_rawgeti (lua_State *L, int index, lua_Integer n);</pre>

<p>
Pushes onto the stack the value <code>t[n]</code>,
where <code>t</code> is the table at the given index.
The access is raw;
that is, it does not invoke metamethods.


<p>
Returns the type of the pushed value.





<hr><h3><a name="lua_rawgetp"><code>lua_rawgetp</code></a></h3><p>
<span class="apii">[-0, +1, &ndash;]</span>
<pre>int lua_rawgetp (lua_State *L, int index, const void *p);</pre>

<p>
Pushes onto the stack the value <code>t[k]</code>,
where <code>t</code> is the table at the given index and
<code>k</code> is the pointer <code>p</code> represented as a light userdata.
The access is raw;
that is, it does not invoke metamethods.


<p>
Returns the type of the pushed value.





<hr><h3><a name="lua_rawlen"><code>lua_rawlen</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>size_t lua_rawlen (lua_State *L, int index);</pre>

<p>
Returns the raw "length" of the value at the given index:
for strings, this is the string length;
for tables, this is the result of the length operator ('<code>#</code>')
with no metamethods;
for userdata, this is the size of the block of memory allocated
for the userdata;
for other values, it is&nbsp;0.





<hr><h3><a name="lua_rawset"><code>lua_rawset</code></a></h3><p>
<span class="apii">[-2, +0, <em>m</em>]</span>
<pre>void lua_rawset (lua_State *L, int index);</pre>

<p>
Similar to <a href="#lua_settable"><code>lua_settable</code></a>, but does a raw assignment
(i.e., without metamethods).





<hr><h3><a name="lua_rawseti"><code>lua_rawseti</code></a></h3><p>
<span class="apii">[-1, +0, <em>m</em>]</span>
<pre>void lua_rawseti (lua_State *L, int index, lua_Integer i);</pre>

<p>
Does the equivalent of <code>t[i] = v</code>,
where <code>t</code> is the table at the given index
and <code>v</code> is the value at the top of the stack.


<p>
This function pops the value from the stack.
The assignment is raw;
that is, it does not invoke metamethods.





<hr><h3><a name="lua_rawsetp"><code>lua_rawsetp</code></a></h3><p>
<span class="apii">[-1, +0, <em>m</em>]</span>
<pre>void lua_rawsetp (lua_State *L, int index, const void *p);</pre>

<p>
Does the equivalent of <code>t[p] = v</code>,
where <code>t</code> is the table at the given index,
<code>p</code> is encoded as a light userdata,
and <code>v</code> is the value at the top of the stack.


<p>
This function pops the value from the stack.
The assignment is raw;
that is, it does not invoke metamethods.





<hr><h3><a name="lua_Reader"><code>lua_Reader</code></a></h3>
<pre>typedef const char * (*lua_Reader) (lua_State *L,
                                    void *data,
                                    size_t *size);</pre>

<p>
The reader function used by <a href="#lua_load"><code>lua_load</code></a>.
Every time it needs another piece of the chunk,
<a href="#lua_load"><code>lua_load</code></a> calls the reader,
passing along its <code>data</code> parameter.
The reader must return a pointer to a block of memory
with a new piece of the chunk
and set <code>size</code> to the block size.
The block must exist until the reader function is called again.
To signal the end of the chunk,
the reader must return <code>NULL</code> or set <code>size</code> to zero.
The reader function may return pieces of any size greater than zero.





<hr><h3><a name="lua_register"><code>lua_register</code></a></h3><p>
<span class="apii">[-0, +0, <em>e</em>]</span>
<pre>void lua_register (lua_State *L, const char *name, lua_CFunction f);</pre>

<p>
Sets the C function <code>f</code> as the new value of global <code>name</code>.
It is defined as a macro:

<pre>
     #define lua_register(L,n,f) \
            (lua_pushcfunction(L, f), lua_setglobal(L, n))
</pre>




<hr><h3><a name="lua_remove"><code>lua_remove</code></a></h3><p>
<span class="apii">[-1, +0, &ndash;]</span>
<pre>void lua_remove (lua_State *L, int index);</pre>

<p>
Removes the element at the given valid index,
shifting down the elements above this index to fill the gap.
This function cannot be called with a pseudo-index,
because a pseudo-index is not an actual stack position.





<hr><h3><a name="lua_replace"><code>lua_replace</code></a></h3><p>
<span class="apii">[-1, +0, &ndash;]</span>
<pre>void lua_replace (lua_State *L, int index);</pre>

<p>
Moves the top element into the given valid index
without shifting any element
(therefore replacing the value at that given index),
and then pops the top element.





<hr><h3><a name="lua_resume"><code>lua_resume</code></a></h3><p>
<span class="apii">[-?, +?, &ndash;]</span>
<pre>int lua_resume (lua_State *L, lua_State *from, int nargs);</pre>

<p>
Starts and resumes a coroutine in the given thread <code>L</code>.


<p>
To start a coroutine,
you push onto the thread stack the main function plus any arguments;
then you call <a href="#lua_resume"><code>lua_resume</code></a>,
with <code>nargs</code> being the number of arguments.
This call returns when the coroutine suspends or finishes its execution.
When it returns, the stack contains all values passed to <a href="#lua_yield"><code>lua_yield</code></a>,
or all values returned by the body function.
<a href="#lua_resume"><code>lua_resume</code></a> returns
<a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the coroutine yields,
<a href="#pdf-LUA_OK"><code>LUA_OK</code></a> if the coroutine finishes its execution
without errors,
or an error code in case of errors (see <a href="#lua_pcall"><code>lua_pcall</code></a>).


<p>
In case of errors,
the stack is not unwound,
so you can use the debug API over it.
The error message is on the top of the stack.


<p>
To resume a coroutine,
you remove any results from the last <a href="#lua_yield"><code>lua_yield</code></a>,
put on its stack only the values to
be passed as results from <code>yield</code>,
and then call <a href="#lua_resume"><code>lua_resume</code></a>.


<p>
The parameter <code>from</code> represents the coroutine that is resuming <code>L</code>.
If there is no such coroutine,
this parameter can be <code>NULL</code>.





<hr><h3><a name="lua_rotate"><code>lua_rotate</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>void lua_rotate (lua_State *L, int idx, int n);</pre>

<p>
Rotates the stack elements between the valid index <code>idx</code>
and the top of the stack.
The elements are rotated <code>n</code> positions in the direction of the top,
for a positive <code>n</code>,
or <code>-n</code> positions in the direction of the bottom,
for a negative <code>n</code>.
The absolute value of <code>n</code> must not be greater than the size
of the slice being rotated.
This function cannot be called with a pseudo-index,
because a pseudo-index is not an actual stack position.





<hr><h3><a name="lua_setallocf"><code>lua_setallocf</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>void lua_setallocf (lua_State *L, lua_Alloc f, void *ud);</pre>

<p>
Changes the allocator function of a given state to <code>f</code>
with user data <code>ud</code>.





<hr><h3><a name="lua_setfield"><code>lua_setfield</code></a></h3><p>
<span class="apii">[-1, +0, <em>e</em>]</span>
<pre>void lua_setfield (lua_State *L, int index, const char *k);</pre>

<p>
Does the equivalent to <code>t[k] = v</code>,
where <code>t</code> is the value at the given index
and <code>v</code> is the value at the top of the stack.


<p>
This function pops the value from the stack.
As in Lua, this function may trigger a metamethod
for the "newindex" event (see <a href="#2.4">&sect;2.4</a>).





<hr><h3><a name="lua_setglobal"><code>lua_setglobal</code></a></h3><p>
<span class="apii">[-1, +0, <em>e</em>]</span>
<pre>void lua_setglobal (lua_State *L, const char *name);</pre>

<p>
Pops a value from the stack and
sets it as the new value of global <code>name</code>.





<hr><h3><a name="lua_seti"><code>lua_seti</code></a></h3><p>
<span class="apii">[-1, +0, <em>e</em>]</span>
<pre>void lua_seti (lua_State *L, int index, lua_Integer n);</pre>

<p>
Does the equivalent to <code>t[n] = v</code>,
where <code>t</code> is the value at the given index
and <code>v</code> is the value at the top of the stack.


<p>
This function pops the value from the stack.
As in Lua, this function may trigger a metamethod
for the "newindex" event (see <a href="#2.4">&sect;2.4</a>).





<hr><h3><a name="lua_setmetatable"><code>lua_setmetatable</code></a></h3><p>
<span class="apii">[-1, +0, &ndash;]</span>
<pre>void lua_setmetatable (lua_State *L, int index);</pre>

<p>
Pops a table from the stack and
sets it as the new metatable for the value at the given index.





<hr><h3><a name="lua_settable"><code>lua_settable</code></a></h3><p>
<span class="apii">[-2, +0, <em>e</em>]</span>
<pre>void lua_settable (lua_State *L, int index);</pre>

<p>
Does the equivalent to <code>t[k] = v</code>,
where <code>t</code> is the value at the given index,
<code>v</code> is the value at the top of the stack,
and <code>k</code> is the value just below the top.


<p>
This function pops both the key and the value from the stack.
As in Lua, this function may trigger a metamethod
for the "newindex" event (see <a href="#2.4">&sect;2.4</a>).





<hr><h3><a name="lua_settop"><code>lua_settop</code></a></h3><p>
<span class="apii">[-?, +?, &ndash;]</span>
<pre>void lua_settop (lua_State *L, int index);</pre>

<p>
Accepts any index, or&nbsp;0,
and sets the stack top to this index.
If the new top is larger than the old one,
then the new elements are filled with <b>nil</b>.
If <code>index</code> is&nbsp;0, then all stack elements are removed.





<hr><h3><a name="lua_setuservalue"><code>lua_setuservalue</code></a></h3><p>
<span class="apii">[-1, +0, &ndash;]</span>
<pre>void lua_setuservalue (lua_State *L, int index);</pre>

<p>
Pops a value from the stack and sets it as
the new value associated to the userdata at the given index.





<hr><h3><a name="lua_State"><code>lua_State</code></a></h3>
<pre>typedef struct lua_State lua_State;</pre>

<p>
An opaque structure that points to a thread and indirectly
(through the thread) to the whole state of a Lua interpreter.
The Lua library is fully reentrant:
it has no global variables.
All information about a state is accessible through this structure.


<p>
A pointer to this structure must be passed as the first argument to
every function in the library, except to <a href="#lua_newstate"><code>lua_newstate</code></a>,
which creates a Lua state from scratch.





<hr><h3><a name="lua_status"><code>lua_status</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_status (lua_State *L);</pre>

<p>
Returns the status of the thread <code>L</code>.


<p>
The status can be 0 (<a href="#pdf-LUA_OK"><code>LUA_OK</code></a>) for a normal thread,
an error code if the thread finished the execution
of a <a href="#lua_resume"><code>lua_resume</code></a> with an error,
or <a name="pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the thread is suspended.


<p>
You can only call functions in threads with status <a href="#pdf-LUA_OK"><code>LUA_OK</code></a>.
You can resume threads with status <a href="#pdf-LUA_OK"><code>LUA_OK</code></a>
(to start a new coroutine) or <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a>
(to resume a coroutine).





<hr><h3><a name="lua_stringtonumber"><code>lua_stringtonumber</code></a></h3><p>
<span class="apii">[-0, +1, &ndash;]</span>
<pre>size_t lua_stringtonumber (lua_State *L, const char *s);</pre>

<p>
Converts the zero-terminated string <code>s</code> to a number,
pushes that number into the stack,
and returns the total size of the string,
that is, its length plus one.
The conversion can result in an integer or a float,
according to the lexical conventions of Lua (see <a href="#3.1">&sect;3.1</a>).
The string may have leading and trailing spaces and a sign.
If the string is not a valid numeral,
returns 0 and pushes nothing.
(Note that the result can be used as a boolean,
true if the conversion succeeds.)





<hr><h3><a name="lua_toboolean"><code>lua_toboolean</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_toboolean (lua_State *L, int index);</pre>

<p>
Converts the Lua value at the given index to a C&nbsp;boolean
value (0&nbsp;or&nbsp;1).
Like all tests in Lua,
<a href="#lua_toboolean"><code>lua_toboolean</code></a> returns true for any Lua value
different from <b>false</b> and <b>nil</b>;
otherwise it returns false.
(If you want to accept only actual boolean values,
use <a href="#lua_isboolean"><code>lua_isboolean</code></a> to test the value's type.)





<hr><h3><a name="lua_tocfunction"><code>lua_tocfunction</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>lua_CFunction lua_tocfunction (lua_State *L, int index);</pre>

<p>
Converts a value at the given index to a C&nbsp;function.
That value must be a C&nbsp;function;
otherwise, returns <code>NULL</code>.





<hr><h3><a name="lua_tointeger"><code>lua_tointeger</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>lua_Integer lua_tointeger (lua_State *L, int index);</pre>

<p>
Equivalent to <a href="#lua_tointegerx"><code>lua_tointegerx</code></a> with <code>isnum</code> equal to <code>NULL</code>.





<hr><h3><a name="lua_tointegerx"><code>lua_tointegerx</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>lua_Integer lua_tointegerx (lua_State *L, int index, int *isnum);</pre>

<p>
Converts the Lua value at the given index
to the signed integral type <a href="#lua_Integer"><code>lua_Integer</code></a>.
The Lua value must be an integer,
or a number or string convertible to an integer (see <a href="#3.4.3">&sect;3.4.3</a>);
otherwise, <code>lua_tointegerx</code> returns&nbsp;0.


<p>
If <code>isnum</code> is not <code>NULL</code>,
its referent is assigned a boolean value that
indicates whether the operation succeeded.





<hr><h3><a name="lua_tolstring"><code>lua_tolstring</code></a></h3><p>
<span class="apii">[-0, +0, <em>m</em>]</span>
<pre>const char *lua_tolstring (lua_State *L, int index, size_t *len);</pre>

<p>
Converts the Lua value at the given index to a C&nbsp;string.
If <code>len</code> is not <code>NULL</code>,
it sets <code>*len</code> with the string length.
The Lua value must be a string or a number;
otherwise, the function returns <code>NULL</code>.
If the value is a number,
then <code>lua_tolstring</code> also
<em>changes the actual value in the stack to a string</em>.
(This change confuses <a href="#lua_next"><code>lua_next</code></a>
when <code>lua_tolstring</code> is applied to keys during a table traversal.)


<p>
<code>lua_tolstring</code> returns a pointer
to a string inside the Lua state.
This string always has a zero ('<code>\0</code>')
after its last character (as in&nbsp;C),
but can contain other zeros in its body.


<p>
Because Lua has garbage collection,
there is no guarantee that the pointer returned by <code>lua_tolstring</code>
will be valid after the corresponding Lua value is removed from the stack.





<hr><h3><a name="lua_tonumber"><code>lua_tonumber</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>lua_Number lua_tonumber (lua_State *L, int index);</pre>

<p>
Equivalent to <a href="#lua_tonumberx"><code>lua_tonumberx</code></a> with <code>isnum</code> equal to <code>NULL</code>.





<hr><h3><a name="lua_tonumberx"><code>lua_tonumberx</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>lua_Number lua_tonumberx (lua_State *L, int index, int *isnum);</pre>

<p>
Converts the Lua value at the given index
to the C&nbsp;type <a href="#lua_Number"><code>lua_Number</code></a> (see <a href="#lua_Number"><code>lua_Number</code></a>).
The Lua value must be a number or a string convertible to a number
(see <a href="#3.4.3">&sect;3.4.3</a>);
otherwise, <a href="#lua_tonumberx"><code>lua_tonumberx</code></a> returns&nbsp;0.


<p>
If <code>isnum</code> is not <code>NULL</code>,
its referent is assigned a boolean value that
indicates whether the operation succeeded.





<hr><h3><a name="lua_topointer"><code>lua_topointer</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>const void *lua_topointer (lua_State *L, int index);</pre>

<p>
Converts the value at the given index to a generic
C&nbsp;pointer (<code>void*</code>).
The value can be a userdata, a table, a thread, or a function;
otherwise, <code>lua_topointer</code> returns <code>NULL</code>.
Different objects will give different pointers.
There is no way to convert the pointer back to its original value.


<p>
Typically this function is used only for hashing and debug information.





<hr><h3><a name="lua_tostring"><code>lua_tostring</code></a></h3><p>
<span class="apii">[-0, +0, <em>m</em>]</span>
<pre>const char *lua_tostring (lua_State *L, int index);</pre>

<p>
Equivalent to <a href="#lua_tolstring"><code>lua_tolstring</code></a> with <code>len</code> equal to <code>NULL</code>.





<hr><h3><a name="lua_tothread"><code>lua_tothread</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>lua_State *lua_tothread (lua_State *L, int index);</pre>

<p>
Converts the value at the given index to a Lua thread
(represented as <code>lua_State*</code>).
This value must be a thread;
otherwise, the function returns <code>NULL</code>.





<hr><h3><a name="lua_touserdata"><code>lua_touserdata</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>void *lua_touserdata (lua_State *L, int index);</pre>

<p>
If the value at the given index is a full userdata,
returns its block address.
If the value is a light userdata,
returns its pointer.
Otherwise, returns <code>NULL</code>.





<hr><h3><a name="lua_type"><code>lua_type</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_type (lua_State *L, int index);</pre>

<p>
Returns the type of the value in the given valid index,
or <code>LUA_TNONE</code> for a non-valid (but acceptable) index.
The types returned by <a href="#lua_type"><code>lua_type</code></a> are coded by the following constants
defined in <code>lua.h</code>:
<a name="pdf-LUA_TNIL"><code>LUA_TNIL</code></a> (0),
<a name="pdf-LUA_TNUMBER"><code>LUA_TNUMBER</code></a>,
<a name="pdf-LUA_TBOOLEAN"><code>LUA_TBOOLEAN</code></a>,
<a name="pdf-LUA_TSTRING"><code>LUA_TSTRING</code></a>,
<a name="pdf-LUA_TTABLE"><code>LUA_TTABLE</code></a>,
<a name="pdf-LUA_TFUNCTION"><code>LUA_TFUNCTION</code></a>,
<a name="pdf-LUA_TUSERDATA"><code>LUA_TUSERDATA</code></a>,
<a name="pdf-LUA_TTHREAD"><code>LUA_TTHREAD</code></a>,
and
<a name="pdf-LUA_TLIGHTUSERDATA"><code>LUA_TLIGHTUSERDATA</code></a>.





<hr><h3><a name="lua_typename"><code>lua_typename</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>const char *lua_typename (lua_State *L, int tp);</pre>

<p>
Returns the name of the type encoded by the value <code>tp</code>,
which must be one the values returned by <a href="#lua_type"><code>lua_type</code></a>.





<hr><h3><a name="lua_Unsigned"><code>lua_Unsigned</code></a></h3>
<pre>typedef ... lua_Unsigned;</pre>

<p>
The unsigned version of <a href="#lua_Integer"><code>lua_Integer</code></a>.





<hr><h3><a name="lua_upvalueindex"><code>lua_upvalueindex</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_upvalueindex (int i);</pre>

<p>
Returns the pseudo-index that represents the <code>i</code>-th upvalue of
the running function (see <a href="#4.4">&sect;4.4</a>).





<hr><h3><a name="lua_version"><code>lua_version</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>const lua_Number *lua_version (lua_State *L);</pre>

<p>
Returns the address of the version number stored in the Lua core.
When called with a valid <a href="#lua_State"><code>lua_State</code></a>,
returns the address of the version used to create that state.
When called with <code>NULL</code>,
returns the address of the version running the call.





<hr><h3><a name="lua_Writer"><code>lua_Writer</code></a></h3>
<pre>typedef int (*lua_Writer) (lua_State *L,
                           const void* p,
                           size_t sz,
                           void* ud);</pre>

<p>
The type of the writer function used by <a href="#lua_dump"><code>lua_dump</code></a>.
Every time it produces another piece of chunk,
<a href="#lua_dump"><code>lua_dump</code></a> calls the writer,
passing along the buffer to be written (<code>p</code>),
its size (<code>sz</code>),
and the <code>data</code> parameter supplied to <a href="#lua_dump"><code>lua_dump</code></a>.


<p>
The writer returns an error code:
0&nbsp;means no errors;
any other value means an error and stops <a href="#lua_dump"><code>lua_dump</code></a> from
calling the writer again.





<hr><h3><a name="lua_xmove"><code>lua_xmove</code></a></h3><p>
<span class="apii">[-?, +?, &ndash;]</span>
<pre>void lua_xmove (lua_State *from, lua_State *to, int n);</pre>

<p>
Exchange values between different threads of the same state.


<p>
This function pops <code>n</code> values from the stack <code>from</code>,
and pushes them onto the stack <code>to</code>.





<hr><h3><a name="lua_yield"><code>lua_yield</code></a></h3><p>
<span class="apii">[-?, +?, <em>e</em>]</span>
<pre>int lua_yield (lua_State *L, int nresults);</pre>

<p>
This function is equivalent to <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
but it has no continuation (see <a href="#4.7">&sect;4.7</a>).
Therefore, when the thread resumes,
it continues the function that called
the function calling <code>lua_yield</code>.





<hr><h3><a name="lua_yieldk"><code>lua_yieldk</code></a></h3><p>
<span class="apii">[-?, +?, <em>e</em>]</span>
<pre>int lua_yieldk (lua_State *L,
                int nresults,
                lua_KContext ctx,
                lua_KFunction k);</pre>

<p>
Yields a coroutine (thread).


<p>
When a C&nbsp;function calls <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
the running coroutine suspends its execution,
and the call to <a href="#lua_resume"><code>lua_resume</code></a> that started this coroutine returns.
The parameter <code>nresults</code> is the number of values from the stack
that will be passed as results to <a href="#lua_resume"><code>lua_resume</code></a>.


<p>
When the coroutine is resumed again,
Lua calls the given continuation function <code>k</code> to continue
the execution of the C function that yielded (see <a href="#4.7">&sect;4.7</a>).
This continuation function receives the same stack
from the previous function,
with the <code>n</code> results removed and
replaced by the arguments passed to <a href="#lua_resume"><code>lua_resume</code></a>.
Moreover,
the continuation function receives the value <code>ctx</code>
that was passed to <a href="#lua_yieldk"><code>lua_yieldk</code></a>.


