summaryrefslogtreecommitdiffstatshomepage
path: root/3rdparty/bgfx/examples/36-sky/sky.cpp
blob: aad7bc27632cd61701b725229dfdaed276704b5a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
/*
 * Copyright 2017 Stanislav Pidhorskyi. All rights reserved.
 * License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
 */

/*
 * This example demonstrates:
 * - Usage of Perez sky model [1] to render a dynamic sky.
 * - Rendering a mesh with a lightmap, shading of which is driven by the same parameters as the sky.
 *
 * Typically, the sky is rendered using cubemaps or other environment maps.
 * This approach can provide a high-quality sky, but the downside is that the
 * image is static. To achieve daytime changes in sky appearance, there is a need
 * in a dynamic model.
 *
 * Perez "An All-Weather Model for Sky Luminance Distribution" is a simple,
 * but good enough model which is, in essence, a function that
 * interpolates a sky color. As input, it requires several turbidity
 * coefficients, a color at zenith and direction to the sun.
 * Turbidity coefficients are taken from [2], which are computed using more
 * complex physically based models. Color at zenith depends on daytime and can
 * vary depending on many factors.
 *
 * In the code below, there are two tables that contain sky and sun luminance
 * which were computed using code from [3]. Luminance in those tables
 * represents actual scale of light energy that comes from sun compared to
 * the sky.
 *
 * The sky is driven by luminance of the sky, while the material of the
 * landscape is driven by both, the luminance of the sky and the sun. The
 * lightening model is very simple and consists of two parts: directional
 * light and hemisphere light. The first is used for the sun while the second
 * is used for the sky. Additionally, the second part is modulated by a
 * lightmap to achieve ambient occlusion effect.
 *
 * References
 * ==========
 *
 * [1] R. Perez, R. Seals, and J. Michalsky."An All-Weather Model for Sky Luminance Distribution".
 *     Solar Energy, Volume 50, Number 3 (March 1993), pp. 235–245.
 *
 * [2] A. J. Preetham, Peter Shirley, and Brian Smits. "A Practical Analytic Model for Daylight",
 *     Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques,
 *     1999, pp. 91–100.
 *     https://www.cs.utah.edu/~shirley/papers/sunsky/sunsky.pdf
 *
 * [3] E. Lengyel, Game Engine Gems, Volume One. Jones & Bartlett Learning, 2010. pp. 219 - 234
 *
 */

#include "common.h"
#include "bgfx_utils.h"
#include "imgui/imgui.h"
#include "camera.h"
#include "bounds.h"

#include <map>

namespace
{
	// Represents color. Color-space depends on context.
	// In the code below, used to represent color in XYZ, and RGB color-space
	typedef bx::Vec3 Color;

	// HDTV rec. 709 matrix.
	static float M_XYZ2RGB[] =
	{
		 3.240479f, -0.969256f,  0.055648f,
		-1.53715f,   1.875991f, -0.204043f,
		-0.49853f,   0.041556f,  1.057311f,
	};

	// Converts color repesentation from CIE XYZ to RGB color-space.
	Color xyzToRgb(const Color& xyz)
	{
		Color rgb;
		rgb.x = M_XYZ2RGB[0] * xyz.x + M_XYZ2RGB[3] * xyz.y + M_XYZ2RGB[6] * xyz.z;
		rgb.y = M_XYZ2RGB[1] * xyz.x + M_XYZ2RGB[4] * xyz.y + M_XYZ2RGB[7] * xyz.z;
		rgb.z = M_XYZ2RGB[2] * xyz.x + M_XYZ2RGB[5] * xyz.y + M_XYZ2RGB[8] * xyz.z;
		return rgb;
	};


