// Tencent is pleased to support the open source community by making RapidJSON available.
//
// Copyright (C) 2015 THL A29 Limited, a Tencent company, and Milo Yip. All rights reserved.
//
// Licensed under the MIT License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// http://opensource.org/licenses/MIT
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include "unittest.h"
#include "rapidjson/filereadstream.h"
#include "rapidjson/filewritestream.h"
#include "rapidjson/encodedstream.h"
#include "rapidjson/stringbuffer.h"
using namespace rapidjson;
// Verification of encoders/decoders with Hoehrmann's UTF8 decoder
// http://www.unicode.org/Public/UNIDATA/Blocks.txt
static const unsigned kCodepointRanges[] = {
0x0000, 0x007F, // Basic Latin
0x0080, 0x00FF, // Latin-1 Supplement
0x0100, 0x017F, // Latin Extended-A
0x0180, 0x024F, // Latin Extended-B
0x0250, 0x02AF, // IPA Extensions
0x02B0, 0x02FF, // Spacing Modifier Letters
0x0300, 0x036F, // Combining Diacritical Marks
0x0370, 0x03FF, // Greek and Coptic
0x0400, 0x04FF, // Cyrillic
0x0500, 0x052F, // Cyrillic Supplement
0x0530, 0x058F, // Armenian
0x0590, 0x05FF, // Hebrew
0x0600, 0x06FF, // Arabic
0x0700, 0x074F, // Syriac
0x0750, 0x077F, // Arabic Supplement
0x0780, 0x07BF, // Thaana
0x07C0, 0x07FF, // NKo
0x0800, 0x083F, // Samaritan
0x0840, 0x085F, // Mandaic
0x0900, 0x097F, // Devanagari
0x0980, 0x09FF, // Bengali
0x0A00, 0x0A7F, // Gurmukhi
0x0A80, 0x0AFF, // Gujarati
0x0B00, 0x0B7F, // Oriya
0x0B80, 0x0BFF, // Tamil
0x0C00, 0x0C7F, // Telugu
0x0C80, 0x0CFF, // Kannada
0x0D00, 0x0D7F, // Malayalam
0x0D80, 0x0DFF, // Sinhala
0x0E00, 0x0E7F, // Thai
0x0E80, 0x0EFF, // Lao
0x0F00, 0x0FFF, // Tibetan
0x1000, 0x109F, // Myanmar
0x10A0, 0x10FF, // Georgian
0x1100, 0x11FF, // Hangul Jamo
0x1200, 0x137F, // Ethiopic
0x1380, 0x139F, // Ethiopic Supplement
0x13A0, 0x13FF, // Cherokee
0x1400, 0x167F, // Unified Canadian Aboriginal Syllabics
0x1680, 0x169F, // Ogham
0x16A0, 0x16FF, // Runic
0x1700, 0x171F, // Tagalog
0x1720, 0x173F, // Hanunoo
0x1740, 0x175F, // Buhid
0x1760, 0x177F, // Tagbanwa
0x1780, 0x17FF, // Khmer
0x1800, 0x18AF, // Mongolian
0x18B0, 0x18FF, // Unified Canadian Aboriginal Syllabics Extended
0x1900, 0x194F, // Limbu
0x1950, 0x197F, // Tai Le
0x1980, 0x19DF, // New Tai Lue
0x19E0, 0x19FF, // Khmer Symbols
0x1A00, 0x1A1F, // Buginese
0x1A20, 0x1AAF, // Tai Tham
0x1B00, 0x1B7F, // Balinese
0x1B80, 0x1BBF, // Sundanese
0x1BC0, 0x1BFF, // Batak
0x1C00, 0x1C4F, // Lepcha
0x1C50, 0x1C7F, // Ol Chiki
0x1CD0, 0x1CFF, // Vedic Extensions
0x1D00, 0x1D7F, // Phonetic Extensions
0x1D80, 0x1DBF, // Phonetic Extensions Supplement
0x1DC0, 0x1DFF, // Combining Diacritical Marks Supplement
0x1E00, 0x1EFF, // Latin Extended Additional
0x1F00, 0x1FFF, // Greek Extended
0x2000, 0x206F, // General Punctuation
0x2070, 0x209F, // Superscripts and Subscripts
0x20A0, 0x20CF, // Currency Symbols
0x20D0, 0x20FF, // Combining Diacritical Marks for Symbols
0x2100, 0x214F, // Letterlike Symbols
0x2150, 0x218F, // Number Forms
0x2190, 0x21FF, // Arrowspre { line-height: 125%; }
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight .c { color: #888 } /* Comment */
.highlight .err { color: #A61717; background-color: #E3D2D2 } /* Error */
.highlight .k { color: #080; font-weight: bold } /* Keyword */
.highlight .ch { color: #888 } /* Comment.Hashbang */
.highlight .cm { color: #888 } /* Comment.Multiline */
.highlight .cp { color: #C00; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888 } /* Comment.Single */
.highlight .cs { color: #C00; font-weight: bold; background-color: #FFF0F0 } /* Comment.Special */
.highlight .gd { color: #000; background-color: #FDD } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
.highlight .gr { color: #A00 } /* Generic.Error */
.highlight .gh { color: #333 } /* Generic.Heading */
.highlight .gi { color: #000; background-color: #DFD } /* Generic.Inserted */
.highlight .go { color: #888 } /* Generic.Output */
.highlight .gp { color: #555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666 } /* Generic.Subheading */
.highlight .gt { color: #A00 } /* Generic.Traceback */