<p>
Usually, this function does not return;
when the coroutine eventually resumes,
it continues executing the continuation function.
However, there is one special case,
which is when this function is called
from inside a line hook (see <a href="#4.9">&sect;4.9</a>).
In that case, <code>lua_yieldk</code> should be called with no continuation
(probably in the form of <a href="#lua_yield"><code>lua_yield</code></a>),
and the hook should return immediately after the call.
Lua will yield and,
when the coroutine resumes again,
it will continue the normal execution
of the (Lua) function that triggered the hook.


<p>
This function can raise an error if it is called from a thread
with a pending C call with no continuation function,
or it is called from a thread that is not running inside a resume
(e.g., the main thread).







<h2>4.9 &ndash; <a name="4.9">The Debug Interface</a></h2>

<p>
Lua has no built-in debugging facilities.
Instead, it offers a special interface
by means of functions and <em>hooks</em>.
This interface allows the construction of different
kinds of debuggers, profilers, and other tools
that need "inside information" from the interpreter.



<hr><h3><a name="lua_Debug"><code>lua_Debug</code></a></h3>
<pre>typedef struct lua_Debug {
  int event;
  const char *name;           /* (n) */
  const char *namewhat;       /* (n) */
  const char *what;           /* (S) */
  const char *source;         /* (S) */
  int currentline;            /* (l) */
  int linedefined;            /* (S) */
  int lastlinedefined;        /* (S) */
  unsigned char nups;         /* (u) number of upvalues */
  unsigned char nparams;      /* (u) number of parameters */
  char isvararg;              /* (u) */
  char istailcall;            /* (t) */
  char short_src[LUA_IDSIZE]; /* (S) */
  /* private part */
  <em>other fields</em>
} lua_Debug;</pre>

<p>
A structure used to carry different pieces of
information about a function or an activation record.
<a href="#lua_getstack"><code>lua_getstack</code></a> fills only the private part
of this structure, for later use.
To fill the other fields of <a href="#lua_Debug"><code>lua_Debug</code></a> with useful information,
call <a href="#lua_getinfo"><code>lua_getinfo</code></a>.


<p>
The fields of <a href="#lua_Debug"><code>lua_Debug</code></a> have the following meaning:

<ul>

<li><b><code>source</code>: </b>
the name of the chunk that created the function.
If <code>source</code> starts with a '<code>@</code>',
it means that the function was defined in a file where
the file name follows the '<code>@</code>'.
If <code>source</code> starts with a '<code>=</code>',
the remainder of its contents describe the source in a user-dependent manner.
Otherwise,
the function was defined in a string where
<code>source</code> is that string.
</li>

<li><b><code>short_src</code>: </b>
a "printable" version of <code>source</code>, to be used in error messages.
</li>

<li><b><code>linedefined</code>: </b>
the line number where the definition of the function starts.
</li>

<li><b><code>lastlinedefined</code>: </b>
the line number where the definition of the function ends.
</li>

<li><b><code>what</code>: </b>
the string <code>"Lua"</code> if the function is a Lua function,
<code>"C"</code> if it is a C&nbsp;function,
<code>"main"</code> if it is the main part of a chunk.
</li>

<li><b><code>currentline</code>: </b>
the current line where the given function is executing.
When no line information is available,
<code>currentline</code> is set to -1.
</li>

<li><b><code>name</code>: </b>
a reasonable name for the given function.
Because functions in Lua are first-class values,
they do not have a fixed name:
some functions can be the value of multiple global variables,
while others can be stored only in a table field.
The <code>lua_getinfo</code> function checks how the function was
called to find a suitable name.
If it cannot find a name,
then <code>name</code> is set to <code>NULL</code>.
</li>

<li><b><code>namewhat</code>: </b>
explains the <code>name</code> field.
The value of <code>namewhat</code> can be
<code>"global"</code>, <code>"local"</code>, <code>"method"</code>,
<code>"field"</code>, <code>"upvalue"</code>, or <code>""</code> (the empty string),
according to how the function was called.
(Lua uses the empty string when no other option seems to apply.)
</li>

<li><b><code>istailcall</code>: </b>
true if this function invocation was called by a tail call.
In this case, the caller of this level is not in the stack.
</li>

<li><b><code>nups</code>: </b>
the number of upvalues of the function.
</li>

<li><b><code>nparams</code>: </b>
the number of fixed parameters of the function
(always 0&nbsp;for C&nbsp;functions).
</li>

<li><b><code>isvararg</code>: </b>
true if the function is a vararg function
(always true for C&nbsp;functions).
</li>

</ul>




<hr><h3><a name="lua_gethook"><code>lua_gethook</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>lua_Hook lua_gethook (lua_State *L);</pre>

<p>
Returns the current hook function.





<hr><h3><a name="lua_gethookcount"><code>lua_gethookcount</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_gethookcount (lua_State *L);</pre>

<p>
Returns the current hook count.





<hr><h3><a name="lua_gethookmask"><code>lua_gethookmask</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_gethookmask (lua_State *L);</pre>

<p>
Returns the current hook mask.





<hr><h3><a name="lua_getinfo"><code>lua_getinfo</code></a></h3><p>
<span class="apii">[-(0|1), +(0|1|2), <em>e</em>]</span>
<pre>int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);</pre>

<p>
Gets information about a specific function or function invocation.


<p>
To get information about a function invocation,
the parameter <code>ar</code> must be a valid activation record that was
filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or
given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>).


<p>
To get information about a function you push it onto the stack
and start the <code>what</code> string with the character '<code>&gt;</code>'.
(In that case,
<code>lua_getinfo</code> pops the function from the top of the stack.)
For instance, to know in which line a function <code>f</code> was defined,
you can write the following code:

<pre>
     lua_Debug ar;
     lua_getglobal(L, "f");  /* get global 'f' */
     lua_getinfo(L, "&gt;S", &amp;ar);
     printf("%d\n", ar.linedefined);
</pre>

<p>
Each character in the string <code>what</code>
selects some fields of the structure <code>ar</code> to be filled or
a value to be pushed on the stack:

<ul>

<li><b>'<code>n</code>': </b> fills in the field <code>name</code> and <code>namewhat</code>;
</li>

<li><b>'<code>S</code>': </b>
fills in the fields <code>source</code>, <code>short_src</code>,
<code>linedefined</code>, <code>lastlinedefined</code>, and <code>what</code>;
</li>

<li><b>'<code>l</code>': </b> fills in the field <code>currentline</code>;
</li>

<li><b>'<code>t</code>': </b> fills in the field <code>istailcall</code>;
</li>

<li><b>'<code>u</code>': </b> fills in the fields
<code>nups</code>, <code>nparams</code>, and <code>isvararg</code>;
</li>

<li><b>'<code>f</code>': </b>
pushes onto the stack the function that is
running at the given level;
</li>

<li><b>'<code>L</code>': </b>
pushes onto the stack a table whose indices are the
numbers of the lines that are valid on the function.
(A <em>valid line</em> is a line with some associated code,
that is, a line where you can put a break point.
Non-valid lines include empty lines and comments.)


<p>
If this option is given together with option '<code>f</code>',
its table is pushed after the function.
</li>

</ul>

<p>
This function returns 0 on error
(for instance, an invalid option in <code>what</code>).





<hr><h3><a name="lua_getlocal"><code>lua_getlocal</code></a></h3><p>
<span class="apii">[-0, +(0|1), &ndash;]</span>
<pre>const char *lua_getlocal (lua_State *L, const lua_Debug *ar, int n);</pre>

<p>
Gets information about a local variable of
a given activation record or a given function.


<p>
In the first case,
the parameter <code>ar</code> must be a valid activation record that was
filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or
given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>).
The index <code>n</code> selects which local variable to inspect;
see <a href="#pdf-debug.getlocal"><code>debug.getlocal</code></a> for details about variable indices
and names.


<p>
<a href="#lua_getlocal"><code>lua_getlocal</code></a> pushes the variable's value onto the stack
and returns its name.


<p>
In the second case, <code>ar</code> must be <code>NULL</code> and the function
to be inspected must be at the top of the stack.
In this case, only parameters of Lua functions are visible
(as there is no information about what variables are active)
and no values are pushed onto the stack.


<p>
Returns <code>NULL</code> (and pushes nothing)
when the index is greater than
the number of active local variables.





<hr><h3><a name="lua_getstack"><code>lua_getstack</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>int lua_getstack (lua_State *L, int level, lua_Debug *ar);</pre>

<p>
Gets information about the interpreter runtime stack.


<p>
This function fills parts of a <a href="#lua_Debug"><code>lua_Debug</code></a> structure with
an identification of the <em>activation record</em>
of the function executing at a given level.
Level&nbsp;0 is the current running function,
whereas level <em>n+1</em> is the function that has called level <em>n</em>
(except for tail calls, which do not count on the stack).
When there are no errors, <a href="#lua_getstack"><code>lua_getstack</code></a> returns 1;
when called with a level greater than the stack depth,
it returns 0.





<hr><h3><a name="lua_getupvalue"><code>lua_getupvalue</code></a></h3><p>
<span class="apii">[-0, +(0|1), &ndash;]</span>
<pre>const char *lua_getupvalue (lua_State *L, int funcindex, int n);</pre>

<p>
Gets information about the <code>n</code>-th upvalue
of the closure at index <code>funcindex</code>.
It pushes the upvalue's value onto the stack
and returns its name.
Returns <code>NULL</code> (and pushes nothing)
when the index <code>n</code> is greater than the number of upvalues.


<p>
For C&nbsp;functions, this function uses the empty string <code>""</code>
as a name for all upvalues.
(For Lua functions,
upvalues are the external local variables that the function uses,
and that are consequently included in its closure.)


<p>
Upvalues have no particular order,
as they are active through the whole function.
They are numbered in an arbitrary order.





<hr><h3><a name="lua_Hook"><code>lua_Hook</code></a></h3>
<pre>typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);</pre>

<p>
Type for debugging hook functions.


<p>
Whenever a hook is called, its <code>ar</code> argument has its field
<code>event</code> set to the specific event that triggered the hook.
Lua identifies these events with the following constants:
<a name="pdf-LUA_HOOKCALL"><code>LUA_HOOKCALL</code></a>, <a name="pdf-LUA_HOOKRET"><code>LUA_HOOKRET</code></a>,
<a name="pdf-LUA_HOOKTAILCALL"><code>LUA_HOOKTAILCALL</code></a>, <a name="pdf-LUA_HOOKLINE"><code>LUA_HOOKLINE</code></a>,
and <a name="pdf-LUA_HOOKCOUNT"><code>LUA_HOOKCOUNT</code></a>.
Moreover, for line events, the field <code>currentline</code> is also set.
To get the value of any other field in <code>ar</code>,
the hook must call <a href="#lua_getinfo"><code>lua_getinfo</code></a>.


<p>
For call events, <code>event</code> can be <code>LUA_HOOKCALL</code>,
the normal value, or <code>LUA_HOOKTAILCALL</code>, for a tail call;
in this case, there will be no corresponding return event.


<p>
While Lua is running a hook, it disables other calls to hooks.
Therefore, if a hook calls back Lua to execute a function or a chunk,
this execution occurs without any calls to hooks.


<p>
Hook functions cannot have continuations,
that is, they cannot call <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
<a href="#lua_pcallk"><code>lua_pcallk</code></a>, or <a href="#lua_callk"><code>lua_callk</code></a> with a non-null <code>k</code>.


<p>
Hook functions can yield under the following conditions:
Only count and line events can yield;
to yield, a hook function must finish its execution
calling <a href="#lua_yield"><code>lua_yield</code></a> with <code>nresults</code> equal to zero
(that is, with no values).





<hr><h3><a name="lua_sethook"><code>lua_sethook</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>void lua_sethook (lua_State *L, lua_Hook f, int mask, int count);</pre>

<p>
Sets the debugging hook function.


<p>
Argument <code>f</code> is the hook function.
<code>mask</code> specifies on which events the hook will be called:
it is formed by a bitwise or of the constants
<a name="pdf-LUA_MASKCALL"><code>LUA_MASKCALL</code></a>,
<a name="pdf-LUA_MASKRET"><code>LUA_MASKRET</code></a>,
<a name="pdf-LUA_MASKLINE"><code>LUA_MASKLINE</code></a>,
and <a name="pdf-LUA_MASKCOUNT"><code>LUA_MASKCOUNT</code></a>.
The <code>count</code> argument is only meaningful when the mask
includes <code>LUA_MASKCOUNT</code>.
For each event, the hook is called as explained below:

<ul>

<li><b>The call hook: </b> is called when the interpreter calls a function.
The hook is called just after Lua enters the new function,
before the function gets its arguments.
</li>

<li><b>The return hook: </b> is called when the interpreter returns from a function.
The hook is called just before Lua leaves the function.
There is no standard way to access the values
to be returned by the function.
</li>

<li><b>The line hook: </b> is called when the interpreter is about to
start the execution of a new line of code,
or when it jumps back in the code (even to the same line).
(This event only happens while Lua is executing a Lua function.)
</li>

<li><b>The count hook: </b> is called after the interpreter executes every
<code>count</code> instructions.
(This event only happens while Lua is executing a Lua function.)
</li>

</ul>

<p>
A hook is disabled by setting <code>mask</code> to zero.





<hr><h3><a name="lua_setlocal"><code>lua_setlocal</code></a></h3><p>
<span class="apii">[-(0|1), +0, &ndash;]</span>
<pre>const char *lua_setlocal (lua_State *L, const lua_Debug *ar, int n);</pre>

<p>
Sets the value of a local variable of a given activation record.
It assigns the value at the top of the stack
to the variable and returns its name.
It also pops the value from the stack.


<p>
Returns <code>NULL</code> (and pops nothing)
when the index is greater than
the number of active local variables.


<p>
Parameters <code>ar</code> and <code>n</code> are as in function <a href="#lua_getlocal"><code>lua_getlocal</code></a>.





<hr><h3><a name="lua_setupvalue"><code>lua_setupvalue</code></a></h3><p>
<span class="apii">[-(0|1), +0, &ndash;]</span>
<pre>const char *lua_setupvalue (lua_State *L, int funcindex, int n);</pre>

<p>
Sets the value of a closure's upvalue.
It assigns the value at the top of the stack
to the upvalue and returns its name.
It also pops the value from the stack.


<p>
Returns <code>NULL</code> (and pops nothing)
when the index <code>n</code> is greater than the number of upvalues.


<p>
Parameters <code>funcindex</code> and <code>n</code> are as in function <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>.





<hr><h3><a name="lua_upvalueid"><code>lua_upvalueid</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>void *lua_upvalueid (lua_State *L, int funcindex, int n);</pre>

<p>
Returns a unique identifier for the upvalue numbered <code>n</code>
from the closure at index <code>funcindex</code>.


<p>
These unique identifiers allow a program to check whether different
closures share upvalues.
Lua closures that share an upvalue
(that is, that access a same external local variable)
will return identical ids for those upvalue indices.


<p>
Parameters <code>funcindex</code> and <code>n</code> are as in function <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>,
but <code>n</code> cannot be greater than the number of upvalues.





<hr><h3><a name="lua_upvaluejoin"><code>lua_upvaluejoin</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>void lua_upvaluejoin (lua_State *L, int funcindex1, int n1,
                                    int funcindex2, int n2);</pre>

<p>
Make the <code>n1</code>-th upvalue of the Lua closure at index <code>funcindex1</code>
refer to the <code>n2</code>-th upvalue of the Lua closure at index <code>funcindex2</code>.







<h1>5 &ndash; <a name="5">The Auxiliary Library</a></h1>

<p>

The <em>auxiliary library</em> provides several convenient functions
to interface C with Lua.
While the basic API provides the primitive functions for all
interactions between C and Lua,
the auxiliary library provides higher-level functions for some
common tasks.


<p>
All functions and types from the auxiliary library
are defined in header file <code>lauxlib.h</code> and
have a prefix <code>luaL_</code>.


<p>
All functions in the auxiliary library are built on
top of the basic API,
and so they provide nothing that cannot be done with that API.
Nevertheless, the use of the auxiliary library ensures
more consistency to your code.


<p>
Several functions in the auxiliary library use internally some
extra stack slots.
When a function in the auxiliary library uses less than five slots,
it does not check the stack size;
it simply assumes that there are enough slots.


<p>
Several functions in the auxiliary library are used to
check C&nbsp;function arguments.
Because the error message is formatted for arguments
(e.g., "<code>bad argument #1</code>"),
you should not use these functions for other stack values.


<p>
Functions called <code>luaL_check*</code>
always raise an error if the check is not satisfied.



<h2>5.1 &ndash; <a name="5.1">Functions and Types</a></h2>

<p>
Here we list all functions and types from the auxiliary library
in alphabetical order.



<hr><h3><a name="luaL_addchar"><code>luaL_addchar</code></a></h3><p>
<span class="apii">[-?, +?, <em>m</em>]</span>
<pre>void luaL_addchar (luaL_Buffer *B, char c);</pre>

<p>
Adds the byte <code>c</code> to the buffer <code>B</code>
(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).





<hr><h3><a name="luaL_addlstring"><code>luaL_addlstring</code></a></h3><p>
<span class="apii">[-?, +?, <em>m</em>]</span>
<pre>void luaL_addlstring (luaL_Buffer *B, const char *s, size_t l);</pre>

<p>
Adds the string pointed to by <code>s</code> with length <code>l</code> to
the buffer <code>B</code>
(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
The string can contain embedded zeros.





<hr><h3><a name="luaL_addsize"><code>luaL_addsize</code></a></h3><p>
<span class="apii">[-?, +?, &ndash;]</span>
<pre>void luaL_addsize (luaL_Buffer *B, size_t n);</pre>

<p>
Adds to the buffer <code>B</code> (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>)
a string of length <code>n</code> previously copied to the
buffer area (see <a href="#luaL_prepbuffer"><code>luaL_prepbuffer</code></a>).





<hr><h3><a name="luaL_addstring"><code>luaL_addstring</code></a></h3><p>
<span class="apii">[-?, +?, <em>m</em>]</span>
<pre>void luaL_addstring (luaL_Buffer *B, const char *s);</pre>

<p>
Adds the zero-terminated string pointed to by <code>s</code>
to the buffer <code>B</code>
(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).





<hr><h3><a name="luaL_addvalue"><code>luaL_addvalue</code></a></h3><p>
<span class="apii">[-1, +?, <em>m</em>]</span>
<pre>void luaL_addvalue (luaL_Buffer *B);</pre>

<p>
Adds the value at the top of the stack
to the buffer <code>B</code>
(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
Pops the value.


<p>
This is the only function on string buffers that can (and must)
be called with an extra element on the stack,
which is the value to be added to the buffer.





<hr><h3><a name="luaL_argcheck"><code>luaL_argcheck</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>void luaL_argcheck (lua_State *L,
                    int cond,
                    int arg,
                    const char *extramsg);</pre>

<p>
Checks whether <code>cond</code> is true.
If it is not, raises an error with a standard message (see <a href="#luaL_argerror"><code>luaL_argerror</code></a>).





<hr><h3><a name="luaL_argerror"><code>luaL_argerror</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>int luaL_argerror (lua_State *L, int arg, const char *extramsg);</pre>

<p>
Raises an error reporting a problem with argument <code>arg</code>
of the C function that called it,
using a standard message
that includes <code>extramsg</code> as a comment:

<pre>
     bad argument #<em>arg</em> to '<em>funcname</em>' (<em>extramsg</em>)
</pre><p>
This function never returns.





<hr><h3><a name="luaL_Buffer"><code>luaL_Buffer</code></a></h3>
<pre>typedef struct luaL_Buffer luaL_Buffer;</pre>

<p>
Type for a <em>string buffer</em>.


<p>
A string buffer allows C&nbsp;code to build Lua strings piecemeal.
Its pattern of use is as follows:

<ul>

<li>First declare a variable <code>b</code> of type <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>.</li>

<li>Then initialize it with a call <code>luaL_buffinit(L, &amp;b)</code>.</li>

<li>
Then add string pieces to the buffer calling any of
the <code>luaL_add*</code> functions.
</li>

<li>
Finish by calling <code>luaL_pushresult(&amp;b)</code>.
This call leaves the final string on the top of the stack.
</li>

</ul>

<p>
If you know beforehand the total size of the resulting string,
you can use the buffer like this:

<ul>

<li>First declare a variable <code>b</code> of type <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>.</li>

<li>Then initialize it and preallocate a space of
size <code>sz</code> with a call <code>luaL_buffinitsize(L, &amp;b, sz)</code>.</li>

<li>Then copy the string into that space.</li>

<li>
Finish by calling <code>luaL_pushresultsize(&amp;b, sz)</code>,
where <code>sz</code> is the total size of the resulting string
copied into that space.
</li>

</ul>

<p>
During its normal operation,
a string buffer uses a variable number of stack slots.
So, while using a buffer, you cannot assume that you know where
the top of the stack is.
You can use the stack between successive calls to buffer operations
as long as that use is balanced;
that is,
when you call a buffer operation,
the stack is at the same level
it was immediately after the previous buffer operation.
(The only exception to this rule is <a href="#luaL_addvalue"><code>luaL_addvalue</code></a>.)
After calling <a href="#luaL_pushresult"><code>luaL_pushresult</code></a> the stack is back to its
level when the buffer was initialized,
plus the final string on its top.





<hr><h3><a name="luaL_buffinit"><code>luaL_buffinit</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>void luaL_buffinit (lua_State *L, luaL_Buffer *B);</pre>

<p>
Initializes a buffer <code>B</code>.
This function does not allocate any space;
the buffer must be declared as a variable
(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).





<hr><h3><a name="luaL_buffinitsize"><code>luaL_buffinitsize</code></a></h3><p>
<span class="apii">[-?, +?, <em>m</em>]</span>
<pre>char *luaL_buffinitsize (lua_State *L, luaL_Buffer *B, size_t sz);</pre>

<p>
Equivalent to the sequence
<a href="#luaL_buffinit"><code>luaL_buffinit</code></a>, <a href="#luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a>.