	// Precomputed luminance of sunlight in XYZ colorspace.
	// Computed using code from Game Engine Gems, Volume One, chapter 15. Implementation based on Dr. Richard Bird model.
	// This table is used for piecewise linear interpolation. Transitions from and to 0.0 at sunset and sunrise are highly inaccurate
	static std::map<float, Color> sunLuminanceXYZTable = {
		{  5.0f, {  0.000000f,  0.000000f,  0.000000f } },
		{  7.0f, { 12.703322f, 12.989393f,  9.100411f } },
		{  8.0f, { 13.202644f, 13.597814f, 11.524929f } },
		{  9.0f, { 13.192974f, 13.597458f, 12.264488f } },
		{ 10.0f, { 13.132943f, 13.535914f, 12.560032f } },
		{ 11.0f, { 13.088722f, 13.489535f, 12.692996f } },
		{ 12.0f, { 13.067827f, 13.467483f, 12.745179f } },
		{ 13.0f, { 13.069653f, 13.469413f, 12.740822f } },
		{ 14.0f, { 13.094319f, 13.495428f, 12.678066f } },
		{ 15.0f, { 13.142133f, 13.545483f, 12.526785f } },
		{ 16.0f, { 13.201734f, 13.606017f, 12.188001f } },
		{ 17.0f, { 13.182774f, 13.572725f, 11.311157f } },
		{ 18.0f, { 12.448635f, 12.672520f,  8.267771f } },
		{ 20.0f, {  0.000000f,  0.000000f,  0.000000f } },
	};


	// Precomputed luminance of sky in the zenith point in XYZ colorspace.
	// Computed using code from Game Engine Gems, Volume One, chapter 15. Implementation based on Dr. Richard Bird model.
	// This table is used for piecewise linear interpolation. Day/night transitions are highly inaccurate.
	// The scale of luminance change in Day/night transitions is not preserved.
	// Luminance at night was increased to eliminate need the of HDR render.
	static std::map<float, Color> skyLuminanceXYZTable = {
		{  0.0f, { 0.308f,    0.308f,    0.411f    } },
		{  1.0f, { 0.308f,    0.308f,    0.410f    } },
		{  2.0f, { 0.301f,    0.301f,    0.402f    } },
		{  3.0f, { 0.287f,    0.287f,    0.382f    } },
		{  4.0f, { 0.258f,    0.258f,    0.344f    } },
		{  5.0f, { 0.258f,    0.258f,    0.344f    } },
		{  7.0f, { 0.962851f, 1.000000f, 1.747835f } },
		{  8.0f, { 0.967787f, 1.000000f, 1.776762f } },
		{  9.0f, { 0.970173f, 1.000000f, 1.788413f } },
		{ 10.0f, { 0.971431f, 1.000000f, 1.794102f } },
		{ 11.0f, { 0.972099f, 1.000000f, 1.797096f } },
		{ 12.0f, { 0.972385f, 1.000000f, 1.798389f } },
		{ 13.0f, { 0.972361f, 1.000000f, 1.798278f } },
		{ 14.0f, { 0.972020f, 1.000000f, 1.796740f } },
		{ 15.0f, { 0.971275f, 1.000000f, 1.793407f } },
		{ 16.0f, { 0.969885f, 1.000000f, 1.787078f } },
		{ 17.0f, { 0.967216f, 1.000000f, 1.773758f } },
		{ 18.0f, { 0.961668f, 1.000000f, 1.739891f } },
		{ 20.0f, { 0.264f,    0.264f,    0.352f    } },
		{ 21.0f, { 0.264f,    0.264f,    0.352f    } },
		{ 22.0f, { 0.290f,    0.290f,    0.386f    } },
		{ 23.0f, { 0.303f,    0.303f,    0.404f    } },
	};


	// Turbidity tables. Taken from:
	// A. J. Preetham, P. Shirley, and B. Smits. A Practical Analytic Model for Daylight. SIGGRAPH ’99
	// Coefficients correspond to xyY colorspace.
	static Color ABCDE[] =
	{
		{ -0.2592f, -0.2608f, -1.4630f },
		{  0.0008f,  0.0092f,  0.4275f },
		{  0.2125f,  0.2102f,  5.3251f },
		{ -0.8989f, -1.6537f, -2.5771f },
		{  0.0452f,  0.0529f,  0.3703f },
	};
	static Color ABCDE_t[] =
	{
		{ -0.0193f, -0.0167f,  0.1787f },
		{ -0.0665f, -0.0950f, -0.3554f },
		{ -0.0004f, -0.0079f, -0.0227f },
		{ -0.0641f, -0.0441f,  0.1206f },
		{ -0.0033f, -0.0109f, -0.0670f },
	};