<hr><h3><a name="luaL_callmeta"><code>luaL_callmeta</code></a></h3><p>
<span class="apii">[-0, +(0|1), <em>e</em>]</span>
<pre>int luaL_callmeta (lua_State *L, int obj, const char *e);</pre>

<p>
Calls a metamethod.


<p>
If the object at index <code>obj</code> has a metatable and this
metatable has a field <code>e</code>,
this function calls this field passing the object as its only argument.
In this case this function returns true and pushes onto the
stack the value returned by the call.
If there is no metatable or no metamethod,
this function returns false (without pushing any value on the stack).





<hr><h3><a name="luaL_checkany"><code>luaL_checkany</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>void luaL_checkany (lua_State *L, int arg);</pre>

<p>
Checks whether the function has an argument
of any type (including <b>nil</b>) at position <code>arg</code>.





<hr><h3><a name="luaL_checkinteger"><code>luaL_checkinteger</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>lua_Integer luaL_checkinteger (lua_State *L, int arg);</pre>

<p>
Checks whether the function argument <code>arg</code> is an integer
(or can be converted to an integer)
and returns this integer cast to a <a href="#lua_Integer"><code>lua_Integer</code></a>.





<hr><h3><a name="luaL_checklstring"><code>luaL_checklstring</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>const char *luaL_checklstring (lua_State *L, int arg, size_t *l);</pre>

<p>
Checks whether the function argument <code>arg</code> is a string
and returns this string;
if <code>l</code> is not <code>NULL</code> fills <code>*l</code>
with the string's length.


<p>
This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result,
so all conversions and caveats of that function apply here.





<hr><h3><a name="luaL_checknumber"><code>luaL_checknumber</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>lua_Number luaL_checknumber (lua_State *L, int arg);</pre>

<p>
Checks whether the function argument <code>arg</code> is a number
and returns this number.





<hr><h3><a name="luaL_checkoption"><code>luaL_checkoption</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>int luaL_checkoption (lua_State *L,
                      int arg,
                      const char *def,
                      const char *const lst[]);</pre>

<p>
Checks whether the function argument <code>arg</code> is a string and
searches for this string in the array <code>lst</code>
(which must be NULL-terminated).
Returns the index in the array where the string was found.
Raises an error if the argument is not a string or
if the string cannot be found.


<p>
If <code>def</code> is not <code>NULL</code>,
the function uses <code>def</code> as a default value when
there is no argument <code>arg</code> or when this argument is <b>nil</b>.


<p>
This is a useful function for mapping strings to C&nbsp;enums.
(The usual convention in Lua libraries is
to use strings instead of numbers to select options.)





<hr><h3><a name="luaL_checkstack"><code>luaL_checkstack</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>void luaL_checkstack (lua_State *L, int sz, const char *msg);</pre>

<p>
Grows the stack size to <code>top + sz</code> elements,
raising an error if the stack cannot grow to that size.
<code>msg</code> is an additional text to go into the error message
(or <code>NULL</code> for no additional text).





<hr><h3><a name="luaL_checkstring"><code>luaL_checkstring</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>const char *luaL_checkstring (lua_State *L, int arg);</pre>

<p>
Checks whether the function argument <code>arg</code> is a string
and returns this string.


<p>
This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result,
so all conversions and caveats of that function apply here.





<hr><h3><a name="luaL_checktype"><code>luaL_checktype</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>void luaL_checktype (lua_State *L, int arg, int t);</pre>

<p>
Checks whether the function argument <code>arg</code> has type <code>t</code>.
See <a href="#lua_type"><code>lua_type</code></a> for the encoding of types for <code>t</code>.





<hr><h3><a name="luaL_checkudata"><code>luaL_checkudata</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>void *luaL_checkudata (lua_State *L, int arg, const char *tname);</pre>

<p>
Checks whether the function argument <code>arg</code> is a userdata
of the type <code>tname</code> (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>) and
returns the userdata address (see <a href="#lua_touserdata"><code>lua_touserdata</code></a>).





<hr><h3><a name="luaL_checkversion"><code>luaL_checkversion</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>void luaL_checkversion (lua_State *L);</pre>

<p>
Checks whether the core running the call,
the core that created the Lua state,
and the code making the call are all using the same version of Lua.
Also checks whether the core running the call
and the core that created the Lua state
are using the same address space.





<hr><h3><a name="luaL_dofile"><code>luaL_dofile</code></a></h3><p>
<span class="apii">[-0, +?, <em>e</em>]</span>
<pre>int luaL_dofile (lua_State *L, const char *filename);</pre>

<p>
Loads and runs the given file.
It is defined as the following macro:

<pre>
     (luaL_loadfile(L, filename) || lua_pcall(L, 0, LUA_MULTRET, 0))
</pre><p>
It returns false if there are no errors
or true in case of errors.





<hr><h3><a name="luaL_dostring"><code>luaL_dostring</code></a></h3><p>
<span class="apii">[-0, +?, &ndash;]</span>
<pre>int luaL_dostring (lua_State *L, const char *str);</pre>

<p>
Loads and runs the given string.
It is defined as the following macro:

<pre>
     (luaL_loadstring(L, str) || lua_pcall(L, 0, LUA_MULTRET, 0))
</pre><p>
It returns false if there are no errors
or true in case of errors.





<hr><h3><a name="luaL_error"><code>luaL_error</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>int luaL_error (lua_State *L, const char *fmt, ...);</pre>

<p>
Raises an error.
The error message format is given by <code>fmt</code>
plus any extra arguments,
following the same rules of <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>.
It also adds at the beginning of the message the file name and
the line number where the error occurred,
if this information is available.


<p>
This function never returns,
but it is an idiom to use it in C&nbsp;functions
as <code>return luaL_error(<em>args</em>)</code>.





<hr><h3><a name="luaL_execresult"><code>luaL_execresult</code></a></h3><p>
<span class="apii">[-0, +3, <em>m</em>]</span>
<pre>int luaL_execresult (lua_State *L, int stat);</pre>

<p>
This function produces the return values for
process-related functions in the standard library
(<a href="#pdf-os.execute"><code>os.execute</code></a> and <a href="#pdf-io.close"><code>io.close</code></a>).





<hr><h3><a name="luaL_fileresult"><code>luaL_fileresult</code></a></h3><p>
<span class="apii">[-0, +(1|3), <em>m</em>]</span>
<pre>int luaL_fileresult (lua_State *L, int stat, const char *fname);</pre>

<p>
This function produces the return values for
file-related functions in the standard library
(<a href="#pdf-io.open"><code>io.open</code></a>, <a href="#pdf-os.rename"><code>os.rename</code></a>, <a href="#pdf-file:seek"><code>file:seek</code></a>, etc.).





<hr><h3><a name="luaL_getmetafield"><code>luaL_getmetafield</code></a></h3><p>
<span class="apii">[-0, +(0|1), <em>m</em>]</span>
<pre>int luaL_getmetafield (lua_State *L, int obj, const char *e);</pre>

<p>
Pushes onto the stack the field <code>e</code> from the metatable
of the object at index <code>obj</code> and returns the type of pushed value.
If the object does not have a metatable,
or if the metatable does not have this field,
pushes nothing and returns <code>LUA_TNIL</code>.





<hr><h3><a name="luaL_getmetatable"><code>luaL_getmetatable</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>int luaL_getmetatable (lua_State *L, const char *tname);</pre>

<p>
Pushes onto the stack the metatable associated with name <code>tname</code>
in the registry (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>)
(<b>nil</b> if there is no metatable associated with that name).
Returns the type of the pushed value.





<hr><h3><a name="luaL_getsubtable"><code>luaL_getsubtable</code></a></h3><p>
<span class="apii">[-0, +1, <em>e</em>]</span>
<pre>int luaL_getsubtable (lua_State *L, int idx, const char *fname);</pre>

<p>
Ensures that the value <code>t[fname]</code>,
where <code>t</code> is the value at index <code>idx</code>,
is a table,
and pushes that table onto the stack.
Returns true if it finds a previous table there
and false if it creates a new table.





<hr><h3><a name="luaL_gsub"><code>luaL_gsub</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>const char *luaL_gsub (lua_State *L,
                       const char *s,
                       const char *p,
                       const char *r);</pre>

<p>
Creates a copy of string <code>s</code> by replacing
any occurrence of the string <code>p</code>
with the string <code>r</code>.
Pushes the resulting string on the stack and returns it.





<hr><h3><a name="luaL_len"><code>luaL_len</code></a></h3><p>
<span class="apii">[-0, +0, <em>e</em>]</span>
<pre>lua_Integer luaL_len (lua_State *L, int index);</pre>

<p>
Returns the "length" of the value at the given index
as a number;
it is equivalent to the '<code>#</code>' operator in Lua (see <a href="#3.4.7">&sect;3.4.7</a>).
Raises an error if the result of the operation is not an integer.
(This case only can happen through metamethods.)





<hr><h3><a name="luaL_loadbuffer"><code>luaL_loadbuffer</code></a></h3><p>
<span class="apii">[-0, +1, &ndash;]</span>
<pre>int luaL_loadbuffer (lua_State *L,
                     const char *buff,
                     size_t sz,
                     const char *name);</pre>

<p>
Equivalent to <a href="#luaL_loadbufferx"><code>luaL_loadbufferx</code></a> with <code>mode</code> equal to <code>NULL</code>.





<hr><h3><a name="luaL_loadbufferx"><code>luaL_loadbufferx</code></a></h3><p>
<span class="apii">[-0, +1, &ndash;]</span>
<pre>int luaL_loadbufferx (lua_State *L,
                      const char *buff,
                      size_t sz,
                      const char *name,
                      const char *mode);</pre>

<p>
Loads a buffer as a Lua chunk.
This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the
buffer pointed to by <code>buff</code> with size <code>sz</code>.


<p>
This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>.
<code>name</code> is the chunk name,
used for debug information and error messages.
The string <code>mode</code> works as in function <a href="#lua_load"><code>lua_load</code></a>.





<hr><h3><a name="luaL_loadfile"><code>luaL_loadfile</code></a></h3><p>
<span class="apii">[-0, +1, <em>e</em>]</span>
<pre>int luaL_loadfile (lua_State *L, const char *filename);</pre>

<p>
Equivalent to <a href="#luaL_loadfilex"><code>luaL_loadfilex</code></a> with <code>mode</code> equal to <code>NULL</code>.





<hr><h3><a name="luaL_loadfilex"><code>luaL_loadfilex</code></a></h3><p>
<span class="apii">[-0, +1, <em>e</em>]</span>
<pre>int luaL_loadfilex (lua_State *L, const char *filename,
                                            const char *mode);</pre>

<p>
Loads a file as a Lua chunk.
This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the file
named <code>filename</code>.
If <code>filename</code> is <code>NULL</code>,
then it loads from the standard input.
The first line in the file is ignored if it starts with a <code>#</code>.


<p>
The string <code>mode</code> works as in function <a href="#lua_load"><code>lua_load</code></a>.


<p>
This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>,
but it has an extra error code <a name="pdf-LUA_ERRFILE"><code>LUA_ERRFILE</code></a>
if it cannot open/read the file or the file has a wrong mode.


<p>
As <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk;
it does not run it.





<hr><h3><a name="luaL_loadstring"><code>luaL_loadstring</code></a></h3><p>
<span class="apii">[-0, +1, &ndash;]</span>
<pre>int luaL_loadstring (lua_State *L, const char *s);</pre>

<p>
Loads a string as a Lua chunk.
This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in
the zero-terminated string <code>s</code>.


<p>
This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>.


<p>
Also as <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk;
it does not run it.





<hr><h3><a name="luaL_newlib"><code>luaL_newlib</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>void luaL_newlib (lua_State *L, const luaL_Reg l[]);</pre>

<p>
Creates a new table and registers there
the functions in list <code>l</code>.


<p>
It is implemented as the following macro:

<pre>
     (luaL_newlibtable(L,l), luaL_setfuncs(L,l,0))
</pre><p>
The array <code>l</code> must be the actual array,
not a pointer to it.





<hr><h3><a name="luaL_newlibtable"><code>luaL_newlibtable</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>void luaL_newlibtable (lua_State *L, const luaL_Reg l[]);</pre>

<p>
Creates a new table with a size optimized
to store all entries in the array <code>l</code>
(but does not actually store them).
It is intended to be used in conjunction with <a href="#luaL_setfuncs"><code>luaL_setfuncs</code></a>
(see <a href="#luaL_newlib"><code>luaL_newlib</code></a>).


<p>
It is implemented as a macro.
The array <code>l</code> must be the actual array,
not a pointer to it.





<hr><h3><a name="luaL_newmetatable"><code>luaL_newmetatable</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>int luaL_newmetatable (lua_State *L, const char *tname);</pre>

<p>
If the registry already has the key <code>tname</code>,
returns 0.
Otherwise,
creates a new table to be used as a metatable for userdata,
adds to this new table the pair <code>__name = tname</code>,
adds to the registry the pair <code>[tname] = new table</code>,
and returns 1.
(The entry <code>__name</code> is used by some error-reporting functions.)


<p>
In both cases pushes onto the stack the final value associated
with <code>tname</code> in the registry.





<hr><h3><a name="luaL_newstate"><code>luaL_newstate</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>lua_State *luaL_newstate (void);</pre>

<p>
Creates a new Lua state.
It calls <a href="#lua_newstate"><code>lua_newstate</code></a> with an
allocator based on the standard&nbsp;C <code>realloc</code> function
and then sets a panic function (see <a href="#4.6">&sect;4.6</a>) that prints
an error message to the standard error output in case of fatal
errors.


<p>
Returns the new state,
or <code>NULL</code> if there is a memory allocation error.





<hr><h3><a name="luaL_openlibs"><code>luaL_openlibs</code></a></h3><p>
<span class="apii">[-0, +0, <em>e</em>]</span>
<pre>void luaL_openlibs (lua_State *L);</pre>

<p>
Opens all standard Lua libraries into the given state.





<hr><h3><a name="luaL_optinteger"><code>luaL_optinteger</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>lua_Integer luaL_optinteger (lua_State *L,
                             int arg,
                             lua_Integer d);</pre>

<p>
If the function argument <code>arg</code> is an integer
(or convertible to an integer),
returns this integer.
If this argument is absent or is <b>nil</b>,
returns <code>d</code>.
Otherwise, raises an error.





<hr><h3><a name="luaL_optlstring"><code>luaL_optlstring</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>const char *luaL_optlstring (lua_State *L,
                             int arg,
                             const char *d,
                             size_t *l);</pre>

<p>
If the function argument <code>arg</code> is a string,
returns this string.
If this argument is absent or is <b>nil</b>,
returns <code>d</code>.
Otherwise, raises an error.


<p>
If <code>l</code> is not <code>NULL</code>,
fills the position <code>*l</code> with the result's length.
If the result is <code>NULL</code>
(only possible when returning <code>d</code> and <code>d == NULL</code>),
its length is considered zero.





<hr><h3><a name="luaL_optnumber"><code>luaL_optnumber</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>lua_Number luaL_optnumber (lua_State *L, int arg, lua_Number d);</pre>

<p>
If the function argument <code>arg</code> is a number,
returns this number.
If this argument is absent or is <b>nil</b>,
returns <code>d</code>.
Otherwise, raises an error.





<hr><h3><a name="luaL_optstring"><code>luaL_optstring</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>const char *luaL_optstring (lua_State *L,
                            int arg,
                            const char *d);</pre>

<p>
If the function argument <code>arg</code> is a string,
returns this string.
If this argument is absent or is <b>nil</b>,
returns <code>d</code>.
Otherwise, raises an error.





<hr><h3><a name="luaL_prepbuffer"><code>luaL_prepbuffer</code></a></h3><p>
<span class="apii">[-?, +?, <em>m</em>]</span>
<pre>char *luaL_prepbuffer (luaL_Buffer *B);</pre>

<p>
Equivalent to <a href="#luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a>
with the predefined size <a name="pdf-LUAL_BUFFERSIZE"><code>LUAL_BUFFERSIZE</code></a>.





<hr><h3><a name="luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a></h3><p>
<span class="apii">[-?, +?, <em>m</em>]</span>
<pre>char *luaL_prepbuffsize (luaL_Buffer *B, size_t sz);</pre>

<p>
Returns an address to a space of size <code>sz</code>
where you can copy a string to be added to buffer <code>B</code>
(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
After copying the string into this space you must call
<a href="#luaL_addsize"><code>luaL_addsize</code></a> with the size of the string to actually add
it to the buffer.





<hr><h3><a name="luaL_pushresult"><code>luaL_pushresult</code></a></h3><p>
<span class="apii">[-?, +1, <em>m</em>]</span>
<pre>void luaL_pushresult (luaL_Buffer *B);</pre>

<p>
Finishes the use of buffer <code>B</code> leaving the final string on
the top of the stack.





<hr><h3><a name="luaL_pushresultsize"><code>luaL_pushresultsize</code></a></h3><p>
<span class="apii">[-?, +1, <em>m</em>]</span>
<pre>void luaL_pushresultsize (luaL_Buffer *B, size_t sz);</pre>

<p>
Equivalent to the sequence <a href="#luaL_addsize"><code>luaL_addsize</code></a>, <a href="#luaL_pushresult"><code>luaL_pushresult</code></a>.





<hr><h3><a name="luaL_ref"><code>luaL_ref</code></a></h3><p>
<span class="apii">[-1, +0, <em>m</em>]</span>
<pre>int luaL_ref (lua_State *L, int t);</pre>

<p>
Creates and returns a <em>reference</em>,
in the table at index <code>t</code>,
for the object at the top of the stack (and pops the object).


<p>
A reference is a unique integer key.
As long as you do not manually add integer keys into table <code>t</code>,
<a href="#luaL_ref"><code>luaL_ref</code></a> ensures the uniqueness of the key it returns.
You can retrieve an object referred by reference <code>r</code>
by calling <code>lua_rawgeti(L, t, r)</code>.
Function <a href="#luaL_unref"><code>luaL_unref</code></a> frees a reference and its associated object.


<p>
If the object at the top of the stack is <b>nil</b>,
<a href="#luaL_ref"><code>luaL_ref</code></a> returns the constant <a name="pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>.
The constant <a name="pdf-LUA_NOREF"><code>LUA_NOREF</code></a> is guaranteed to be different
from any reference returned by <a href="#luaL_ref"><code>luaL_ref</code></a>.





<hr><h3><a name="luaL_Reg"><code>luaL_Reg</code></a></h3>
<pre>typedef struct luaL_Reg {
  const char *name;
  lua_CFunction func;
} luaL_Reg;</pre>

<p>
Type for arrays of functions to be registered by
<a href="#luaL_setfuncs"><code>luaL_setfuncs</code></a>.
<code>name</code> is the function name and <code>func</code> is a pointer to
the function.
Any array of <a href="#luaL_Reg"><code>luaL_Reg</code></a> must end with a sentinel entry
in which both <code>name</code> and <code>func</code> are <code>NULL</code>.





<hr><h3><a name="luaL_requiref"><code>luaL_requiref</code></a></h3><p>
<span class="apii">[-0, +1, <em>e</em>]</span>
<pre>void luaL_requiref (lua_State *L, const char *modname,
                    lua_CFunction openf, int glb);</pre>

<p>
If <code>modname</code> is not already present in <a href="#pdf-package.loaded"><code>package.loaded</code></a>,
calls function <code>openf</code> with string <code>modname</code> as an argument
and sets the call result in <code>package.loaded[modname]</code>,
as if that function has been called through <a href="#pdf-require"><code>require</code></a>.


<p>
If <code>glb</code> is true,
also stores the module into global <code>modname</code>.


<p>
Leaves a copy of the module on the stack.





<hr><h3><a name="luaL_setfuncs"><code>luaL_setfuncs</code></a></h3><p>
<span class="apii">[-nup, +0, <em>m</em>]</span>
<pre>void luaL_setfuncs (lua_State *L, const luaL_Reg *l, int nup);</pre>

<p>
Registers all functions in the array <code>l</code>
(see <a href="#luaL_Reg"><code>luaL_Reg</code></a>) into the table on the top of the stack
(below optional upvalues, see next).


<p>
When <code>nup</code> is not zero,
all functions are created sharing <code>nup</code> upvalues,
which must be previously pushed on the stack
on top of the library table.
These values are popped from the stack after the registration.





<hr><h3><a name="luaL_setmetatable"><code>luaL_setmetatable</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>void luaL_setmetatable (lua_State *L, const char *tname);</pre>

<p>
Sets the metatable of the object at the top of the stack
as the metatable associated with name <code>tname</code>
in the registry (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>).





<hr><h3><a name="luaL_Stream"><code>luaL_Stream</code></a></h3>
<pre>typedef struct luaL_Stream {
  FILE *f;
  lua_CFunction closef;
} luaL_Stream;</pre>

<p>
The standard representation for file handles,
which is used by the standard I/O library.


<p>
A file handle is implemented as a full userdata,
with a metatable called <code>LUA_FILEHANDLE</code>
(where <code>LUA_FILEHANDLE</code> is a macro with the actual metatable's name).
The metatable is created by the I/O library
(see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>).


<p>
This userdata must start with the structure <code>luaL_Stream</code>;
it can contain other data after this initial structure.
Field <code>f</code> points to the corresponding C stream
(or it can be <code>NULL</code> to indicate an incompletely created handle).
Field <code>closef</code> points to a Lua function
that will be called to close the stream
when the handle is closed or collected;
this function receives the file handle as its sole argument and
must return either <b>true</b> (in case of success)
or <b>nil</b> plus an error message (in case of error).
Once Lua calls this field,
it changes the field value to <code>NULL</code>
to signal that the handle is closed.





<hr><h3><a name="luaL_testudata"><code>luaL_testudata</code></a></h3><p>
<span class="apii">[-0, +0, <em>m</em>]</span>
<pre>void *luaL_testudata (lua_State *L, int arg, const char *tname);</pre>

<p>
This function works like <a href="#luaL_checkudata"><code>luaL_checkudata</code></a>,
except that, when the test fails,
it returns <code>NULL</code> instead of raising an error.





<hr><h3><a name="luaL_tolstring"><code>luaL_tolstring</code></a></h3><p>
<span class="apii">[-0, +1, <em>e</em>]</span>
<pre>const char *luaL_tolstring (lua_State *L, int idx, size_t *len);</pre>

<p>
Converts any Lua value at the given index to a C&nbsp;string
in a reasonable format.
The resulting string is pushed onto the stack and also
returned by the function.
If <code>len</code> is not <code>NULL</code>,
the function also sets <code>*len</code> with the string length.


<p>
If the value has a metatable with a <code>"__tostring"</code> field,
then <code>luaL_tolstring</code> calls the corresponding metamethod
with the value as argument,
and uses the result of the call as its result.





<hr><h3><a name="luaL_traceback"><code>luaL_traceback</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>void luaL_traceback (lua_State *L, lua_State *L1, const char *msg,
                     int level);</pre>

<p>
Creates and pushes a traceback of the stack <code>L1</code>.
If <code>msg</code> is not <code>NULL</code> it is appended
at the beginning of the traceback.
The <code>level</code> parameter tells at which level
to start the traceback.





<hr><h3><a name="luaL_typename"><code>luaL_typename</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>const char *luaL_typename (lua_State *L, int index);</pre>

<p>
Returns the name of the type of the value at the given index.





<hr><h3><a name="luaL_unref"><code>luaL_unref</code></a></h3><p>
<span class="apii">[-0, +0, &ndash;]</span>
<pre>void luaL_unref (lua_State *L, int t, int ref);</pre>

<p>
Releases reference <code>ref</code> from the table at index <code>t</code>
(see <a href="#luaL_ref"><code>luaL_ref</code></a>).
The entry is removed from the table,
so that the referred object can be collected.
The reference <code>ref</code> is also freed to be used again.


<p>
If <code>ref</code> is <a href="#pdf-LUA_NOREF"><code>LUA_NOREF</code></a> or <a href="#pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>,
<a href="#luaL_unref"><code>luaL_unref</code></a> does nothing.





<hr><h3><a name="luaL_where"><code>luaL_where</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>void luaL_where (lua_State *L, int lvl);</pre>

<p>
Pushes onto the stack a string identifying the current position
of the control at level <code>lvl</code> in the call stack.
Typically this string has the following format:

<pre>
     <em>chunkname</em>:<em>currentline</em>:
</pre><p>
Level&nbsp;0 is the running function,
level&nbsp;1 is the function that called the running function,
etc.


<p>
This function is used to build a prefix for error messages.







<h1>6 &ndash; <a name="6">Standard Libraries</a></h1>

<p>
The standard Lua libraries provide useful functions
that are implemented directly through the C&nbsp;API.
Some of these functions provide essential services to the language
(e.g., <a href="#pdf-type"><code>type</code></a> and <a href="#pdf-getmetatable"><code>getmetatable</code></a>);
others provide access to "outside" services (e.g., I/O);
and others could be implemented in Lua itself,
but are quite useful or have critical performance requirements that
deserve an implementation in C (e.g., <a href="#pdf-table.sort"><code>table.sort</code></a>).


<p>
All libraries are implemented through the official C&nbsp;API
and are provided as separate C&nbsp;modules.
Currently, Lua has the following standard libraries:

<ul>

<li>basic library (<a href="#6.1">&sect;6.1</a>);</li>

<li>coroutine library (<a href="#6.2">&sect;6.2</a>);</li>

<li>package library (<a href="#6.3">&sect;6.3</a>);</li>

<li>string manipulation (<a href="#6.4">&sect;6.4</a>);</li>

<li>basic UTF-8 support (<a href="#6.5">&sect;6.5</a>);</li>

<li>table manipulation (<a href="#6.6">&sect;6.6</a>);</li>

<li>mathematical functions (<a href="#6.7">&sect;6.7</a>) (sin, log, etc.);</li>

<li>input and output (<a href="#6.8">&sect;6.8</a>);</li>

<li>operating system facilities (<a href="#6.9">&sect;6.9</a>);</li>

<li>debug facilities (<a href="#6.10">&sect;6.10</a>).</li>

</ul><p>
Except for the basic and the package libraries,
each library provides all its functions as fields of a global table
or as methods of its objects.


<p>
To have access to these libraries,
the C&nbsp;host program should call the <a href="#luaL_openlibs"><code>luaL_openlibs</code></a> function,
which opens all standard libraries.
Alternatively,
the host program can open them individually by using
<a href="#luaL_requiref"><code>luaL_requiref</code></a> to call
<a name="pdf-luaopen_base"><code>luaopen_base</code></a> (for the basic library),
<a name="pdf-luaopen_package"><code>luaopen_package</code></a> (for the package library),
<a name="pdf-luaopen_coroutine"><code>luaopen_coroutine</code></a> (for the coroutine library),
<a name="pdf-luaopen_string"><code>luaopen_string</code></a> (for the string library),
<a name="pdf-luaopen_utf8"><code>luaopen_utf8</code></a> (for the UTF8 library),
<a name="pdf-luaopen_table"><code>luaopen_table</code></a> (for the table library),
<a name="pdf-luaopen_math"><code>luaopen_math</code></a> (for the mathematical library),
<a name="pdf-luaopen_io"><code>luaopen_io</code></a> (for the I/O library),
<a name="pdf-luaopen_os"><code>luaopen_os</code></a> (for the operating system library),
and <a name="pdf-luaopen_debug"><code>luaopen_debug</code></a> (for the debug library).
These functions are declared in <a name="pdf-lualib.h"><code>lualib.h</code></a>.



<h2>6.1 &ndash; <a name="6.1">Basic Functions</a></h2>

<p>
The basic library provides core functions to Lua.
If you do not include this library in your application,
you should check carefully whether you need to provide
implementations for some of its facilities.


<p>
<hr><h3><a name="pdf-assert"><code>assert (v [, message])</code></a></h3>


<p>
Calls <a href="#pdf-error"><code>error</code></a> if
the value of its argument <code>v</code> is false (i.e., <b>nil</b> or <b>false</b>);
otherwise, returns all its arguments.
In case of error,
<code>message</code> is the error object;
when absent, it defaults to "<code>assertion failed!</code>"




<p>
<hr><h3><a name="pdf-collectgarbage"><code>collectgarbage ([opt [, arg]])</code></a></h3>


<p>
This function is a generic interface to the garbage collector.
It performs different functions according to its first argument, <code>opt</code>:

<ul>

<li><b>"<code>collect</code>": </b>
performs a full garbage-collection cycle.
This is the default option.
</li>

<li><b>"<code>stop</code>": </b>
stops automatic execution of the garbage collector.
The collector will run only when explicitly invoked,
until a call to restart it.
</li>

<li><b>"<code>restart</code>": </b>
restarts automatic execution of the garbage collector.
</li>

<li><b>"<code>count</code>": </b>
returns the total memory in use by Lua in Kbytes.
The value has a fractional part,
so that it multiplied by 1024
gives the exact number of bytes in use by Lua
(except for overflows).
</li>

<li><b>"<code>step</code>": </b>
performs a garbage-collection step.
The step "size" is controlled by <code>arg</code>.
With a zero value,
the collector will perform one basic (indivisible) step.
For non-zero values,
the collector will perform as if that amount of memory
(in KBytes) had been allocated by Lua.
Returns <b>true</b> if the step finished a collection cycle.
</li>

<li><b>"<code>setpause</code>": </b>
sets <code>arg</code> as the new value for the <em>pause</em> of
the collector (see <a href="#2.5">&sect;2.5</a>).
Returns the previous value for <em>pause</em>.
</li>

<li><b>"<code>setstepmul</code>": </b>
sets <code>arg</code> as the new value for the <em>step multiplier</em> of
the collector (see <a href="#2.5">&sect;2.5</a>).
Returns the previous value for <em>step</em>.
</li>

<li><b>"<code>isrunning</code>": </b>
returns a boolean that tells whether the collector is running
(i.e., not stopped).
</li>

</ul>



<p>
<hr><h3><a name="pdf-dofile"><code>dofile ([filename])</code></a></h3>
Opens the named file and executes its contents as a Lua chunk.
When called without arguments,
<code>dofile</code> executes the contents of the standard input (<code>stdin</code>).
Returns all values returned by the chunk.
In case of errors, <code>dofile</code> propagates the error
to its caller (that is, <code>dofile</code> does not run in protected mode).




<p>
<hr><h3><a name="pdf-error"><code>error (message [, level])</code></a></h3>
Terminates the last protected function called
and returns <code>message</code> as the error object.
Function <code>error</code> never returns.


<p>
Usually, <code>error</code> adds some information about the error position
at the beginning of the message, if the message is a string.
The <code>level</code> argument specifies how to get the error position.
With level&nbsp;1 (the default), the error position is where the
<code>error</code> function was called.
Level&nbsp;2 points the error to where the function
that called <code>error</code> was called; and so on.
Passing a level&nbsp;0 avoids the addition of error position information
to the message.




<p>
<hr><h3><a name="pdf-_G"><code>_G</code></a></h3>
A global variable (not a function) that
holds the global environment (see <a href="#2.2">&sect;2.2</a>).
Lua itself does not use this variable;
changing its value does not affect any environment,
nor vice versa.




<p>
<hr><h3><a name="pdf-getmetatable"><code>getmetatable (object)</code></a></h3>


<p>
If <code>object</code> does not have a metatable, returns <b>nil</b>.
Otherwise,
if the object's metatable has a <code>"__metatable"</code> field,
returns the associated value.
Otherwise, returns the metatable of the given object.




<p>
<hr><h3><a name="pdf-ipairs"><code>ipairs (t)</code></a></h3>


<p>
Returns three values (an iterator function, the table <code>t</code>, and 0)
so that the construction

<pre>
     for i,v in ipairs(t) do <em>body</em> end
</pre><p>
will iterate over the key&ndash;value pairs
(<code>1,t[1]</code>), (<code>2,t[2]</code>), ...,
up to the first nil value.




<p>
<hr><h3><a name="pdf-load"><code>load (chunk [, chunkname [, mode [, env]]])</code></a></h3>


<p>
Loads a chunk.


<p>
If <code>chunk</code> is a string, the chunk is this string.
If <code>chunk</code> is a function,
<code>load</code> calls it repeatedly to get the chunk pieces.
Each call to <code>chunk</code> must return a string that concatenates
with previous results.
A return of an empty string, <b>nil</b>, or no value signals the end of the chunk.


<p>
If there are no syntactic errors,
returns the compiled chunk as a function;
otherwise, returns <b>nil</b> plus the error message.


<p>
If the resulting function has upvalues,
the first upvalue is set to the value of <code>env</code>,
if that parameter is given,
or to the value of the global environment.
Other upvalues are initialized with <b>nil</b>.
(When you load a main chunk,
the resulting function will always have exactly one upvalue,
the <code>_ENV</code> variable (see <a href="#2.2">&sect;2.2</a>).
However,
when you load a binary chunk created from a function (see <a href="#pdf-string.dump"><code>string.dump</code></a>),
the resulting function can have an arbitrary number of upvalues.)
All upvalues are fresh, that is,
they are not shared with any other function.


<p>
<code>chunkname</code> is used as the name of the chunk for error messages
and debug information (see <a href="#4.9">&sect;4.9</a>).
When absent,
it defaults to <code>chunk</code>, if <code>chunk</code> is a string,
or to "<code>=(load)</code>" otherwise.


<p>
The string <code>mode</code> controls whether the chunk can be text or binary
(that is, a precompiled chunk).
It may be the string "<code>b</code>" (only binary chunks),
"<code>t</code>" (only text chunks),
or "<code>bt</code>" (both binary and text).
The default is "<code>bt</code>".


<p>
Lua does not check the consistency of binary chunks.
Maliciously crafted binary chunks can crash
the interpreter.




<p>
<hr><h3><a name="pdf-loadfile"><code>loadfile ([filename [, mode [, env]]])</code></a></h3>


<p>
Similar to <a href="#pdf-load"><code>load</code></a>,
but gets the chunk from file <code>filename</code>
or from the standard input,
if no file name is given.




<p>
<hr><h3><a name="pdf-next"><code>next (table [, index])</code></a></h3>


<p>
Allows a program to traverse all fields of a table.
Its first argument is a table and its second argument
is an index in this table.
<code>next</code> returns the next index of the table
and its associated value.
When called with <b>nil</b> as its second argument,
<code>next</code> returns an initial index
and its associated value.
When called with the last index,
or with <b>nil</b> in an empty table,
<code>next</code> returns <b>nil</b>.
If the second argument is absent, then it is interpreted as <b>nil</b>.
In particular,
you can use <code>next(t)</code> to check whether a table is empty.


<p>
The order in which the indices are enumerated is not specified,
<em>even for numeric indices</em>.
(To traverse a table in numerical order,
use a numerical <b>for</b>.)


<p>
The behavior of <code>next</code> is undefined if,
during the traversal,
you assign any value to a non-existent field in the table.
You may however modify existing fields.
In particular, you may clear existing fields.




<p>
<hr><h3><a name="pdf-pairs"><code>pairs (t)</code></a></h3>


<p>
If <code>t</code> has a metamethod <code>__pairs</code>,
calls it with <code>t</code> as argument and returns the first three
results from the call.


<p>
Otherwise,
returns three values: the <a href="#pdf-next"><code>next</code></a> function, the table <code>t</code>, and <b>nil</b>,
so that the construction

<pre>
     for k,v in pairs(t) do <em>body</em> end
</pre><p>
will iterate over all key&ndash;value pairs of table <code>t</code>.


<p>
See function <a href="#pdf-next"><code>next</code></a> for the caveats of modifying
the table during its traversal.




<p>
<hr><h3><a name="pdf-pcall"><code>pcall (f [, arg1, &middot;&middot;&middot;])</code></a></h3>


<p>
Calls function <code>f</code> with
the given arguments in <em>protected mode</em>.
This means that any error inside&nbsp;<code>f</code> is not propagated;
instead, <code>pcall</code> catches the error
and returns a status code.
Its first result is the status code (a boolean),
which is true if the call succeeds without errors.
In such case, <code>pcall</code> also returns all results from the call,
after this first result.
In case of any error, <code>pcall</code> returns <b>false</b> plus the error message.




<p>
<hr><h3><a name="pdf-print"><code>print (&middot;&middot;&middot;)</code></a></h3>
Receives any number of arguments
and prints their values to <code>stdout</code>,
using the <a href="#pdf-tostring"><code>tostring</code></a> function to convert each argument to a string.
<code>print</code> is not intended for formatted output,
but only as a quick way to show a value,
for instance for debugging.
For complete control over the output,
use <a href="#pdf-string.format"><code>string.format</code></a> and <a href="#pdf-io.write"><code>io.write</code></a>.




<p>
<hr><h3><a name="pdf-rawequal"><code>rawequal (v1, v2)</code></a></h3>
Checks whether <code>v1</code> is equal to <code>v2</code>,
without invoking any metamethod.
Returns a boolean.




<p>
<hr><h3><a name="pdf-rawget"><code>rawget (table, index)</code></a></h3>
Gets the real value of <code>table[index]</code>,
without invoking any metamethod.
<code>table</code> must be a table;
<code>index</code> may be any value.




<p>
<hr><h3><a name="pdf-rawlen"><code>rawlen (v)</code></a></h3>
Returns the length of the object <code>v</code>,
which must be a table or a string,
without invoking any metamethod.
Returns an integer.




<p>
<hr><h3><a name="pdf-rawset"><code>rawset (table, index, value)</code></a></h3>
Sets the real value of <code>table[index]</code> to <code>value</code>,
without invoking any metamethod.
<code>table</code> must be a table,
<code>index</code> any value different from <b>nil</b> and NaN,
and <code>value</code> any Lua value.


<p>
This function returns <code>table</code>.




<p>
<hr><h3><a name="pdf-select"><code>select (index, &middot;&middot;&middot;)</code></a></h3>


<p>
If <code>index</code> is a number,
returns all arguments after argument number <code>index</code>;
a negative number indexes from the end (-1 is the last argument).
Otherwise, <code>index</code> must be the string <code>"#"</code>,
and <code>select</code> returns the total number of extra arguments it received.




<p>
<hr><h3><a name="pdf-setmetatable"><code>setmetatable (table, metatable)</code></a></h3>


<p>
Sets the metatable for the given table.
(To change the metatable of other types from Lua code,
you must use the debug library (<a href="#6.10">&sect;6.10</a>).)
If <code>metatable</code> is <b>nil</b>,
removes the metatable of the given table.
If the original metatable has a <code>"__metatable"</code> field,
raises an error.


<p>
This function returns <code>table</code>.




<p>
<hr><h3><a name="pdf-tonumber"><code>tonumber (e [, base])</code></a></h3>


<p>
When called with no <code>base</code>,
<code>tonumber</code> tries to convert its argument to a number.
If the argument is already a number or
a string convertible to a number,
then <code>tonumber</code> returns this number;
otherwise, it returns <b>nil</b>.


<p>
The conversion of strings can result in integers or floats,
according to the lexical conventions of Lua (see <a href="#3.1">&sect;3.1</a>).
(The string may have leading and trailing spaces and a sign.)


<p>
When called with <code>base</code>,
then <code>e</code> must be a string to be interpreted as
an integer numeral in that base.
The base may be any integer between 2 and 36, inclusive.
In bases above&nbsp;10, the letter '<code>A</code>' (in either upper or lower case)
represents&nbsp;10, '<code>B</code>' represents&nbsp;11, and so forth,
with '<code>Z</code>' representing 35.
If the string <code>e</code> is not a valid numeral in the given base,
the function returns <b>nil</b>.




<p>
<hr><h3><a name="pdf-tostring"><code>tostring (v)</code></a></h3>
Receives a value of any type and
converts it to a string in a human-readable format.
(For complete control of how numbers are converted,
use <a href="#pdf-string.format"><code>string.format</code></a>.)


<p>
If the metatable of <code>v</code> has a <code>"__tostring"</code> field,
then <code>tostring</code> calls the corresponding value
with <code>v</code> as argument,
and uses the result of the call as its result.




<p>
<hr><h3><a name="pdf-type"><code>type (v)</code></a></h3>
Returns the type of its only argument, coded as a string.
The possible results of this function are
"<code>nil</code>" (a string, not the value <b>nil</b>),
"<code>number</code>",
"<code>string</code>",
"<code>boolean</code>",
"<code>table</code>",
"<code>function</code>",
"<code>thread</code>",
and "<code>userdata</code>".




<p>
<hr><h3><a name="pdf-_VERSION"><code>_VERSION</code></a></h3>


<p>
A global variable (not a function) that
holds a string containing the running Lua version.
The current value of this variable is "<code>Lua 5.3</code>".




<p>
<hr><h3><a name="pdf-xpcall"><code>xpcall (f, msgh [, arg1, &middot;&middot;&middot;])</code></a></h3>


<p>
This function is similar to <a href="#pdf-pcall"><code>pcall</code></a>,
except that it sets a new message handler <code>msgh</code>.







<h2>6.2 &ndash; <a name="6.2">Coroutine Manipulation</a></h2>

<p>
This library comprises the operations to manipulate coroutines,
which come inside the table <a name="pdf-coroutine"><code>coroutine</code></a>.
See <a href="#2.6">&sect;2.6</a> for a general description of coroutines.


<p>
<hr><h3><a name="pdf-coroutine.create"><code>coroutine.create (f)</code></a></h3>


<p>
Creates a new coroutine, with body <code>f</code>.
<code>f</code> must be a function.
Returns this new coroutine,
an object with type <code>"thread"</code>.




<p>
<hr><h3><a name="pdf-coroutine.isyieldable"><code>coroutine.isyieldable ()</code></a></h3>


<p>
Returns true when the running coroutine can yield.


<p>
A running coroutine is yieldable if it is not the main thread and
it is not inside a non-yieldable C function.




<p>
<hr><h3><a name="pdf-coroutine.resume"><code>coroutine.resume (co [, val1, &middot;&middot;&middot;])</code></a></h3>


<p>
Starts or continues the execution of coroutine <code>co</code>.
The first time you resume a coroutine,
it starts running its body.
The values <code>val1</code>, ... are passed
as the arguments to the body function.
If the coroutine has yielded,
<code>resume</code> restarts it;
the values <code>val1</code>, ... are passed
as the results from the yield.


<p>
If the coroutine runs without any errors,
<code>resume</code> returns <b>true</b> plus any values passed to <code>yield</code>
(when the coroutine yields) or any values returned by the body function
(when the coroutine terminates).
If there is any error,
<code>resume</code> returns <b>false</b> plus the error message.




<p>
<hr><h3><a name="pdf-coroutine.running"><code>coroutine.running ()</code></a></h3>


<p>
Returns the running coroutine plus a boolean,
true when the running coroutine is the main one.




<p>
<hr><h3><a name="pdf-coroutine.status"><code>coroutine.status (co)</code></a></h3>


<p>
Returns the status of coroutine <code>co</code>, as a string:
<code>"running"</code>,
if the coroutine is running (that is, it called <code>status</code>);
<code>"suspended"</code>, if the coroutine is suspended in a call to <code>yield</code>,
or if it has not started running yet;
<code>"normal"</code> if the coroutine is active but not running
(that is, it has resumed another coroutine);
and <code>"dead"</code> if the coroutine has finished its body function,
or if it has stopped with an error.




<p>
<hr><h3><a name="pdf-coroutine.wrap"><code>coroutine.wrap (f)</code></a></h3>


<p>
Creates a new coroutine, with body <code>f</code>.
<code>f</code> must be a function.
Returns a function that resumes the coroutine each time it is called.
Any arguments passed to the function behave as the
extra arguments to <code>resume</code>.
Returns the same values returned by <code>resume</code>,
except the first boolean.
In case of error, propagates the error.