	// Performs piecewise linear interpolation of a Color parameter.
	class DynamicValueController
	{
		typedef Color ValueType;
		typedef std::map<float, ValueType> KeyMap;

	public:
		DynamicValueController()
		{
		}

		~DynamicValueController()
		{
		}

		void SetMap(const KeyMap& keymap)
		{
			m_keyMap = keymap;
		}

		ValueType GetValue(float time) const
		{
			typename KeyMap::const_iterator itUpper = m_keyMap.upper_bound(time + 1e-6f);
			typename KeyMap::const_iterator itLower = itUpper;
			--itLower;

			if (itLower == m_keyMap.end())
			{
				return itUpper->second;
			}

			if (itUpper == m_keyMap.end())
			{
				return itLower->second;
			}

			float lowerTime = itLower->first;
			const ValueType& lowerVal = itLower->second;
			float upperTime = itUpper->first;
			const ValueType& upperVal = itUpper->second;

			if (lowerTime == upperTime)
			{
				return lowerVal;
			}

			return interpolate(lowerTime, lowerVal, upperTime, upperVal, time);
		};

		void Clear()
		{
			m_keyMap.clear();
		};

	private:
		ValueType interpolate(float lowerTime, const ValueType& lowerVal, float upperTime, const ValueType& upperVal, float time) const
		{
			const float tt = (time - lowerTime) / (upperTime - lowerTime);
			const ValueType result = bx::lerp(lowerVal, upperVal, tt);
			return result;
		};

		KeyMap	m_keyMap;
	};

	// Controls sun position according to time, month, and observer's latitude.
	// Sun position computation based on Earth's orbital elements: https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
	class SunController
	{
	public:
		enum Month : int
		{
			January = 0,
			February,
			March,
			April,
			May,
			June,
			July,
			August,
			September,
			October,
			November,
			December
		};

		SunController()
			: m_latitude(50.0f)
			, m_month(June)
			, m_eclipticObliquity(bx::toRad(23.4f) )
			, m_delta(0.0f)
		{
			m_northDir = { 1.0f,  0.0f, 0.0f };
			m_sunDir   = { 0.0f, -1.0f, 0.0f };
			m_upDir    = { 0.0f,  1.0f, 0.0f };
		}

		void Update(float _time)
		{
			CalculateSunOrbit();
			UpdateSunPosition(_time - 12.0f);
		}

		bx::Vec3 m_northDir;
		bx::Vec3 m_sunDir;
		bx::Vec3 m_upDir;
		float m_latitude;
		Month m_month;

	private:
		void CalculateSunOrbit()
		{
			float day = 30.0f * m_month + 15.0f;
			float lambda = 280.46f + 0.9856474f * day;
			lambda  = bx::toRad(lambda);
			m_delta = bx::asin(bx::sin(m_eclipticObliquity) * bx::sin(lambda) );
		}

		void UpdateSunPosition(float _hour)
		{
			const float latitude = bx::toRad(m_latitude);
			const float hh = _hour * bx::kPi / 12.0f;
			const float azimuth = bx::atan2(
				  bx::sin(hh)
				, bx::cos(hh) * bx::sin(latitude) - bx::tan(m_delta) * bx::cos(latitude)
				);

			const float altitude = bx::asin(
				bx::sin(latitude) * bx::sin(m_delta) + bx::cos(latitude) * bx::cos(m_delta) * bx::cos(hh)
				);

			const bx::Quaternion rot0 = bx::rotateAxis(m_upDir, -azimuth);
			const bx::Vec3 dir = bx::mul(m_northDir, rot0);
			const bx::Vec3 uxd = bx::cross(m_upDir, dir);

			const bx::Quaternion rot1 = bx::rotateAxis(uxd, altitude);
			m_sunDir = bx::mul(dir, rot1);
		}

		float m_eclipticObliquity;
		float m_delta;
	};

	struct ScreenPosVertex
	{
		float m_x;
		float m_y;

		static void init()
		{
			ms_layout
				.begin()
				.add(bgfx::Attrib::Position, 2, bgfx::AttribType::Float)
				.end();
		}

		static bgfx::VertexLayout ms_layout;
	};

	bgfx::VertexLayout ScreenPosVertex::ms_layout;