<p>
<hr><h3><a name="pdf-coroutine.yield"><code>coroutine.yield (&middot;&middot;&middot;)</code></a></h3>


<p>
Suspends the execution of the calling coroutine.
Any arguments to <code>yield</code> are passed as extra results to <code>resume</code>.







<h2>6.3 &ndash; <a name="6.3">Modules</a></h2>

<p>
The package library provides basic
facilities for loading modules in Lua.
It exports one function directly in the global environment:
<a href="#pdf-require"><code>require</code></a>.
Everything else is exported in a table <a name="pdf-package"><code>package</code></a>.


<p>
<hr><h3><a name="pdf-require"><code>require (modname)</code></a></h3>


<p>
Loads the given module.
The function starts by looking into the <a href="#pdf-package.loaded"><code>package.loaded</code></a> table
to determine whether <code>modname</code> is already loaded.
If it is, then <code>require</code> returns the value stored
at <code>package.loaded[modname]</code>.
Otherwise, it tries to find a <em>loader</em> for the module.


<p>
To find a loader,
<code>require</code> is guided by the <a href="#pdf-package.searchers"><code>package.searchers</code></a> sequence.
By changing this sequence,
we can change how <code>require</code> looks for a module.
The following explanation is based on the default configuration
for <a href="#pdf-package.searchers"><code>package.searchers</code></a>.


<p>
First <code>require</code> queries <code>package.preload[modname]</code>.
If it has a value,
this value (which must be a function) is the loader.
Otherwise <code>require</code> searches for a Lua loader using the
path stored in <a href="#pdf-package.path"><code>package.path</code></a>.
If that also fails, it searches for a C&nbsp;loader using the
path stored in <a href="#pdf-package.cpath"><code>package.cpath</code></a>.
If that also fails,
it tries an <em>all-in-one</em> loader (see <a href="#pdf-package.searchers"><code>package.searchers</code></a>).


<p>
Once a loader is found,
<code>require</code> calls the loader with two arguments:
<code>modname</code> and an extra value dependent on how it got the loader.
(If the loader came from a file,
this extra value is the file name.)
If the loader returns any non-nil value,
<code>require</code> assigns the returned value to <code>package.loaded[modname]</code>.
If the loader does not return a non-nil value and
has not assigned any value to <code>package.loaded[modname]</code>,
then <code>require</code> assigns <b>true</b> to this entry.
In any case, <code>require</code> returns the
final value of <code>package.loaded[modname]</code>.


<p>
If there is any error loading or running the module,
or if it cannot find any loader for the module,
then <code>require</code> raises an error.




<p>
<hr><h3><a name="pdf-package.config"><code>package.config</code></a></h3>


<p>
A string describing some compile-time configurations for packages.
This string is a sequence of lines:

<ul>

<li>The first line is the directory separator string.
Default is '<code>\</code>' for Windows and '<code>/</code>' for all other systems.</li>

<li>The second line is the character that separates templates in a path.
Default is '<code>;</code>'.</li>

<li>The third line is the string that marks the
substitution points in a template.
Default is '<code>?</code>'.</li>

<li>The fourth line is a string that, in a path in Windows,
is replaced by the executable's directory.
Default is '<code>!</code>'.</li>

<li>The fifth line is a mark to ignore all text after it
when building the <code>luaopen_</code> function name.
Default is '<code>-</code>'.</li>

</ul>



<p>
<hr><h3><a name="pdf-package.cpath"><code>package.cpath</code></a></h3>


<p>
The path used by <a href="#pdf-require"><code>require</code></a> to search for a C&nbsp;loader.


<p>
Lua initializes the C&nbsp;path <a href="#pdf-package.cpath"><code>package.cpath</code></a> in the same way
it initializes the Lua path <a href="#pdf-package.path"><code>package.path</code></a>,
using the environment variable <a name="pdf-LUA_CPATH_5_3"><code>LUA_CPATH_5_3</code></a>
or the environment variable <a name="pdf-LUA_CPATH"><code>LUA_CPATH</code></a>
or a default path defined in <code>luaconf.h</code>.




<p>
<hr><h3><a name="pdf-package.loaded"><code>package.loaded</code></a></h3>


<p>
A table used by <a href="#pdf-require"><code>require</code></a> to control which
modules are already loaded.
When you require a module <code>modname</code> and
<code>package.loaded[modname]</code> is not false,
<a href="#pdf-require"><code>require</code></a> simply returns the value stored there.


<p>
This variable is only a reference to the real table;
assignments to this variable do not change the
table used by <a href="#pdf-require"><code>require</code></a>.




<p>
<hr><h3><a name="pdf-package.loadlib"><code>package.loadlib (libname, funcname)</code></a></h3>


<p>
Dynamically links the host program with the C&nbsp;library <code>libname</code>.


<p>
If <code>funcname</code> is "<code>*</code>",
then it only links with the library,
making the symbols exported by the library
available to other dynamically linked libraries.
Otherwise,
it looks for a function <code>funcname</code> inside the library
and returns this function as a C&nbsp;function.
So, <code>funcname</code> must follow the <a href="#lua_CFunction"><code>lua_CFunction</code></a> prototype
(see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).


<p>
This is a low-level function.
It completely bypasses the package and module system.
Unlike <a href="#pdf-require"><code>require</code></a>,
it does not perform any path searching and
does not automatically adds extensions.
<code>libname</code> must be the complete file name of the C&nbsp;library,
including if necessary a path and an extension.
<code>funcname</code> must be the exact name exported by the C&nbsp;library
(which may depend on the C&nbsp;compiler and linker used).


<p>
This function is not supported by Standard&nbsp;C.
As such, it is only available on some platforms
(Windows, Linux, Mac OS X, Solaris, BSD,
plus other Unix systems that support the <code>dlfcn</code> standard).




<p>
<hr><h3><a name="pdf-package.path"><code>package.path</code></a></h3>


<p>
The path used by <a href="#pdf-require"><code>require</code></a> to search for a Lua loader.


<p>
At start-up, Lua initializes this variable with
the value of the environment variable <a name="pdf-LUA_PATH_5_3"><code>LUA_PATH_5_3</code></a> or
the environment variable <a name="pdf-LUA_PATH"><code>LUA_PATH</code></a> or
with a default path defined in <code>luaconf.h</code>,
if those environment variables are not defined.
Any "<code>;;</code>" in the value of the environment variable
is replaced by the default path.




<p>
<hr><h3><a name="pdf-package.preload"><code>package.preload</code></a></h3>


<p>
A table to store loaders for specific modules
(see <a href="#pdf-require"><code>require</code></a>).


<p>
This variable is only a reference to the real table;
assignments to this variable do not change the
table used by <a href="#pdf-require"><code>require</code></a>.




<p>
<hr><h3><a name="pdf-package.searchers"><code>package.searchers</code></a></h3>


<p>
A table used by <a href="#pdf-require"><code>require</code></a> to control how to load modules.


<p>
Each entry in this table is a <em>searcher function</em>.
When looking for a module,
<a href="#pdf-require"><code>require</code></a> calls each of these searchers in ascending order,
with the module name (the argument given to <a href="#pdf-require"><code>require</code></a>) as its
sole parameter.
The function can return another function (the module <em>loader</em>)
plus an extra value that will be passed to that loader,
or a string explaining why it did not find that module
(or <b>nil</b> if it has nothing to say).


<p>
Lua initializes this table with four searcher functions.


<p>
The first searcher simply looks for a loader in the
<a href="#pdf-package.preload"><code>package.preload</code></a> table.


<p>
The second searcher looks for a loader as a Lua library,
using the path stored at <a href="#pdf-package.path"><code>package.path</code></a>.
The search is done as described in function <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>.


<p>
The third searcher looks for a loader as a C&nbsp;library,
using the path given by the variable <a href="#pdf-package.cpath"><code>package.cpath</code></a>.
Again,
the search is done as described in function <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>.
For instance,
if the C&nbsp;path is the string

<pre>
     "./?.so;./?.dll;/usr/local/?/init.so"
</pre><p>
the searcher for module <code>foo</code>
will try to open the files <code>./foo.so</code>, <code>./foo.dll</code>,
and <code>/usr/local/foo/init.so</code>, in that order.
Once it finds a C&nbsp;library,
this searcher first uses a dynamic link facility to link the
application with the library.
Then it tries to find a C&nbsp;function inside the library to
be used as the loader.
The name of this C&nbsp;function is the string "<code>luaopen_</code>"
concatenated with a copy of the module name where each dot
is replaced by an underscore.
Moreover, if the module name has a hyphen,
its suffix after (and including) the first hyphen is removed.
For instance, if the module name is <code>a.b.c-v2.1</code>,
the function name will be <code>luaopen_a_b_c</code>.


<p>
The fourth searcher tries an <em>all-in-one loader</em>.
It searches the C&nbsp;path for a library for
the root name of the given module.
For instance, when requiring <code>a.b.c</code>,
it will search for a C&nbsp;library for <code>a</code>.
If found, it looks into it for an open function for
the submodule;
in our example, that would be <code>luaopen_a_b_c</code>.
With this facility, a package can pack several C&nbsp;submodules
into one single library,
with each submodule keeping its original open function.


<p>
All searchers except the first one (preload) return as the extra value
the file name where the module was found,
as returned by <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>.
The first searcher returns no extra value.




<p>
<hr><h3><a name="pdf-package.searchpath"><code>package.searchpath (name, path [, sep [, rep]])</code></a></h3>


<p>
Searches for the given <code>name</code> in the given <code>path</code>.


<p>
A path is a string containing a sequence of
<em>templates</em> separated by semicolons.
For each template,
the function replaces each interrogation mark (if any)
in the template with a copy of <code>name</code>
wherein all occurrences of <code>sep</code>
(a dot, by default)
were replaced by <code>rep</code>
(the system's directory separator, by default),
and then tries to open the resulting file name.


<p>
For instance, if the path is the string

<pre>
     "./?.lua;./?.lc;/usr/local/?/init.lua"
</pre><p>
the search for the name <code>foo.a</code>
will try to open the files
<code>./foo/a.lua</code>, <code>./foo/a.lc</code>, and
<code>/usr/local/foo/a/init.lua</code>, in that order.


<p>
Returns the resulting name of the first file that it can
open in read mode (after closing the file),
or <b>nil</b> plus an error message if none succeeds.
(This error message lists all file names it tried to open.)







<h2>6.4 &ndash; <a name="6.4">String Manipulation</a></h2>

<p>
This library provides generic functions for string manipulation,
such as finding and extracting substrings, and pattern matching.
When indexing a string in Lua, the first character is at position&nbsp;1
(not at&nbsp;0, as in C).
Indices are allowed to be negative and are interpreted as indexing backwards,
from the end of the string.
Thus, the last character is at position -1, and so on.


<p>
The string library provides all its functions inside the table
<a name="pdf-string"><code>string</code></a>.
It also sets a metatable for strings
where the <code>__index</code> field points to the <code>string</code> table.
Therefore, you can use the string functions in object-oriented style.
For instance, <code>string.byte(s,i)</code>
can be written as <code>s:byte(i)</code>.


<p>
The string library assumes one-byte character encodings.


<p>
<hr><h3><a name="pdf-string.byte"><code>string.byte (s [, i [, j]])</code></a></h3>
Returns the internal numeric codes of the characters <code>s[i]</code>,
<code>s[i+1]</code>, ..., <code>s[j]</code>.
The default value for <code>i</code> is&nbsp;1;
the default value for <code>j</code> is&nbsp;<code>i</code>.
These indices are corrected
following the same rules of function <a href="#pdf-string.sub"><code>string.sub</code></a>.


<p>
Numeric codes are not necessarily portable across platforms.




<p>
<hr><h3><a name="pdf-string.char"><code>string.char (&middot;&middot;&middot;)</code></a></h3>
Receives zero or more integers.
Returns a string with length equal to the number of arguments,
in which each character has the internal numeric code equal
to its corresponding argument.


<p>
Numeric codes are not necessarily portable across platforms.




<p>
<hr><h3><a name="pdf-string.dump"><code>string.dump (function [, strip])</code></a></h3>


<p>
Returns a string containing a binary representation
(a <em>binary chunk</em>)
of the given function,
so that a later <a href="#pdf-load"><code>load</code></a> on this string returns
a copy of the function (but with new upvalues).
If <code>strip</code> is a true value,
the binary representation may not include all debug information
about the function,
to save space.


<p>
Functions with upvalues have only their number of upvalues saved.
When (re)loaded,
those upvalues receive fresh instances containing <b>nil</b>.
(You can use the debug library to serialize
and reload the upvalues of a function
in a way adequate to your needs.)




<p>
<hr><h3><a name="pdf-string.find"><code>string.find (s, pattern [, init [, plain]])</code></a></h3>


<p>
Looks for the first match of
<code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>) in the string <code>s</code>.
If it finds a match, then <code>find</code> returns the indices of&nbsp;<code>s</code>
where this occurrence starts and ends;
otherwise, it returns <b>nil</b>.
A third, optional numeric argument <code>init</code> specifies
where to start the search;
its default value is&nbsp;1 and can be negative.
A value of <b>true</b> as a fourth, optional argument <code>plain</code>
turns off the pattern matching facilities,
so the function does a plain "find substring" operation,
with no characters in <code>pattern</code> being considered magic.
Note that if <code>plain</code> is given, then <code>init</code> must be given as well.


<p>
If the pattern has captures,
then in a successful match
the captured values are also returned,
after the two indices.




<p>
<hr><h3><a name="pdf-string.format"><code>string.format (formatstring, &middot;&middot;&middot;)</code></a></h3>


<p>
Returns a formatted version of its variable number of arguments
following the description given in its first argument (which must be a string).
The format string follows the same rules as the ISO&nbsp;C function <code>sprintf</code>.
The only differences are that the options/modifiers
<code>*</code>, <code>h</code>, <code>L</code>, <code>l</code>, <code>n</code>,
and <code>p</code> are not supported
and that there is an extra option, <code>q</code>.
The <code>q</code> option formats a string between double quotes,
using escape sequences when necessary to ensure that
it can safely be read back by the Lua interpreter.
For instance, the call

<pre>
     string.format('%q', 'a string with "quotes" and \n new line')
</pre><p>
may produce the string:

<pre>
     "a string with \"quotes\" and \
      new line"
</pre>

<p>
Options
<code>A</code>, <code>a</code>, <code>E</code>, <code>e</code>, <code>f</code>,
<code>G</code>, and <code>g</code> all expect a number as argument.
Options <code>c</code>, <code>d</code>,
<code>i</code>, <code>o</code>, <code>u</code>, <code>X</code>, and <code>x</code>
expect an integer.
Option <code>q</code> expects a string.
Option <code>s</code> expects a string;
if its argument is not a string,
it is converted to one following the same rules of <a href="#pdf-tostring"><code>tostring</code></a>.
If the option has any modifier (flags, width, length),
the string argument should not contain embedded zeros.


<p>
When Lua is compiled with a non-C99 compiler,
options <code>A</code> and <code>a</code> (hexadecimal floats)
do not support any modifier (flags, width, length).




<p>
<hr><h3><a name="pdf-string.gmatch"><code>string.gmatch (s, pattern)</code></a></h3>
Returns an iterator function that,
each time it is called,
returns the next captures from <code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>)
over the string <code>s</code>.
If <code>pattern</code> specifies no captures,
then the whole match is produced in each call.


<p>
As an example, the following loop
will iterate over all the words from string <code>s</code>,
printing one per line:

<pre>
     s = "hello world from Lua"
     for w in string.gmatch(s, "%a+") do
       print(w)
     end
</pre><p>
The next example collects all pairs <code>key=value</code> from the
given string into a table:

<pre>
     t = {}
     s = "from=world, to=Lua"
     for k, v in string.gmatch(s, "(%w+)=(%w+)") do
       t[k] = v
     end
</pre>

<p>
For this function, a caret '<code>^</code>' at the start of a pattern does not
work as an anchor, as this would prevent the iteration.




<p>
<hr><h3><a name="pdf-string.gsub"><code>string.gsub (s, pattern, repl [, n])</code></a></h3>
Returns a copy of <code>s</code>
in which all (or the first <code>n</code>, if given)
occurrences of the <code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>) have been
replaced by a replacement string specified by <code>repl</code>,
which can be a string, a table, or a function.
<code>gsub</code> also returns, as its second value,
the total number of matches that occurred.
The name <code>gsub</code> comes from <em>Global SUBstitution</em>.


<p>
If <code>repl</code> is a string, then its value is used for replacement.
The character&nbsp;<code>%</code> works as an escape character:
any sequence in <code>repl</code> of the form <code>%<em>d</em></code>,
with <em>d</em> between 1 and 9,
stands for the value of the <em>d</em>-th captured substring.
The sequence <code>%0</code> stands for the whole match.
The sequence <code>%%</code> stands for a single&nbsp;<code>%</code>.


<p>
If <code>repl</code> is a table, then the table is queried for every match,
using the first capture as the key.


<p>
If <code>repl</code> is a function, then this function is called every time a
match occurs, with all captured substrings passed as arguments,
in order.


<p>
In any case,
if the pattern specifies no captures,
then it behaves as if the whole pattern was inside a capture.


<p>
If the value returned by the table query or by the function call
is a string or a number,
then it is used as the replacement string;
otherwise, if it is <b>false</b> or <b>nil</b>,
then there is no replacement
(that is, the original match is kept in the string).


<p>
Here are some examples:

<pre>
     x = string.gsub("hello world", "(%w+)", "%1 %1")
     --&gt; x="hello hello world world"
     
     x = string.gsub("hello world", "%w+", "%0 %0", 1)
     --&gt; x="hello hello world"
     
     x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1")
     --&gt; x="world hello Lua from"
     
     x = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv)
     --&gt; x="home = /home/roberto, user = roberto"
     
     x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s)
           return load(s)()
         end)
     --&gt; x="4+5 = 9"
     
     local t = {name="lua", version="5.3"}
     x = string.gsub("$name-$version.tar.gz", "%$(%w+)", t)
     --&gt; x="lua-5.3.tar.gz"
</pre>



<p>
<hr><h3><a name="pdf-string.len"><code>string.len (s)</code></a></h3>
Receives a string and returns its length.
The empty string <code>""</code> has length 0.
Embedded zeros are counted,
so <code>"a\000bc\000"</code> has length 5.




<p>
<hr><h3><a name="pdf-string.lower"><code>string.lower (s)</code></a></h3>
Receives a string and returns a copy of this string with all
uppercase letters changed to lowercase.
All other characters are left unchanged.
The definition of what an uppercase letter is depends on the current locale.




<p>
<hr><h3><a name="pdf-string.match"><code>string.match (s, pattern [, init])</code></a></h3>
Looks for the first <em>match</em> of
<code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>) in the string <code>s</code>.
If it finds one, then <code>match</code> returns
the captures from the pattern;
otherwise it returns <b>nil</b>.
If <code>pattern</code> specifies no captures,
then the whole match is returned.
A third, optional numeric argument <code>init</code> specifies
where to start the search;
its default value is&nbsp;1 and can be negative.




<p>
<hr><h3><a name="pdf-string.pack"><code>string.pack (fmt, v1, v2, &middot;&middot;&middot;)</code></a></h3>


<p>
Returns a binary string containing the values <code>v1</code>, <code>v2</code>, etc.
packed (that is, serialized in binary form)
according to the format string <code>fmt</code> (see <a href="#6.4.2">&sect;6.4.2</a>). 




<p>
<hr><h3><a name="pdf-string.packsize"><code>string.packsize (fmt)</code></a></h3>


<p>
Returns the size of a string resulting from <a href="#pdf-string.pack"><code>string.pack</code></a>
with the given format.
The format string cannot have the variable-length options
'<code>s</code>' or '<code>z</code>' (see <a href="#6.4.2">&sect;6.4.2</a>).




<p>
<hr><h3><a name="pdf-string.rep"><code>string.rep (s, n [, sep])</code></a></h3>
Returns a string that is the concatenation of <code>n</code> copies of
the string <code>s</code> separated by the string <code>sep</code>.
The default value for <code>sep</code> is the empty string
(that is, no separator).
Returns the empty string if <code>n</code> is not positive.


<p>
(Note that it is very easy to exhaust the memory of your machine
with a single call to this function.)




<p>
<hr><h3><a name="pdf-string.reverse"><code>string.reverse (s)</code></a></h3>
Returns a string that is the string <code>s</code> reversed.




<p>
<hr><h3><a name="pdf-string.sub"><code>string.sub (s, i [, j])</code></a></h3>
Returns the substring of <code>s</code> that
starts at <code>i</code>  and continues until <code>j</code>;
<code>i</code> and <code>j</code> can be negative.
If <code>j</code> is absent, then it is assumed to be equal to -1
(which is the same as the string length).
In particular,
the call <code>string.sub(s,1,j)</code> returns a prefix of <code>s</code>
with length <code>j</code>,
and <code>string.sub(s, -i)</code> returns a suffix of <code>s</code>
with length <code>i</code>.


<p>
If, after the translation of negative indices,
<code>i</code> is less than 1,
it is corrected to 1.
If <code>j</code> is greater than the string length,
it is corrected to that length.
If, after these corrections,
<code>i</code> is greater than <code>j</code>,
the function returns the empty string.




<p>
<hr><h3><a name="pdf-string.unpack"><code>string.unpack (fmt, s [, pos])</code></a></h3>


<p>
Returns the values packed in string <code>s</code> (see <a href="#pdf-string.pack"><code>string.pack</code></a>)
according to the format string <code>fmt</code> (see <a href="#6.4.2">&sect;6.4.2</a>).
An optional <code>pos</code> marks where
to start reading in <code>s</code> (default is 1).
After the read values,
this function also returns the index of the first unread byte in <code>s</code>.




<p>
<hr><h3><a name="pdf-string.upper"><code>string.upper (s)</code></a></h3>
Receives a string and returns a copy of this string with all
lowercase letters changed to uppercase.
All other characters are left unchanged.
The definition of what a lowercase letter is depends on the current locale.





<h3>6.4.1 &ndash; <a name="6.4.1">Patterns</a></h3>

<p>
Patterns in Lua are described by regular strings,
which are interpreted as patterns by the pattern-matching functions
<a href="#pdf-string.find"><code>string.find</code></a>,
<a href="#pdf-string.gmatch"><code>string.gmatch</code></a>,
<a href="#pdf-string.gsub"><code>string.gsub</code></a>,
and <a href="#pdf-string.match"><code>string.match</code></a>.
This section describes the syntax and the meaning
(that is, what they match) of these strings.



<h4>Character Class:</h4><p>
A <em>character class</em> is used to represent a set of characters.
The following combinations are allowed in describing a character class:

<ul>

<li><b><em>x</em>: </b>
(where <em>x</em> is not one of the <em>magic characters</em>
<code>^$()%.[]*+-?</code>)
represents the character <em>x</em> itself.
</li>

<li><b><code>.</code>: </b> (a dot) represents all characters.</li>

<li><b><code>%a</code>: </b> represents all letters.</li>

<li><b><code>%c</code>: </b> represents all control characters.</li>

<li><b><code>%d</code>: </b> represents all digits.</li>

<li><b><code>%g</code>: </b> represents all printable characters except space.</li>

<li><b><code>%l</code>: </b> represents all lowercase letters.</li>

<li><b><code>%p</code>: </b> represents all punctuation characters.</li>

<li><b><code>%s</code>: </b> represents all space characters.</li>

<li><b><code>%u</code>: </b> represents all uppercase letters.</li>

<li><b><code>%w</code>: </b> represents all alphanumeric characters.</li>

<li><b><code>%x</code>: </b> represents all hexadecimal digits.</li>

<li><b><code>%<em>x</em></code>: </b> (where <em>x</em> is any non-alphanumeric character)
represents the character <em>x</em>.
This is the standard way to escape the magic characters.
Any non-alphanumeric character
(including all punctuation characters, even the non-magical)
can be preceded by a '<code>%</code>'
when used to represent itself in a pattern.
</li>

<li><b><code>[<em>set</em>]</code>: </b>
represents the class which is the union of all
characters in <em>set</em>.
A range of characters can be specified by
separating the end characters of the range,
in ascending order, with a '<code>-</code>'.
All classes <code>%</code><em>x</em> described above can also be used as
components in <em>set</em>.
All other characters in <em>set</em> represent themselves.
For example, <code>[%w_]</code> (or <code>[_%w]</code>)
represents all alphanumeric characters plus the underscore,
<code>[0-7]</code> represents the octal digits,
and <code>[0-7%l%-]</code> represents the octal digits plus
the lowercase letters plus the '<code>-</code>' character.


<p>
The interaction between ranges and classes is not defined.
Therefore, patterns like <code>[%a-z]</code> or <code>[a-%%]</code>
have no meaning.
</li>

<li><b><code>[^<em>set</em>]</code>: </b>
represents the complement of <em>set</em>,
where <em>set</em> is interpreted as above.
</li>

</ul><p>
For all classes represented by single letters (<code>%a</code>, <code>%c</code>, etc.),
the corresponding uppercase letter represents the complement of the class.
For instance, <code>%S</code> represents all non-space characters.


<p>
The definitions of letter, space, and other character groups
depend on the current locale.
In particular, the class <code>[a-z]</code> may not be equivalent to <code>%l</code>.





<h4>Pattern Item:</h4><p>
A <em>pattern item</em> can be

<ul>

<li>
a single character class,
which matches any single character in the class;
</li>

<li>
a single character class followed by '<code>*</code>',
which matches zero or more repetitions of characters in the class.
These repetition items will always match the longest possible sequence;
</li>

<li>
a single character class followed by '<code>+</code>',
which matches one or more repetitions of characters in the class.
These repetition items will always match the longest possible sequence;
</li>

<li>
a single character class followed by '<code>-</code>',
which also matches zero or more repetitions of characters in the class.
Unlike '<code>*</code>',
these repetition items will always match the shortest possible sequence;
</li>

<li>
a single character class followed by '<code>?</code>',
which matches zero or one occurrence of a character in the class.
It always matches one occurrence if possible;
</li>

<li>
<code>%<em>n</em></code>, for <em>n</em> between 1 and 9;
such item matches a substring equal to the <em>n</em>-th captured string
(see below);
</li>

<li>
<code>%b<em>xy</em></code>, where <em>x</em> and <em>y</em> are two distinct characters;
such item matches strings that start with&nbsp;<em>x</em>, end with&nbsp;<em>y</em>,
and where the <em>x</em> and <em>y</em> are <em>balanced</em>.
This means that, if one reads the string from left to right,
counting <em>+1</em> for an <em>x</em> and <em>-1</em> for a <em>y</em>,
the ending <em>y</em> is the first <em>y</em> where the count reaches 0.
For instance, the item <code>%b()</code> matches expressions with
balanced parentheses.
</li>

<li>
<code>%f[<em>set</em>]</code>, a <em>frontier pattern</em>;
such item matches an empty string at any position such that
the next character belongs to <em>set</em>
and the previous character does not belong to <em>set</em>.
The set <em>set</em> is interpreted as previously described.
The beginning and the end of the subject are handled as if
they were the character '<code>\0</code>'.
</li>

</ul>




<h4>Pattern:</h4><p>
A <em>pattern</em> is a sequence of pattern items.
A caret '<code>^</code>' at the beginning of a pattern anchors the match at the
beginning of the subject string.
A '<code>$</code>' at the end of a pattern anchors the match at the
end of the subject string.
At other positions,
'<code>^</code>' and '<code>$</code>' have no special meaning and represent themselves.





<h4>Captures:</h4><p>
A pattern can contain sub-patterns enclosed in parentheses;
they describe <em>captures</em>.
When a match succeeds, the substrings of the subject string
that match captures are stored (<em>captured</em>) for future use.
Captures are numbered according to their left parentheses.
For instance, in the pattern <code>"(a*(.)%w(%s*))"</code>,
the part of the string matching <code>"a*(.)%w(%s*)"</code> is
stored as the first capture (and therefore has number&nbsp;1);
the character matching "<code>.</code>" is captured with number&nbsp;2,
and the part matching "<code>%s*</code>" has number&nbsp;3.


<p>
As a special case, the empty capture <code>()</code> captures
the current string position (a number).
For instance, if we apply the pattern <code>"()aa()"</code> on the
string <code>"flaaap"</code>, there will be two captures: 3&nbsp;and&nbsp;5.







<h3>6.4.2 &ndash; <a name="6.4.2">Format Strings for Pack and Unpack</a></h3>

<p>
The first argument to <a href="#pdf-string.pack"><code>string.pack</code></a>,
<a href="#pdf-string.packsize"><code>string.packsize</code></a>, and <a href="#pdf-string.unpack"><code>string.unpack</code></a>
is a format string,
which describes the layout of the structure being created or read.


<p>
A format string is a sequence of conversion options.
The conversion options are as follows:

<ul>
<li><b><code>&lt;</code>: </b>sets little endian</li>
<li><b><code>&gt;</code>: </b>sets big endian</li>
<li><b><code>=</code>: </b>sets native endian</li>
<li><b><code>![<em>n</em>]</code>: </b>sets maximum alignment to <code>n</code>
(default is native alignment)</li>
<li><b><code>b</code>: </b>a signed byte (<code>char</code>)</li>
<li><b><code>B</code>: </b>an unsigned byte (<code>char</code>)</li>
<li><b><code>h</code>: </b>a signed <code>short</code> (native size)</li>
<li><b><code>H</code>: </b>an unsigned <code>short</code> (native size)</li>
<li><b><code>l</code>: </b>a signed <code>long</code> (native size)</li>
<li><b><code>L</code>: </b>an unsigned <code>long</code> (native size)</li>
<li><b><code>j</code>: </b>a <code>lua_Integer</code></li>
<li><b><code>J</code>: </b>a <code>lua_Unsigned</code></li>
<li><b><code>T</code>: </b>a <code>size_t</code> (native size)</li>
<li><b><code>i[<em>n</em>]</code>: </b>a signed <code>int</code> with <code>n</code> bytes
(default is native size)</li>
<li><b><code>I[<em>n</em>]</code>: </b>an unsigned <code>int</code> with <code>n</code> bytes
(default is native size)</li>
<li><b><code>f</code>: </b>a <code>float</code> (native size)</li>
<li><b><code>d</code>: </b>a <code>double</code> (native size)</li>
<li><b><code>n</code>: </b>a <code>lua_Number</code></li>
<li><b><code>c<em>n</em></code>: </b>a fixed-sized string with <code>n</code> bytes</li>
<li><b><code>z</code>: </b>a zero-terminated string</li>
<li><b><code>s[<em>n</em>]</code>: </b>a string preceded by its length
coded as an unsigned integer with <code>n</code> bytes
(default is a <code>size_t</code>)</li>
<li><b><code>x</code>: </b>one byte of padding</li>
<li><b><code>X<em>op</em></code>: </b>an empty item that aligns
according to option <code>op</code>
(which is otherwise ignored)</li>
<li><b>'<code> </code>': </b>(empty space) ignored</li>
</ul><p>
(A "<code>[<em>n</em>]</code>" means an optional integral numeral.)
Except for padding, spaces, and configurations
(options "<code>xX &lt;=&gt;!</code>"),
each option corresponds to an argument (in <a href="#pdf-string.pack"><code>string.pack</code></a>)
or a result (in <a href="#pdf-string.unpack"><code>string.unpack</code></a>).


<p>
For options "<code>!<em>n</em></code>", "<code>s<em>n</em></code>", "<code>i<em>n</em></code>", and "<code>I<em>n</em></code>",
<code>n</code> can be any integer between 1 and 16.
All integral options check overflows;
<a href="#pdf-string.pack"><code>string.pack</code></a> checks whether the given value fits in the given size;
<a href="#pdf-string.unpack"><code>string.unpack</code></a> checks whether the read value fits in a Lua integer.


<p>
Any format string starts as if prefixed by "<code>!1=</code>",
that is,
with maximum alignment of 1 (no alignment)
and native endianness.


<p>
Alignment works as follows:
For each option,
the format gets extra padding until the data starts
at an offset that is a multiple of the minimum between the
option size and the maximum alignment;
this minimum must be a power of 2.
Options "<code>c</code>" and "<code>z</code>" are not aligned;
option "<code>s</code>" follows the alignment of its starting integer.


<p>
All padding is filled with zeros by <a href="#pdf-string.pack"><code>string.pack</code></a>
(and ignored by <a href="#pdf-string.unpack"><code>string.unpack</code></a>).







<h2>6.5 &ndash; <a name="6.5">UTF-8 Support</a></h2>

<p>
This library provides basic support for UTF-8 encoding.
It provides all its functions inside the table <a name="pdf-utf8"><code>utf8</code></a>.
This library does not provide any support for Unicode other
than the handling of the encoding.
Any operation that needs the meaning of a character,
such as character classification, is outside its scope.


<p>
Unless stated otherwise,
all functions that expect a byte position as a parameter
assume that the given position is either the start of a byte sequence
or one plus the length of the subject string.
As in the string library,
negative indices count from the end of the string.


<p>
<hr><h3><a name="pdf-utf8.char"><code>utf8.char (&middot;&middot;&middot;)</code></a></h3>
Receives zero or more integers,
converts each one to its corresponding UTF-8 byte sequence
and returns a string with the concatenation of all these sequences.




<p>
<hr><h3><a name="pdf-utf8.charpattern"><code>utf8.charpattern</code></a></h3>
The pattern (a string, not a function) "<code>[\0-\x7F\xC2-\xF4][\x80-\xBF]*</code>"
(see <a href="#6.4.1">&sect;6.4.1</a>),
which matches exactly one UTF-8 byte sequence,
assuming that the subject is a valid UTF-8 string.




<p>
<hr><h3><a name="pdf-utf8.codes"><code>utf8.codes (s)</code></a></h3>


<p>
Returns values so that the construction

<pre>
     for p, c in utf8.codes(s) do <em>body</em> end
</pre><p>
will iterate over all characters in string <code>s</code>,
with <code>p</code> being the position (in bytes) and <code>c</code> the code point
of each character.
It raises an error if it meets any invalid byte sequence.




<p>
<hr><h3><a name="pdf-utf8.codepoint"><code>utf8.codepoint (s [, i [, j]])</code></a></h3>
Returns the codepoints (as integers) from all characters in <code>s</code>
that start between byte position <code>i</code> and <code>j</code> (both included).
The default for <code>i</code> is 1 and for <code>j</code> is <code>i</code>.
It raises an error if it meets any invalid byte sequence.




<p>
<hr><h3><a name="pdf-utf8.len"><code>utf8.len (s [, i [, j]])</code></a></h3>
Returns the number of UTF-8 characters in string <code>s</code>
that start between positions <code>i</code> and <code>j</code> (both inclusive).
The default for <code>i</code> is 1 and for <code>j</code> is -1.
If it finds any invalid byte sequence,
returns a false value plus the position of the first invalid byte. 




<p>
<hr><h3><a name="pdf-utf8.offset"><code>utf8.offset (s, n [, i])</code></a></h3>
Returns the position (in bytes) where the encoding of the
<code>n</code>-th character of <code>s</code>
(counting from position <code>i</code>) starts.
A negative <code>n</code> gets characters before position <code>i</code>.
The default for <code>i</code> is 1 when <code>n</code> is non-negative
and <code>#s + 1</code> otherwise,
so that <code>utf8.offset(s, -n)</code> gets the offset of the
<code>n</code>-th character from the end of the string.
If the specified character is neither in the subject
nor right after its end,
the function returns <b>nil</b>.


<p>
As a special case,
when <code>n</code> is 0 the function returns the start of the encoding
of the character that contains the <code>i</code>-th byte of <code>s</code>.


<p>
This function assumes that <code>s</code> is a valid UTF-8 string.







<h2>6.6 &ndash; <a name="6.6">Table Manipulation</a></h2>

<p>
This library provides generic functions for table manipulation.
It provides all its functions inside the table <a name="pdf-table"><code>table</code></a>.


<p>
Remember that, whenever an operation needs the length of a table,
the table must be a proper sequence
or have a <code>__len</code> metamethod (see <a href="#3.4.7">&sect;3.4.7</a>).
All functions ignore non-numeric keys
in the tables given as arguments.


<p>
<hr><h3><a name="pdf-table.concat"><code>table.concat (list [, sep [, i [, j]]])</code></a></h3>


<p>
Given a list where all elements are strings or numbers,
returns the string <code>list[i]..sep..list[i+1] &middot;&middot;&middot; sep..list[j]</code>.
The default value for <code>sep</code> is the empty string,
the default for <code>i</code> is 1,
and the default for <code>j</code> is <code>#list</code>.
If <code>i</code> is greater than <code>j</code>, returns the empty string.




<p>
<hr><h3><a name="pdf-table.insert"><code>table.insert (list, [pos,] value)</code></a></h3>


<p>
Inserts element <code>value</code> at position <code>pos</code> in <code>list</code>,
shifting up the elements
<code>list[pos], list[pos+1], &middot;&middot;&middot;, list[#list]</code>.
The default value for <code>pos</code> is <code>#list+1</code>,
so that a call <code>table.insert(t,x)</code> inserts <code>x</code> at the end
of list <code>t</code>.




<p>
<hr><h3><a name="pdf-table.move"><code>table.move (a1, f, e, t [,a2])</code></a></h3>


<p>
Moves elements from table <code>a1</code> to table <code>a2</code>.
This function performs the equivalent to the following
multiple assignment:
<code>a2[t],&middot;&middot;&middot; = a1[f],&middot;&middot;&middot;,a1[e]</code>.
The default for <code>a2</code> is <code>a1</code>.
The destination range can overlap with the source range.
The number of elements to be moved must fit in a Lua integer.




<p>
<hr><h3><a name="pdf-table.pack"><code>table.pack (&middot;&middot;&middot;)</code></a></h3>


<p>
Returns a new table with all parameters stored into keys 1, 2, etc.
and with a field "<code>n</code>" with the total number of parameters.
Note that the resulting table may not be a sequence.




<p>
<hr><h3><a name="pdf-table.remove"><code>table.remove (list [, pos])</code></a></h3>


<p>
Removes from <code>list</code> the element at position <code>pos</code>,
returning the value of the removed element.
When <code>pos</code> is an integer between 1 and <code>#list</code>,
it shifts down the elements
<code>list[pos+1], list[pos+2], &middot;&middot;&middot;, list[#list]</code>
and erases element <code>list[#list]</code>;
The index <code>pos</code> can also be 0 when <code>#list</code> is 0,
or <code>#list + 1</code>;
in those cases, the function erases the element <code>list[pos]</code>.


<p>
The default value for <code>pos</code> is <code>#list</code>,
so that a call <code>table.remove(l)</code> removes the last element
of list <code>l</code>.




<p>
<hr><h3><a name="pdf-table.sort"><code>table.sort (list [, comp])</code></a></h3>


<p>
Sorts list elements in a given order, <em>in-place</em>,
from <code>list[1]</code> to <code>list[#list]</code>.
If <code>comp</code> is given,
then it must be a function that receives two list elements
and returns true when the first element must come
before the second in the final order
(so that, after the sort,
<code>i &lt; j</code> implies <code>not comp(list[j],list[i])</code>).
If <code>comp</code> is not given,
then the standard Lua operator <code>&lt;</code> is used instead.


<p>
Note that the <code>comp</code> function must define
a strict partial order over the elements in the list;
that is, it must be asymmetric and transitive.
Otherwise, no valid sort may be possible.


<p>
The sort algorithm is not stable;
that is, elements not comparable by the given order
(e.g., equal elements)
may have their relative positions changed by the sort.




<p>
<hr><h3><a name="pdf-table.unpack"><code>table.unpack (list [, i [, j]])</code></a></h3>


<p>
Returns the elements from the given list.
This function is equivalent to

<pre>
     return list[i], list[i+1], &middot;&middot;&middot;, list[j]
</pre><p>
By default, <code>i</code> is&nbsp;1 and <code>j</code> is <code>#list</code>.







<h2>6.7 &ndash; <a name="6.7">Mathematical Functions</a></h2>

<p>
This library provides basic mathematical functions.
It provides all its functions and constants inside the table <a name="pdf-math"><code>math</code></a>.
Functions with the annotation "<code>integer/float</code>" give
integer results for integer arguments
and float results for float (or mixed) arguments.
Rounding functions
(<a href="#pdf-math.ceil"><code>math.ceil</code></a>, <a href="#pdf-math.floor"><code>math.floor</code></a>, and <a href="#pdf-math.modf"><code>math.modf</code></a>)
return an integer when the result fits in the range of an integer,
or a float otherwise.


<p>
<hr><h3><a name="pdf-math.abs"><code>math.abs (x)</code></a></h3>


<p>
Returns the absolute value of <code>x</code>. (integer/float)




<p>
<hr><h3><a name="pdf-math.acos"><code>math.acos (x)</code></a></h3>


<p>
Returns the arc cosine of <code>x</code> (in radians).




<p>
<hr><h3><a name="pdf-math.asin"><code>math.asin (x)</code></a></h3>


<p>
Returns the arc sine of <code>x</code> (in radians).




<p>
<hr><h3><a name="pdf-math.atan"><code>math.atan (y [, x])</code></a></h3>


<p>

Returns the arc tangent of <code>y/x</code> (in radians),
but uses the signs of both parameters to find the
quadrant of the result.
(It also handles correctly the case of <code>x</code> being zero.)


<p>
The default value for <code>x</code> is 1,
so that the call <code>math.atan(y)</code>
returns the arc tangent of <code>y</code>.




<p>
<hr><h3><a name="pdf-math.ceil"><code>math.ceil (x)</code></a></h3>


<p>
Returns the smallest integral value larger than or equal to <code>x</code>.




<p>
<hr><h3><a name="pdf-math.cos"><code>math.cos (x)</code></a></h3>


<p>
Returns the cosine of <code>x</code> (assumed to be in radians).




<p>
<hr><h3><a name="pdf-math.deg"><code>math.deg (x)</code></a></h3>


<p>
Converts the angle <code>x</code> from radians to degrees.




<p>
<hr><h3><a name="pdf-math.exp"><code>math.exp (x)</code></a></h3>


<p>
Returns the value <em>e<sup>x</sup></em>
(where <code>e</code> is the base of natural logarithms).




<p>
<hr><h3><a name="pdf-math.floor"><code>math.floor (x)</code></a></h3>


<p>
Returns the largest integral value smaller than or equal to <code>x</code>.




<p>
<hr><h3><a name="pdf-math.fmod"><code>math.fmod (x, y)</code></a></h3>


<p>
Returns the remainder of the division of <code>x</code> by <code>y</code>
that rounds the quotient towards zero. (integer/float)




<p>
<hr><h3><a name="pdf-math.huge"><code>math.huge</code></a></h3>


<p>
The float value <code>HUGE_VAL</code>,
a value larger than any other numeric value.




<p>
<hr><h3><a name="pdf-math.log"><code>math.log (x [, base])</code></a></h3>


<p>
Returns the logarithm of <code>x</code> in the given base.
The default for <code>base</code> is <em>e</em>
(so that the function returns the natural logarithm of <code>x</code>).




<p>
<hr><h3><a name="pdf-math.max"><code>math.max (x, &middot;&middot;&middot;)</code></a></h3>


<p>
Returns the argument with the maximum value,
according to the Lua operator <code>&lt;</code>. (integer/float)




<p>
<hr><h3><a name="pdf-math.maxinteger"><code>math.maxinteger</code></a></h3>
An integer with the maximum value for an integer.




<p>
<hr><h3><a name="pdf-math.min"><code>math.min (x, &middot;&middot;&middot;)</code></a></h3>


<p>
Returns the argument with the minimum value,
according to the Lua operator <code>&lt;</code>. (integer/float)




<p>
<hr><h3><a name="pdf-math.mininteger"><code>math.mininteger</code></a></h3>
An integer with the minimum value for an integer.




<p>
<hr><h3><a name="pdf-math.modf"><code>math.modf (x)</code></a></h3>


<p>
Returns the integral part of <code>x</code> and the fractional part of <code>x</code>.
Its second result is always a float.