	// Renders a screen-space grid of triangles.
	// Because of performance reasons, and because sky color is smooth, sky color is computed in vertex shader.
	// 32x32 is a reasonable size for the grid to have smooth enough colors.
	struct ProceduralSky
	{
		void init(int verticalCount, int horizontalCount)
		{
			// Create vertex stream declaration.
			ScreenPosVertex::init();

			m_skyProgram = loadProgram("vs_sky", "fs_sky");
			m_skyProgram_colorBandingFix = loadProgram("vs_sky", "fs_sky_color_banding_fix");

			m_preventBanding = true;

			bx::AllocatorI* allocator = entry::getAllocator();

			ScreenPosVertex* vertices = (ScreenPosVertex*)BX_ALLOC(allocator
				, verticalCount * horizontalCount * sizeof(ScreenPosVertex)
				);

			for (int i = 0; i < verticalCount; i++)
			{
				for (int j = 0; j < horizontalCount; j++)
				{
					ScreenPosVertex& v = vertices[i * verticalCount + j];
					v.m_x = float(j) / (horizontalCount - 1) * 2.0f - 1.0f;
					v.m_y = float(i) / (verticalCount - 1) * 2.0f - 1.0f;
				}
			}

			uint16_t* indices = (uint16_t*)BX_ALLOC(allocator
				, (verticalCount - 1) * (horizontalCount - 1) * 6 * sizeof(uint16_t)
				);

			int k = 0;
			for (int i = 0; i < verticalCount - 1; i++)
			{
				for (int j = 0; j < horizontalCount - 1; j++)
				{
					indices[k++] = (uint16_t)(j + 0 + horizontalCount * (i + 0));
					indices[k++] = (uint16_t)(j + 1 + horizontalCount * (i + 0));
					indices[k++] = (uint16_t)(j + 0 + horizontalCount * (i + 1));

					indices[k++] = (uint16_t)(j + 1 + horizontalCount * (i + 0));
					indices[k++] = (uint16_t)(j + 1 + horizontalCount * (i + 1));
					indices[k++] = (uint16_t)(j + 0 + horizontalCount * (i + 1));
				}
			}

			m_vbh = bgfx::createVertexBuffer(bgfx::copy(vertices, sizeof(ScreenPosVertex) * verticalCount * horizontalCount), ScreenPosVertex::ms_layout);
			m_ibh = bgfx::createIndexBuffer(bgfx::copy(indices, sizeof(uint16_t) * k));

			BX_FREE(allocator, indices);
			BX_FREE(allocator, vertices);
		}

		void shutdown()
		{
			bgfx::destroy(m_ibh);
			bgfx::destroy(m_vbh);
			bgfx::destroy(m_skyProgram);
			bgfx::destroy(m_skyProgram_colorBandingFix);
		}

		void draw()
		{
			bgfx::setState(BGFX_STATE_WRITE_RGB | BGFX_STATE_DEPTH_TEST_EQUAL);
			bgfx::setIndexBuffer(m_ibh);
			bgfx::setVertexBuffer(0, m_vbh);
			bgfx::submit(0, m_preventBanding ? m_skyProgram_colorBandingFix : m_skyProgram);
		}

		bgfx::VertexBufferHandle m_vbh;
		bgfx::IndexBufferHandle m_ibh;

		bgfx::ProgramHandle m_skyProgram;
		bgfx::ProgramHandle m_skyProgram_colorBandingFix;

		bool m_preventBanding;
	};

	class ExampleProceduralSky : public entry::AppI
	{
	public:
		ExampleProceduralSky(const char* _name, const char* _description, const char* _url)
			: entry::AppI(_name, _description, _url)
		{
		}

		void init(int32_t _argc, const char* const* _argv, uint32_t _width, uint32_t _height) override
		{
			Args args(_argc, _argv);

			m_width = _width;
			m_height = _height;
			m_debug = BGFX_DEBUG_NONE;
			m_reset = BGFX_RESET_VSYNC;

			bgfx::Init init;
			init.type     = args.m_type;
			init.vendorId = args.m_pciId;
			init.resolution.width  = m_width;
			init.resolution.height = m_height;
			init.resolution.reset  = m_reset;
			bgfx::init(init);

			// Enable m_debug text.
			bgfx::setDebug(m_debug);

			// Set view 0 clear state.
			bgfx::setViewClear(0
				, BGFX_CLEAR_COLOR | BGFX_CLEAR_DEPTH
				, 0x000000ff
				, 1.0f
				, 0
				);

			m_sunLuminanceXYZ.SetMap(sunLuminanceXYZTable);
			m_skyLuminanceXYZ.SetMap(skyLuminanceXYZTable);

			m_mesh = meshLoad("meshes/test_scene.bin");

			m_lightmapTexture = loadTexture("textures/lightmap.ktx");

			// Imgui.
			imguiCreate();

			m_timeOffset = bx::getHPCounter();
			m_time = 0.0f;
			m_timeScale = 1.0f;

			s_texLightmap     = bgfx::createUniform("s_texLightmap",     bgfx::UniformType::Sampler);
			u_sunLuminance    = bgfx::createUniform("u_sunLuminance",    bgfx::UniformType::Vec4);
			u_skyLuminanceXYZ = bgfx::createUniform("u_skyLuminanceXYZ", bgfx::UniformType::Vec4);
			u_skyLuminance    = bgfx::createUniform("u_skyLuminance",    bgfx::UniformType::Vec4);
			u_sunDirection    = bgfx::createUniform("u_sunDirection",    bgfx::UniformType::Vec4);
			u_parameters      = bgfx::createUniform("u_parameters",      bgfx::UniformType::Vec4);
			u_perezCoeff      = bgfx::createUniform("u_perezCoeff",      bgfx::UniformType::Vec4, 5);

			m_landscapeProgram = loadProgram("vs_sky_landscape", "fs_sky_landscape");

			m_sky.init(32, 32);

			m_sun.Update(0);

			cameraCreate();

			cameraSetPosition({ 5.0f, 3.0, 0.0f });
			cameraSetVerticalAngle(bx::kPi / 8.0f);
			cameraSetHorizontalAngle(-bx::kPi / 3.0f);

			m_turbidity = 2.15f;
		}

		virtual int shutdown() override
		{
			// Cleanup.
			cameraDestroy();
			imguiDestroy();

			meshUnload(m_mesh);

			m_sky.shutdown();

			bgfx::destroy(s_texLightmap);
			bgfx::destroy(u_sunLuminance);
			bgfx::destroy(u_skyLuminanceXYZ);
			bgfx::destroy(u_skyLuminance);
			bgfx::destroy(u_sunDirection);
			bgfx::destroy(u_parameters);
			bgfx::destroy(u_perezCoeff);

			bgfx::destroy(m_lightmapTexture);
			bgfx::destroy(m_landscapeProgram);

			bgfx::frame();

			// Shutdown bgfx.
			bgfx::shutdown();

			return 0;
		}

		void imgui(float _width)
		{
			ImGui::Begin("ProceduralSky");
			ImGui::SetWindowSize(ImVec2(_width, 200.0f) );
			ImGui::SliderFloat("Time scale", &m_timeScale, 0.0f, 1.0f);
			ImGui::SliderFloat("Time", &m_time, 0.0f, 24.0f);
			ImGui::SliderFloat("Latitude", &m_sun.m_latitude, -90.0f, 90.0f);
			ImGui::SliderFloat("Turbidity", &m_turbidity, 1.9f, 10.0f);
			ImGui::Checkbox("Prevent color banding", &m_sky.m_preventBanding);

			const char* items[] =
			{
				"January",
				"February",
				"March",
				"April",
				"May",
				"June",
				"July",
				"August",
				"September",
				"October",
				"November",
				"December"
			};

			ImGui::Combo("Month", (int*)&m_sun.m_month, items, 12);

			ImGui::End();
		}

		bool update() override
		{
			if (!entry::processEvents(m_width, m_height, m_debug, m_reset, &m_mouseState))
			{
				int64_t now = bx::getHPCounter();
				static int64_t last = now;
				const int64_t frameTime = now - last;
				last = now;
				const double freq = double(bx::getHPFrequency());
				const float deltaTime = float(frameTime / freq);
				m_time += m_timeScale * deltaTime;
				m_time = bx::mod(m_time, 24.0f);
				m_sun.Update(m_time);

				imguiBeginFrame(m_mouseState.m_mx
					, m_mouseState.m_my
					, (m_mouseState.m_buttons[entry::MouseButton::Left]   ? IMGUI_MBUT_LEFT   : 0)
					| (m_mouseState.m_buttons[entry::MouseButton::Right]  ? IMGUI_MBUT_RIGHT  : 0)
					| (m_mouseState.m_buttons[entry::MouseButton::Middle] ? IMGUI_MBUT_MIDDLE : 0)
					, m_mouseState.m_mz
					, uint16_t(m_width)
					, uint16_t(m_height)
					);

				showExampleDialog(this);