<p>
<hr><h3><a name="pdf-math.pi"><code>math.pi</code></a></h3>


<p>
The value of <em>&pi;</em>.




<p>
<hr><h3><a name="pdf-math.rad"><code>math.rad (x)</code></a></h3>


<p>
Converts the angle <code>x</code> from degrees to radians.




<p>
<hr><h3><a name="pdf-math.random"><code>math.random ([m [, n]])</code></a></h3>


<p>
When called without arguments,
returns a pseudo-random float with uniform distribution
in the range  <em>[0,1)</em>.  
When called with two integers <code>m</code> and <code>n</code>,
<code>math.random</code> returns a pseudo-random integer
with uniform distribution in the range <em>[m, n]</em>.
(The value <em>n-m</em> cannot be negative and must fit in a Lua integer.)
The call <code>math.random(n)</code> is equivalent to <code>math.random(1,n)</code>.


<p>
This function is an interface to the underling
pseudo-random generator function provided by C.




<p>
<hr><h3><a name="pdf-math.randomseed"><code>math.randomseed (x)</code></a></h3>


<p>
Sets <code>x</code> as the "seed"
for the pseudo-random generator:
equal seeds produce equal sequences of numbers.




<p>
<hr><h3><a name="pdf-math.sin"><code>math.sin (x)</code></a></h3>


<p>
Returns the sine of <code>x</code> (assumed to be in radians).




<p>
<hr><h3><a name="pdf-math.sqrt"><code>math.sqrt (x)</code></a></h3>


<p>
Returns the square root of <code>x</code>.
(You can also use the expression <code>x^0.5</code> to compute this value.)




<p>
<hr><h3><a name="pdf-math.tan"><code>math.tan (x)</code></a></h3>


<p>
Returns the tangent of <code>x</code> (assumed to be in radians).




<p>
<hr><h3><a name="pdf-math.tointeger"><code>math.tointeger (x)</code></a></h3>


<p>
If the value <code>x</code> is convertible to an integer,
returns that integer.
Otherwise, returns <b>nil</b>.




<p>
<hr><h3><a name="pdf-math.type"><code>math.type (x)</code></a></h3>


<p>
Returns "<code>integer</code>" if <code>x</code> is an integer,
"<code>float</code>" if it is a float,
or <b>nil</b> if <code>x</code> is not a number.




<p>
<hr><h3><a name="pdf-math.ult"><code>math.ult (m, n)</code></a></h3>


<p>
Returns a boolean,
true if integer <code>m</code> is below integer <code>n</code> when
they are compared as unsigned integers.







<h2>6.8 &ndash; <a name="6.8">Input and Output Facilities</a></h2>

<p>
The I/O library provides two different styles for file manipulation.
The first one uses implicit file handles;
that is, there are operations to set a default input file and a
default output file,
and all input/output operations are over these default files.
The second style uses explicit file handles.


<p>
When using implicit file handles,
all operations are supplied by table <a name="pdf-io"><code>io</code></a>.
When using explicit file handles,
the operation <a href="#pdf-io.open"><code>io.open</code></a> returns a file handle
and then all operations are supplied as methods of the file handle.


<p>
The table <code>io</code> also provides
three predefined file handles with their usual meanings from C:
<a name="pdf-io.stdin"><code>io.stdin</code></a>, <a name="pdf-io.stdout"><code>io.stdout</code></a>, and <a name="pdf-io.stderr"><code>io.stderr</code></a>.
The I/O library never closes these files.


<p>
Unless otherwise stated,
all I/O functions return <b>nil</b> on failure
(plus an error message as a second result and
a system-dependent error code as a third result)
and some value different from <b>nil</b> on success.
On non-POSIX systems,
the computation of the error message and error code
in case of errors
may be not thread safe,
because they rely on the global C variable <code>errno</code>.


<p>
<hr><h3><a name="pdf-io.close"><code>io.close ([file])</code></a></h3>


<p>
Equivalent to <code>file:close()</code>.
Without a <code>file</code>, closes the default output file.




<p>
<hr><h3><a name="pdf-io.flush"><code>io.flush ()</code></a></h3>


<p>
Equivalent to <code>io.output():flush()</code>.




<p>
<hr><h3><a name="pdf-io.input"><code>io.input ([file])</code></a></h3>


<p>
When called with a file name, it opens the named file (in text mode),
and sets its handle as the default input file.
When called with a file handle,
it simply sets this file handle as the default input file.
When called without parameters,
it returns the current default input file.


<p>
In case of errors this function raises the error,
instead of returning an error code.




<p>
<hr><h3><a name="pdf-io.lines"><code>io.lines ([filename, &middot;&middot;&middot;])</code></a></h3>


<p>
Opens the given file name in read mode
and returns an iterator function that
works like <code>file:lines(&middot;&middot;&middot;)</code> over the opened file.
When the iterator function detects the end of file,
it returns no values (to finish the loop) and automatically closes the file.


<p>
The call <code>io.lines()</code> (with no file name) is equivalent
to <code>io.input():lines("*l")</code>;
that is, it iterates over the lines of the default input file.
In this case it does not close the file when the loop ends.


<p>
In case of errors this function raises the error,
instead of returning an error code.




<p>
<hr><h3><a name="pdf-io.open"><code>io.open (filename [, mode])</code></a></h3>


<p>
This function opens a file,
in the mode specified in the string <code>mode</code>.
It returns a new file handle,
or, in case of errors, <b>nil</b> plus an error message.


<p>
The <code>mode</code> string can be any of the following:

<ul>
<li><b>"<code>r</code>": </b> read mode (the default);</li>
<li><b>"<code>w</code>": </b> write mode;</li>
<li><b>"<code>a</code>": </b> append mode;</li>
<li><b>"<code>r+</code>": </b> update mode, all previous data is preserved;</li>
<li><b>"<code>w+</code>": </b> update mode, all previous data is erased;</li>
<li><b>"<code>a+</code>": </b> append update mode, previous data is preserved,
  writing is only allowed at the end of file.</li>
</ul><p>
The <code>mode</code> string can also have a '<code>b</code>' at the end,
which is needed in some systems to open the file in binary mode.




<p>
<hr><h3><a name="pdf-io.output"><code>io.output ([file])</code></a></h3>


<p>
Similar to <a href="#pdf-io.input"><code>io.input</code></a>, but operates over the default output file.




<p>
<hr><h3><a name="pdf-io.popen"><code>io.popen (prog [, mode])</code></a></h3>


<p>
This function is system dependent and is not available
on all platforms.


<p>
Starts program <code>prog</code> in a separated process and returns
a file handle that you can use to read data from this program
(if <code>mode</code> is <code>"r"</code>, the default)
or to write data to this program
(if <code>mode</code> is <code>"w"</code>).




<p>
<hr><h3><a name="pdf-io.read"><code>io.read (&middot;&middot;&middot;)</code></a></h3>


<p>
Equivalent to <code>io.input():read(&middot;&middot;&middot;)</code>.




<p>
<hr><h3><a name="pdf-io.tmpfile"><code>io.tmpfile ()</code></a></h3>


<p>
Returns a handle for a temporary file.
This file is opened in update mode
and it is automatically removed when the program ends.




<p>
<hr><h3><a name="pdf-io.type"><code>io.type (obj)</code></a></h3>


<p>
Checks whether <code>obj</code> is a valid file handle.
Returns the string <code>"file"</code> if <code>obj</code> is an open file handle,
<code>"closed file"</code> if <code>obj</code> is a closed file handle,
or <b>nil</b> if <code>obj</code> is not a file handle.




<p>
<hr><h3><a name="pdf-io.write"><code>io.write (&middot;&middot;&middot;)</code></a></h3>


<p>
Equivalent to <code>io.output():write(&middot;&middot;&middot;)</code>.




<p>
<hr><h3><a name="pdf-file:close"><code>file:close ()</code></a></h3>


<p>
Closes <code>file</code>.
Note that files are automatically closed when
their handles are garbage collected,
but that takes an unpredictable amount of time to happen.


<p>
When closing a file handle created with <a href="#pdf-io.popen"><code>io.popen</code></a>,
<a href="#pdf-file:close"><code>file:close</code></a> returns the same values
returned by <a href="#pdf-os.execute"><code>os.execute</code></a>.




<p>
<hr><h3><a name="pdf-file:flush"><code>file:flush ()</code></a></h3>


<p>
Saves any written data to <code>file</code>.




<p>
<hr><h3><a name="pdf-file:lines"><code>file:lines (&middot;&middot;&middot;)</code></a></h3>


<p>
Returns an iterator function that,
each time it is called,
reads the file according to the given formats.
When no format is given,
uses "<code>l</code>" as a default.
As an example, the construction

<pre>
     for c in file:lines(1) do <em>body</em> end
</pre><p>
will iterate over all characters of the file,
starting at the current position.
Unlike <a href="#pdf-io.lines"><code>io.lines</code></a>, this function does not close the file
when the loop ends.


<p>
In case of errors this function raises the error,
instead of returning an error code.




<p>
<hr><h3><a name="pdf-file:read"><code>file:read (&middot;&middot;&middot;)</code></a></h3>


<p>
Reads the file <code>file</code>,
according to the given formats, which specify what to read.
For each format,
the function returns a string or a number with the characters read,
or <b>nil</b> if it cannot read data with the specified format.
(In this latter case,
the function does not read subsequent formats.)
When called without formats,
it uses a default format that reads the next line
(see below).


<p>
The available formats are

<ul>

<li><b>"<code>n</code>": </b>
reads a numeral and returns it as a float or an integer,
following the lexical conventions of Lua.
(The numeral may have leading spaces and a sign.)
This format always reads the longest input sequence that
is a valid prefix for a numeral;
if that prefix does not form a valid numeral
(e.g., an empty string, "<code>0x</code>", or "<code>3.4e-</code>"),
it is discarded and the function returns <b>nil</b>.
</li>

<li><b>"<code>a</code>": </b>
reads the whole file, starting at the current position.
On end of file, it returns the empty string.
</li>

<li><b>"<code>l</code>": </b>
reads the next line skipping the end of line,
returning <b>nil</b> on end of file.
This is the default format.
</li>

<li><b>"<code>L</code>": </b>
reads the next line keeping the end-of-line character (if present),
returning <b>nil</b> on end of file.
</li>

<li><b><em>number</em>: </b>
reads a string with up to this number of bytes,
returning <b>nil</b> on end of file.
If <code>number</code> is zero,
it reads nothing and returns an empty string,
or <b>nil</b> on end of file.
</li>

</ul><p>
The formats "<code>l</code>" and "<code>L</code>" should be used only for text files.




<p>
<hr><h3><a name="pdf-file:seek"><code>file:seek ([whence [, offset]])</code></a></h3>


<p>
Sets and gets the file position,
measured from the beginning of the file,
to the position given by <code>offset</code> plus a base
specified by the string <code>whence</code>, as follows:

<ul>
<li><b>"<code>set</code>": </b> base is position 0 (beginning of the file);</li>
<li><b>"<code>cur</code>": </b> base is current position;</li>
<li><b>"<code>end</code>": </b> base is end of file;</li>
</ul><p>
In case of success, <code>seek</code> returns the final file position,
measured in bytes from the beginning of the file.
If <code>seek</code> fails, it returns <b>nil</b>,
plus a string describing the error.


<p>
The default value for <code>whence</code> is <code>"cur"</code>,
and for <code>offset</code> is 0.
Therefore, the call <code>file:seek()</code> returns the current
file position, without changing it;
the call <code>file:seek("set")</code> sets the position to the
beginning of the file (and returns 0);
and the call <code>file:seek("end")</code> sets the position to the
end of the file, and returns its size.




<p>
<hr><h3><a name="pdf-file:setvbuf"><code>file:setvbuf (mode [, size])</code></a></h3>


<p>
Sets the buffering mode for an output file.
There are three available modes:

<ul>

<li><b>"<code>no</code>": </b>
no buffering; the result of any output operation appears immediately.
</li>

<li><b>"<code>full</code>": </b>
full buffering; output operation is performed only
when the buffer is full or when
you explicitly <code>flush</code> the file (see <a href="#pdf-io.flush"><code>io.flush</code></a>).
</li>

<li><b>"<code>line</code>": </b>
line buffering; output is buffered until a newline is output
or there is any input from some special files
(such as a terminal device).
</li>

</ul><p>
For the last two cases, <code>size</code>
specifies the size of the buffer, in bytes.
The default is an appropriate size.




<p>
<hr><h3><a name="pdf-file:write"><code>file:write (&middot;&middot;&middot;)</code></a></h3>


<p>
Writes the value of each of its arguments to <code>file</code>.
The arguments must be strings or numbers.


<p>
In case of success, this function returns <code>file</code>.
Otherwise it returns <b>nil</b> plus a string describing the error.







<h2>6.9 &ndash; <a name="6.9">Operating System Facilities</a></h2>

<p>
This library is implemented through table <a name="pdf-os"><code>os</code></a>.


<p>
<hr><h3><a name="pdf-os.clock"><code>os.clock ()</code></a></h3>


<p>
Returns an approximation of the amount in seconds of CPU time
used by the program.




<p>
<hr><h3><a name="pdf-os.date"><code>os.date ([format [, time]])</code></a></h3>


<p>
Returns a string or a table containing date and time,
formatted according to the given string <code>format</code>.


<p>
If the <code>time</code> argument is present,
this is the time to be formatted
(see the <a href="#pdf-os.time"><code>os.time</code></a> function for a description of this value).
Otherwise, <code>date</code> formats the current time.


<p>
If <code>format</code> starts with '<code>!</code>',
then the date is formatted in Coordinated Universal Time.
After this optional character,
if <code>format</code> is the string "<code>*t</code>",
then <code>date</code> returns a table with the following fields:
<code>year</code>, <code>month</code> (1&ndash;12), <code>day</code> (1&ndash;31),
<code>hour</code> (0&ndash;23), <code>min</code> (0&ndash;59), <code>sec</code> (0&ndash;61),
<code>wday</code> (weekday, Sunday is&nbsp;1),
<code>yday</code> (day of the year),
and <code>isdst</code> (daylight saving flag, a boolean).
This last field may be absent
if the information is not available.


<p>
If <code>format</code> is not "<code>*t</code>",
then <code>date</code> returns the date as a string,
formatted according to the same rules as the ISO&nbsp;C function <code>strftime</code>.


<p>
When called without arguments,
<code>date</code> returns a reasonable date and time representation that depends on
the host system and on the current locale.
(More specifically, <code>os.date()</code> is equivalent to <code>os.date("%c")</code>.)


<p>
On non-POSIX systems,
this function may be not thread safe
because of its reliance on C&nbsp;function <code>gmtime</code> and C&nbsp;function <code>localtime</code>.




<p>
<hr><h3><a name="pdf-os.difftime"><code>os.difftime (t2, t1)</code></a></h3>


<p>
Returns the difference, in seconds,
from time <code>t1</code> to time <code>t2</code>
(where the times are values returned by <a href="#pdf-os.time"><code>os.time</code></a>).
In POSIX, Windows, and some other systems,
this value is exactly <code>t2</code><em>-</em><code>t1</code>.




<p>
<hr><h3><a name="pdf-os.execute"><code>os.execute ([command])</code></a></h3>


<p>
This function is equivalent to the ISO&nbsp;C function <code>system</code>.
It passes <code>command</code> to be executed by an operating system shell.
Its first result is <b>true</b>
if the command terminated successfully,
or <b>nil</b> otherwise.
After this first result
the function returns a string plus a number,
as follows:

<ul>

<li><b>"<code>exit</code>": </b>
the command terminated normally;
the following number is the exit status of the command.
</li>

<li><b>"<code>signal</code>": </b>
the command was terminated by a signal;
the following number is the signal that terminated the command.
</li>

</ul>

<p>
When called without a <code>command</code>,
<code>os.execute</code> returns a boolean that is true if a shell is available.




<p>
<hr><h3><a name="pdf-os.exit"><code>os.exit ([code [, close]])</code></a></h3>


<p>
Calls the ISO&nbsp;C function <code>exit</code> to terminate the host program.
If <code>code</code> is <b>true</b>,
the returned status is <code>EXIT_SUCCESS</code>;
if <code>code</code> is <b>false</b>,
the returned status is <code>EXIT_FAILURE</code>;
if <code>code</code> is a number,
the returned status is this number.
The default value for <code>code</code> is <b>true</b>.


<p>
If the optional second argument <code>close</code> is true,
closes the Lua state before exiting.




<p>
<hr><h3><a name="pdf-os.getenv"><code>os.getenv (varname)</code></a></h3>


<p>
Returns the value of the process environment variable <code>varname</code>,
or <b>nil</b> if the variable is not defined.




<p>
<hr><h3><a name="pdf-os.remove"><code>os.remove (filename)</code></a></h3>


<p>
Deletes the file (or empty directory, on POSIX systems)
with the given name.
If this function fails, it returns <b>nil</b>,
plus a string describing the error and the error code.




<p>
<hr><h3><a name="pdf-os.rename"><code>os.rename (oldname, newname)</code></a></h3>


<p>
Renames file or directory named <code>oldname</code> to <code>newname</code>.
If this function fails, it returns <b>nil</b>,
plus a string describing the error and the error code.




<p>
<hr><h3><a name="pdf-os.setlocale"><code>os.setlocale (locale [, category])</code></a></h3>


<p>
Sets the current locale of the program.
<code>locale</code> is a system-dependent string specifying a locale;
<code>category</code> is an optional string describing which category to change:
<code>"all"</code>, <code>"collate"</code>, <code>"ctype"</code>,
<code>"monetary"</code>, <code>"numeric"</code>, or <code>"time"</code>;
the default category is <code>"all"</code>.
The function returns the name of the new locale,
or <b>nil</b> if the request cannot be honored.


<p>
If <code>locale</code> is the empty string,
the current locale is set to an implementation-defined native locale.
If <code>locale</code> is the string "<code>C</code>",
the current locale is set to the standard C locale.


<p>
When called with <b>nil</b> as the first argument,
this function only returns the name of the current locale
for the given category.


<p>
This function may be not thread safe
because of its reliance on C&nbsp;function <code>setlocale</code>.




<p>
<hr><h3><a name="pdf-os.time"><code>os.time ([table])</code></a></h3>


<p>
Returns the current time when called without arguments,
or a time representing the local date and time specified by the given table.
This table must have fields <code>year</code>, <code>month</code>, and <code>day</code>,
and may have fields
<code>hour</code> (default is 12),
<code>min</code> (default is 0),
<code>sec</code> (default is 0),
and <code>isdst</code> (default is <b>nil</b>).
Other fields are ignored.
For a description of these fields, see the <a href="#pdf-os.date"><code>os.date</code></a> function.


<p>
The values in these fields do not need to be inside their valid ranges.
For instance, if <code>sec</code> is -10,
it means -10 seconds from the time specified by the other fields;
if <code>hour</code> is 1000,
it means +1000 hours from the time specified by the other fields.


<p>
The returned value is a number, whose meaning depends on your system.
In POSIX, Windows, and some other systems,
this number counts the number
of seconds since some given start time (the "epoch").
In other systems, the meaning is not specified,
and the number returned by <code>time</code> can be used only as an argument to
<a href="#pdf-os.date"><code>os.date</code></a> and <a href="#pdf-os.difftime"><code>os.difftime</code></a>.




<p>
<hr><h3><a name="pdf-os.tmpname"><code>os.tmpname ()</code></a></h3>


<p>
Returns a string with a file name that can
be used for a temporary file.
The file must be explicitly opened before its use
and explicitly removed when no longer needed.


<p>
On POSIX systems,
this function also creates a file with that name,
to avoid security risks.
(Someone else might create the file with wrong permissions
in the time between getting the name and creating the file.)
You still have to open the file to use it
and to remove it (even if you do not use it).


<p>
When possible,
you may prefer to use <a href="#pdf-io.tmpfile"><code>io.tmpfile</code></a>,
which automatically removes the file when the program ends.







<h2>6.10 &ndash; <a name="6.10">The Debug Library</a></h2>

<p>
This library provides
the functionality of the debug interface (<a href="#4.9">&sect;4.9</a>) to Lua programs.
You should exert care when using this library.
Several of its functions
violate basic assumptions about Lua code
(e.g., that variables local to a function
cannot be accessed from outside;
that userdata metatables cannot be changed by Lua code;
that Lua programs do not crash)
and therefore can compromise otherwise secure code.
Moreover, some functions in this library may be slow.


<p>
All functions in this library are provided
inside the <a name="pdf-debug"><code>debug</code></a> table.
All functions that operate over a thread
have an optional first argument which is the
thread to operate over.
The default is always the current thread.


<p>
<hr><h3><a name="pdf-debug.debug"><code>debug.debug ()</code></a></h3>


<p>
Enters an interactive mode with the user,
running each string that the user enters.
Using simple commands and other debug facilities,
the user can inspect global and local variables,
change their values, evaluate expressions, and so on.
A line containing only the word <code>cont</code> finishes this function,
so that the caller continues its execution.


<p>
Note that commands for <code>debug.debug</code> are not lexically nested
within any function and so have no direct access to local variables.




<p>
<hr><h3><a name="pdf-debug.gethook"><code>debug.gethook ([thread])</code></a></h3>


<p>
Returns the current hook settings of the thread, as three values:
the current hook function, the current hook mask,
and the current hook count
(as set by the <a href="#pdf-debug.sethook"><code>debug.sethook</code></a> function).




<p>
<hr><h3><a name="pdf-debug.getinfo"><code>debug.getinfo ([thread,] f [, what])</code></a></h3>


<p>
Returns a table with information about a function.
You can give the function directly
or you can give a number as the value of <code>f</code>,
which means the function running at level <code>f</code> of the call stack
of the given thread:
level&nbsp;0 is the current function (<code>getinfo</code> itself);
level&nbsp;1 is the function that called <code>getinfo</code>
(except for tail calls, which do not count on the stack);
and so on.
If <code>f</code> is a number larger than the number of active functions,
then <code>getinfo</code> returns <b>nil</b>.