				ImGui::SetNextWindowPos(
					  ImVec2(m_width - m_width / 5.0f - 10.0f, 10.0f)
					, ImGuiCond_FirstUseEver
					);

				imgui(m_width / 5.0f - 10.0f);

				imguiEndFrame();

				if (!ImGui::MouseOverArea())
				{
					// Update camera.
					cameraUpdate(deltaTime, m_mouseState);
				}

				// Set view 0 default viewport.
				bgfx::setViewRect(0, 0, 0, uint16_t(m_width), uint16_t(m_height));

				float view[16];
				cameraGetViewMtx(view);

				float proj[16];
				bx::mtxProj(proj, 60.0f, float(m_width) / float(m_height), 0.1f, 2000.0f, bgfx::getCaps()->homogeneousDepth);

				bgfx::setViewTransform(0, view, proj);

				Color sunLuminanceXYZ = m_sunLuminanceXYZ.GetValue(m_time);
				Color sunLuminanceRGB = xyzToRgb(sunLuminanceXYZ);

				Color skyLuminanceXYZ = m_skyLuminanceXYZ.GetValue(m_time);
				Color skyLuminanceRGB = xyzToRgb(skyLuminanceXYZ);

				bgfx::setUniform(u_sunLuminance,    &sunLuminanceRGB.x);
				bgfx::setUniform(u_skyLuminanceXYZ, &skyLuminanceXYZ.x);
				bgfx::setUniform(u_skyLuminance,    &skyLuminanceRGB.x);

				bgfx::setUniform(u_sunDirection, &m_sun.m_sunDir.x);

				float exposition[4] = { 0.02f, 3.0f, 0.1f, m_time };
				bgfx::setUniform(u_parameters, exposition);

				float perezCoeff[4 * 5];
				computePerezCoeff(m_turbidity, perezCoeff);
				bgfx::setUniform(u_perezCoeff, perezCoeff, 5);

				bgfx::setTexture(0, s_texLightmap, m_lightmapTexture);
				meshSubmit(m_mesh, 0, m_landscapeProgram, NULL);

				m_sky.draw();

				bgfx::frame();

				return true;
			}

			return false;
		}

		void computePerezCoeff(float _turbidity, float* _outPerezCoeff)
		{
			const bx::Vec3 turbidity = { _turbidity, _turbidity, _turbidity };
			for (uint32_t ii = 0; ii < 5; ++ii)
			{
				const bx::Vec3 tmp = bx::mad(ABCDE_t[ii], turbidity, ABCDE[ii]);
				float* out = _outPerezCoeff + 4 * ii;
				bx::store(out, tmp);
				out[3] = 0.0f;
			}
		}

		bgfx::ProgramHandle m_landscapeProgram;
		bgfx::UniformHandle s_texLightmap;
		bgfx::TextureHandle m_lightmapTexture;

		bgfx::UniformHandle u_sunLuminance;
		bgfx::UniformHandle u_skyLuminanceXYZ;
		bgfx::UniformHandle u_skyLuminance;
		bgfx::UniformHandle u_sunDirection;
		bgfx::UniformHandle u_parameters;
		bgfx::UniformHandle u_perezCoeff;

		ProceduralSky m_sky;
		SunController m_sun;

		DynamicValueController m_sunLuminanceXYZ;
		DynamicValueController m_skyLuminanceXYZ;

		uint32_t m_width;
		uint32_t m_height;
		uint32_t m_debug;
		uint32_t m_reset;

		Mesh* m_mesh;

		entry::MouseState m_mouseState;

		float m_time;
		float m_timeScale;
		int64_t m_timeOffset;

		float m_turbidity;
	};

} // namespace

ENTRY_IMPLEMENT_MAIN(
	  ExampleProceduralSky
	, "36-sky"
	, "Perez dynamic sky model."
	, "https://bkaradzic.github.io/bgfx/examples.html#sky"
	);