<p>
The returned table can contain all the fields returned by <a href="#lua_getinfo"><code>lua_getinfo</code></a>,
with the string <code>what</code> describing which fields to fill in.
The default for <code>what</code> is to get all information available,
except the table of valid lines.
If present,
the option '<code>f</code>'
adds a field named <code>func</code> with the function itself.
If present,
the option '<code>L</code>'
adds a field named <code>activelines</code> with the table of
valid lines.


<p>
For instance, the expression <code>debug.getinfo(1,"n").name</code> returns
a name for the current function,
if a reasonable name can be found,
and the expression <code>debug.getinfo(print)</code>
returns a table with all available information
about the <a href="#pdf-print"><code>print</code></a> function.




<p>
<hr><h3><a name="pdf-debug.getlocal"><code>debug.getlocal ([thread,] f, local)</code></a></h3>


<p>
This function returns the name and the value of the local variable
with index <code>local</code> of the function at level <code>f</code> of the stack.
This function accesses not only explicit local variables,
but also parameters, temporaries, etc.


<p>
The first parameter or local variable has index&nbsp;1, and so on,
following the order that they are declared in the code,
counting only the variables that are active
in the current scope of the function.
Negative indices refer to vararg parameters;
-1 is the first vararg parameter.
The function returns <b>nil</b> if there is no variable with the given index,
and raises an error when called with a level out of range.
(You can call <a href="#pdf-debug.getinfo"><code>debug.getinfo</code></a> to check whether the level is valid.)


<p>
Variable names starting with '<code>(</code>' (open parenthesis) 
represent variables with no known names
(internal variables such as loop control variables,
and variables from chunks saved without debug information).


<p>
The parameter <code>f</code> may also be a function.
In that case, <code>getlocal</code> returns only the name of function parameters.




<p>
<hr><h3><a name="pdf-debug.getmetatable"><code>debug.getmetatable (value)</code></a></h3>


<p>
Returns the metatable of the given <code>value</code>
or <b>nil</b> if it does not have a metatable.




<p>
<hr><h3><a name="pdf-debug.getregistry"><code>debug.getregistry ()</code></a></h3>


<p>
Returns the registry table (see <a href="#4.5">&sect;4.5</a>).




<p>
<hr><h3><a name="pdf-debug.getupvalue"><code>debug.getupvalue (f, up)</code></a></h3>


<p>
This function returns the name and the value of the upvalue
with index <code>up</code> of the function <code>f</code>.
The function returns <b>nil</b> if there is no upvalue with the given index.


<p>
Variable names starting with '<code>(</code>' (open parenthesis) 
represent variables with no known names
(variables from chunks saved without debug information).




<p>
<hr><h3><a name="pdf-debug.getuservalue"><code>debug.getuservalue (u)</code></a></h3>


<p>
Returns the Lua value associated to <code>u</code>.
If <code>u</code> is not a userdata,
returns <b>nil</b>.




<p>
<hr><h3><a name="pdf-debug.sethook"><code>debug.sethook ([thread,] hook, mask [, count])</code></a></h3>


<p>
Sets the given function as a hook.
The string <code>mask</code> and the number <code>count</code> describe
when the hook will be called.
The string mask may have any combination of the following characters,
with the given meaning:

<ul>
<li><b>'<code>c</code>': </b> the hook is called every time Lua calls a function;</li>
<li><b>'<code>r</code>': </b> the hook is called every time Lua returns from a function;</li>
<li><b>'<code>l</code>': </b> the hook is called every time Lua enters a new line of code.</li>
</ul><p>
Moreover,
with a <code>count</code> different from zero,
the hook is called also after every <code>count</code> instructions.


<p>
When called without arguments,
<a href="#pdf-debug.sethook"><code>debug.sethook</code></a> turns off the hook.


<p>
When the hook is called, its first parameter is a string
describing the event that has triggered its call:
<code>"call"</code> (or <code>"tail call"</code>),
<code>"return"</code>,
<code>"line"</code>, and <code>"count"</code>.
For line events,
the hook also gets the new line number as its second parameter.
Inside a hook,
you can call <code>getinfo</code> with level&nbsp;2 to get more information about
the running function
(level&nbsp;0 is the <code>getinfo</code> function,
and level&nbsp;1 is the hook function).




<p>
<hr><h3><a name="pdf-debug.setlocal"><code>debug.setlocal ([thread,] level, local, value)</code></a></h3>


<p>
This function assigns the value <code>value</code> to the local variable
with index <code>local</code> of the function at level <code>level</code> of the stack.
The function returns <b>nil</b> if there is no local
variable with the given index,
and raises an error when called with a <code>level</code> out of range.
(You can call <code>getinfo</code> to check whether the level is valid.)
Otherwise, it returns the name of the local variable.


<p>
See <a href="#pdf-debug.getlocal"><code>debug.getlocal</code></a> for more information about
variable indices and names.




<p>
<hr><h3><a name="pdf-debug.setmetatable"><code>debug.setmetatable (value, table)</code></a></h3>


<p>
Sets the metatable for the given <code>value</code> to the given <code>table</code>
(which can be <b>nil</b>).
Returns <code>value</code>.




<p>
<hr><h3><a name="pdf-debug.setupvalue"><code>debug.setupvalue (f, up, value)</code></a></h3>


<p>
This function assigns the value <code>value</code> to the upvalue
with index <code>up</code> of the function <code>f</code>.
The function returns <b>nil</b> if there is no upvalue
with the given index.
Otherwise, it returns the name of the upvalue.




<p>
<hr><h3><a name="pdf-debug.setuservalue"><code>debug.setuservalue (udata, value)</code></a></h3>


<p>
Sets the given <code>value</code> as
the Lua value associated to the given <code>udata</code>.
<code>udata</code> must be a full userdata.


<p>
Returns <code>udata</code>.




<p>
<hr><h3><a name="pdf-debug.traceback"><code>debug.traceback ([thread,] [message [, level]])</code></a></h3>


<p>
If <code>message</code> is present but is neither a string nor <b>nil</b>,
this function returns <code>message</code> without further processing.
Otherwise,
it returns a string with a traceback of the call stack.
The optional <code>message</code> string is appended
at the beginning of the traceback.
An optional <code>level</code> number tells at which level
to start the traceback
(default is 1, the function calling <code>traceback</code>).




<p>
<hr><h3><a name="pdf-debug.upvalueid"><code>debug.upvalueid (f, n)</code></a></h3>


<p>
Returns a unique identifier (as a light userdata)
for the upvalue numbered <code>n</code>
from the given function.


<p>
These unique identifiers allow a program to check whether different
closures share upvalues.
Lua closures that share an upvalue
(that is, that access a same external local variable)
will return identical ids for those upvalue indices.




<p>
<hr><h3><a name="pdf-debug.upvaluejoin"><code>debug.upvaluejoin (f1, n1, f2, n2)</code></a></h3>


<p>
Make the <code>n1</code>-th upvalue of the Lua closure <code>f1</code>
refer to the <code>n2</code>-th upvalue of the Lua closure <code>f2</code>.







<h1>7 &ndash; <a name="7">Lua Standalone</a></h1>

<p>
Although Lua has been designed as an extension language,
to be embedded in a host C&nbsp;program,
it is also frequently used as a standalone language.
An interpreter for Lua as a standalone language,
called simply <code>lua</code>,
is provided with the standard distribution.
The standalone interpreter includes
all standard libraries, including the debug library.
Its usage is:

<pre>
     lua [options] [script [args]]
</pre><p>
The options are:

<ul>
<li><b><code>-e <em>stat</em></code>: </b> executes string <em>stat</em>;</li>
<li><b><code>-l <em>mod</em></code>: </b> "requires" <em>mod</em>;</li>
<li><b><code>-i</code>: </b> enters interactive mode after running <em>script</em>;</li>
<li><b><code>-v</code>: </b> prints version information;</li>
<li><b><code>-E</code>: </b> ignores environment variables;</li>
<li><b><code>--</code>: </b> stops handling options;</li>
<li><b><code>-</code>: </b> executes <code>stdin</code> as a file and stops handling options.</li>
</ul><p>
After handling its options, <code>lua</code> runs the given <em>script</em>.
When called without arguments,
<code>lua</code> behaves as <code>lua -v -i</code>
when the standard input (<code>stdin</code>) is a terminal,
and as <code>lua -</code> otherwise.


<p>
When called without option <code>-E</code>, 
the interpreter checks for an environment variable <a name="pdf-LUA_INIT_5_3"><code>LUA_INIT_5_3</code></a>
(or <a name="pdf-LUA_INIT"><code>LUA_INIT</code></a> if the versioned name is not defined)
before running any argument.
If the variable content has the format <code>@<em>filename</em></code>,
then <code>lua</code> executes the file.
Otherwise, <code>lua</code> executes the string itself.


<p>
When called with option <code>-E</code>,
besides ignoring <code>LUA_INIT</code>,
Lua also ignores
the values of <code>LUA_PATH</code> and <code>LUA_CPATH</code>,
setting the values of
<a href="#pdf-package.path"><code>package.path</code></a> and <a href="#pdf-package.cpath"><code>package.cpath</code></a>
with the default paths defined in <code>luaconf.h</code>.


<p>
All options are handled in order, except <code>-i</code> and <code>-E</code>.
For instance, an invocation like

<pre>
     $ lua -e'a=1' -e 'print(a)' script.lua
</pre><p>
will first set <code>a</code> to 1, then print the value of <code>a</code>,
and finally run the file <code>script.lua</code> with no arguments.
(Here <code>$</code> is the shell prompt. Your prompt may be different.)


<p>
Before running any code,
<code>lua</code> collects all command-line arguments
in a global table called <code>arg</code>.
The script name goes to index 0,
the first argument after the script name goes to index 1,
and so on.
Any arguments before the script name
(that is, the interpreter name plus its options)
go to negative indices.
For instance, in the call

<pre>
     $ lua -la b.lua t1 t2
</pre><p>
the table is like this:

<pre>
     arg = { [-2] = "lua", [-1] = "-la",
             [0] = "b.lua",
             [1] = "t1", [2] = "t2" }
</pre><p>
If there is no script in the call,
the interpreter name goes to index 0,
followed by the other arguments.
For instance, the call

<pre>
     $ lua -e "print(arg[1])"
</pre><p>
will print "<code>-e</code>".
If there is a script,
the script is called with parameters
<code>arg[1]</code>, &middot;&middot;&middot;, <code>arg[#arg]</code>.
(Like all chunks in Lua,
the script is compiled as a vararg function.)


<p>
In interactive mode,
Lua repeatedly prompts and waits for a line.
After reading a line,
Lua first try to interpret the line as an expression.
If it succeeds, it prints its value.
Otherwise, it interprets the line as a statement.
If you write an incomplete statement,
the interpreter waits for its completion
by issuing a different prompt.


<p>
In case of unprotected errors in the script,
the interpreter reports the error to the standard error stream.
If the error object is not a string but 
has a metamethod <code>__tostring</code>,
the interpreter calls this metamethod to produce the final message.
Otherwise, the interpreter converts the error object to a string
and adds a stack traceback to it.


<p>
When finishing normally,
the interpreter closes its main Lua state
(see <a href="#lua_close"><code>lua_close</code></a>).
The script can avoid this step by
calling <a href="#pdf-os.exit"><code>os.exit</code></a> to terminate.


<p>
To allow the use of Lua as a
script interpreter in Unix systems,
the standalone interpreter skips
the first line of a chunk if it starts with <code>#</code>.
Therefore, Lua scripts can be made into executable programs
by using <code>chmod +x</code> and the&nbsp;<code>#!</code> form,
as in

<pre>
     #!/usr/local/bin/lua
</pre><p>
(Of course,
the location of the Lua interpreter may be different in your machine.
If <code>lua</code> is in your <code>PATH</code>,
then

<pre>
     #!/usr/bin/env lua
</pre><p>
is a more portable solution.)



<h1>8 &ndash; <a name="8">Incompatibilities with the Previous Version</a></h1>

<p>
Here we list the incompatibilities that you may find when moving a program
from Lua&nbsp;5.2 to Lua&nbsp;5.3.
You can avoid some incompatibilities by compiling Lua with
appropriate options (see file <code>luaconf.h</code>).
However,
all these compatibility options will be removed in the future.


<p>
Lua versions can always change the C API in ways that
do not imply source-code changes in a program,
such as the numeric values for constants
or the implementation of functions as macros.
Therefore,
you should not assume that binaries are compatible between
different Lua versions.
Always recompile clients of the Lua API when
using a new version.


<p>
Similarly, Lua versions can always change the internal representation
of precompiled chunks;
precompiled chunks are not compatible between different Lua versions.


<p>
The standard paths in the official distribution may
change between versions.



<h2>8.1 &ndash; <a name="8.1">Changes in the Language</a></h2>
<ul>

<li>
The main difference between Lua&nbsp;5.2 and Lua&nbsp;5.3 is the
introduction of an integer subtype for numbers.
Although this change should not affect "normal" computations,
some computations
(mainly those that involve some kind of overflow)
can give different results.


<p>
You can fix these differences by forcing a number to be a float
(in Lua&nbsp;5.2 all numbers were float),
in particular writing constants with an ending <code>.0</code>
or using <code>x = x + 0.0</code> to convert a variable.
(This recommendation is only for a quick fix
for an occasional incompatibility;
it is not a general guideline for good programming.
For good programming,
use floats where you need floats
and integers where you need integers.)
</li>

<li>
The conversion of a float to a string now adds a <code>.0</code> suffix
to the result if it looks like an integer.
(For instance, the float 2.0 will be printed as <code>2.0</code>,
not as <code>2</code>.)
You should always use an explicit format
when you need a specific format for numbers.


<p>
(Formally this is not an incompatibility,
because Lua does not specify how numbers are formatted as strings,
but some programs assumed a specific format.)
</li>

<li>
The generational mode for the garbage collector was removed.
(It was an experimental feature in Lua&nbsp;5.2.)
</li>

</ul>




<h2>8.2 &ndash; <a name="8.2">Changes in the Libraries</a></h2>
<ul>

<li>
The <code>bit32</code> library has been deprecated.
It is easy to require a compatible external library or,
better yet, to replace its functions with appropriate bitwise operations.
(Keep in mind that <code>bit32</code> operates on 32-bit integers,
while the bitwise operators in Lua&nbsp;5.3 operate on Lua integers,
which by default have 64&nbsp;bits.)
</li>

<li>
The Table library now respects metamethods
for setting and getting elements.
</li>

<li>
The <a href="#pdf-ipairs"><code>ipairs</code></a> iterator now respects metamethods and
its <code>__ipairs</code> metamethod has been deprecated.
</li>

<li>
Option names in <a href="#pdf-io.read"><code>io.read</code></a> do not have a starting '<code>*</code>' anymore.
For compatibility, Lua will continue to accept (and ignore) this character.
</li>

<li>
The following functions were deprecated in the mathematical library:
<code>atan2</code>, <code>cosh</code>, <code>sinh</code>, <code>tanh</code>, <code>pow</code>,
<code>frexp</code>, and <code>ldexp</code>.
You can replace <code>math.pow(x,y)</code> with <code>x^y</code>;
you can replace <code>math.atan2</code> with <code>math.atan</code>,
which now accepts one or two parameters;
you can replace <code>math.ldexp(x,exp)</code> with <code>x * 2.0^exp</code>.
For the other operations,
you can either use an external library or
implement them in Lua.
</li>

<li>
The searcher for C loaders used by <a href="#pdf-require"><code>require</code></a>
changed the way it handles versioned names.
Now, the version should come after the module name
(as is usual in most other tools).
For compatibility, that searcher still tries the old format
if it cannot find an open function according to the new style.
(Lua&nbsp;5.2 already worked that way,
but it did not document the change.)
</li>

<li>
The call <code>collectgarbage("count")</code> now returns only one result.
(You can compute that second result from the fractional part
of the first result.)
</li>

</ul>




<h2>8.3 &ndash; <a name="8.3">Changes in the API</a></h2>


<ul>

<li>
Continuation functions now receive as parameters what they needed
to get through <code>lua_getctx</code>,
so <code>lua_getctx</code> has been removed.
Adapt your code accordingly.
</li>

<li>
Function <a href="#lua_dump"><code>lua_dump</code></a> has an extra parameter, <code>strip</code>.
Use 0 as the value of this parameter to get the old behavior.
</li>

<li>
Functions to inject/project unsigned integers
(<code>lua_pushunsigned</code>, <code>lua_tounsigned</code>, <code>lua_tounsignedx</code>,
<code>luaL_checkunsigned</code>, <code>luaL_optunsigned</code>)
were deprecated.
Use their signed equivalents with a type cast.
</li>

<li>
Macros to project non-default integer types
(<code>luaL_checkint</code>, <code>luaL_optint</code>, <code>luaL_checklong</code>, <code>luaL_optlong</code>)
were deprecated.
Use their equivalent over <a href="#lua_Integer"><code>lua_Integer</code></a> with a type cast
(or, when possible, use <a href="#lua_Integer"><code>lua_Integer</code></a> in your code).
</li>

</ul>




<h1>9 &ndash; <a name="9">The Complete Syntax of Lua</a></h1>

<p>
Here is the complete syntax of Lua in extended BNF.
As usual in extended BNF,
{A} means 0 or more As,
and [A] means an optional A.
(For operator precedences, see <a href="#3.4.8">&sect;3.4.8</a>;
for a description of the terminals
Name, Numeral,
and LiteralString, see <a href="#3.1">&sect;3.1</a>.)




<pre>

	chunk ::= block

	block ::= {stat} [retstat]

	stat ::=  &lsquo;<b>;</b>&rsquo; | 
		 varlist &lsquo;<b>=</b>&rsquo; explist | 
		 functioncall | 
		 label | 
		 <b>break</b> | 
		 <b>goto</b> Name | 
		 <b>do</b> block <b>end</b> | 
		 <b>while</b> exp <b>do</b> block <b>end</b> | 
		 <b>repeat</b> block <b>until</b> exp | 
		 <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b> | 
		 <b>for</b> Name &lsquo;<b>=</b>&rsquo; exp &lsquo;<b>,</b>&rsquo; exp [&lsquo;<b>,</b>&rsquo; exp] <b>do</b> block <b>end</b> | 
		 <b>for</b> namelist <b>in</b> explist <b>do</b> block <b>end</b> | 
		 <b>function</b> funcname funcbody | 
		 <b>local</b> <b>function</b> Name funcbody | 
		 <b>local</b> namelist [&lsquo;<b>=</b>&rsquo; explist] 

	retstat ::= <b>return</b> [explist] [&lsquo;<b>;</b>&rsquo;]

	label ::= &lsquo;<b>::</b>&rsquo; Name &lsquo;<b>::</b>&rsquo;

	funcname ::= Name {&lsquo;<b>.</b>&rsquo; Name} [&lsquo;<b>:</b>&rsquo; Name]

	varlist ::= var {&lsquo;<b>,</b>&rsquo; var}

	var ::=  Name | prefixexp &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo; | prefixexp &lsquo;<b>.</b>&rsquo; Name 

	namelist ::= Name {&lsquo;<b>,</b>&rsquo; Name}

	explist ::= exp {&lsquo;<b>,</b>&rsquo; exp}

	exp ::=  <b>nil</b> | <b>false</b> | <b>true</b> | Numeral | LiteralString | &lsquo;<b>...</b>&rsquo; | functiondef | 
		 prefixexp | tableconstructor | exp binop exp | unop exp 

	prefixexp ::= var | functioncall | &lsquo;<b>(</b>&rsquo; exp &lsquo;<b>)</b>&rsquo;

	functioncall ::=  prefixexp args | prefixexp &lsquo;<b>:</b>&rsquo; Name args 

	args ::=  &lsquo;<b>(</b>&rsquo; [explist] &lsquo;<b>)</b>&rsquo; | tableconstructor | LiteralString 

	functiondef ::= <b>function</b> funcbody

	funcbody ::= &lsquo;<b>(</b>&rsquo; [parlist] &lsquo;<b>)</b>&rsquo; block <b>end</b>

	parlist ::= namelist [&lsquo;<b>,</b>&rsquo; &lsquo;<b>...</b>&rsquo;] | &lsquo;<b>...</b>&rsquo;

	tableconstructor ::= &lsquo;<b>{</b>&rsquo; [fieldlist] &lsquo;<b>}</b>&rsquo;

	fieldlist ::= field {fieldsep field} [fieldsep]

	field ::= &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo; &lsquo;<b>=</b>&rsquo; exp | Name &lsquo;<b>=</b>&rsquo; exp | exp

	fieldsep ::= &lsquo;<b>,</b>&rsquo; | &lsquo;<b>;</b>&rsquo;

	binop ::=  &lsquo;<b>+</b>&rsquo; | &lsquo;<b>-</b>&rsquo; | &lsquo;<b>*</b>&rsquo; | &lsquo;<b>/</b>&rsquo; | &lsquo;<b>//</b>&rsquo; | &lsquo;<b>^</b>&rsquo; | &lsquo;<b>%</b>&rsquo; | 
		 &lsquo;<b>&amp;</b>&rsquo; | &lsquo;<b>~</b>&rsquo; | &lsquo;<b>|</b>&rsquo; | &lsquo;<b>&gt;&gt;</b>&rsquo; | &lsquo;<b>&lt;&lt;</b>&rsquo; | &lsquo;<b>..</b>&rsquo; | 
		 &lsquo;<b>&lt;</b>&rsquo; | &lsquo;<b>&lt;=</b>&rsquo; | &lsquo;<b>&gt;</b>&rsquo; | &lsquo;<b>&gt;=</b>&rsquo; | &lsquo;<b>==</b>&rsquo; | &lsquo;<b>~=</b>&rsquo; | 
		 <b>and</b> | <b>or</b>

	unop ::= &lsquo;<b>-</b>&rsquo; | <b>not</b> | &lsquo;<b>#</b>&rsquo; | &lsquo;<b>~</b>&rsquo;

</pre>

<p>








<P CLASS="footer">
Last update:
Wed Nov 25 15:19:10 BRST 2015
</P>
<!--
Last change: revised for Lua 5.3.2
-->

</body></html>