.highlight .kc { color: #080; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #080; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #080; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #080 } /* Keyword.Pseudo */
.highlight .kr { color: #080; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #00D; font-weight: bold } /* Literal.Number */
.highlight .s { color: #D20; background-color: #FFF0F0 } /* Literal.String */
.highlight .na { color: #369 } /* Name.Attribute */
.highlight .nb { color: #038 } /* Name.Builtin */
.highlight .nc { color: #B06; font-weight: bold } /* Name.Class */
.highlight .no { color: #036; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555 } /* Name.Decorator */
.highlight .ne { color: #B06; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #06B; font-weight: bold } /* Name.Function */
.highlight .nl { color: #369; font-style: italic } /* Name.Label */
.highlight .nn { color: #B06; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #369; font-weight: bold } /* Name.Property */
.highlight .nt { color: #B06; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #369 } /* Name.Variable */
.highlight .ow { color: #080 } /* Operator.Word */
.highlight .w { color: #BBB } /* Text.Whitespace */
.highlight .mb { color: #00D; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #00D; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #00D; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #00D; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #00D; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #D20; background-color: #FFF0F0 } /* Literal.String.Affix */
.highlight .sb { color: #D20; background-color: #FFF0F0 } /* Literal.String.Backtick */
.highlight .sc { color: #D20; background-color: #FFF0F0 } /* Literal.String.Char */
.highlight .dl { color: #D20; background-color: #FFF0F0 } /* Literal.String.Delimiter */
.highlight .sd { color: #D20; background-color: #FFF0F0 } /* Literal.String.Doc */
.highlight .s2 { color: #D20; background-color: #FFF0F0 } /* Literal.String.Double */
.highlight .se { color: #04D; background-color: #FFF0F0 } /* Literal.String.Escape */
.highlight .sh { color: #D20; background-color: #FFF0F0 } /* Literal.String.Heredoc */
.highlight .si { color: #33B; background-color: #FFF0F0 } /* Literal.String.Interpol */
.highlight .sx { color: #2B2; background-color: #F0FFF0 } /* Literal.String.Other */
.highlight .sr { color: #080; background-color: #FFF0FF } /* Literal.String.Regex */
.highlight .s1 { color: #D20; background-color: #FFF0F0 } /* Literal.String.Single */
.highlight .ss { color: #A60; background-color: #FFF0F0 } /* Literal.String.Symbol */
.highlight .bp { color: #038 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #06B; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #369 } /* Name.Variable.Class */
.highlight .vg { color: #D70 } /* Name.Variable.Global */
.highlight .vi { color: #33B } /* Name.Variable.Instance */
.highlight .vm { color: #369 } /* Name.Variable.Magic */
.highlight .il { color: #00D; font-weight: bold } /* Literal.Number.Integer.Long *//*
Simple DirectMedia Layer
Copyright (C) 1997-2016 Sam Lantinga <slouken@libsdl.org>
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "../SDL_internal.h"
/* Functions for audio drivers to perform runtime conversion of audio format */
#include "SDL_audio.h"
#include "SDL_audio_c.h"
#include "SDL_assert.h"
/* #define DEBUG_CONVERT */
/* Effectively mix right and left channels into a single channel */
static void SDLCALL
SDL_ConvertMono(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
int i;
Sint32 sample;
#ifdef DEBUG_CONVERT
fprintf(stderr, "Converting to mono\n");
#endif
switch (format & (SDL_AUDIO_MASK_SIGNED |
SDL_AUDIO_MASK_BITSIZE |
SDL_AUDIO_MASK_DATATYPE)) {
case AUDIO_U8:
{
Uint8 *src, *dst;
src = cvt->buf;
dst = cvt->buf;
for (i = cvt->len_cvt / 2; i; --i) {
sample = src[0] + src[1];
*dst = (Uint8) (sample / 2);
src += 2;
dst += 1;
}
}
break;
case AUDIO_S8:
{
Sint8 *src, *dst;
src = (Sint8 *) cvt->buf;
dst = (Sint8 *) cvt->buf;
for (i = cvt->len_cvt / 2; i; --i) {
sample = src[0] + src[1];
*dst = (Sint8) (sample / 2);
src += 2;
dst += 1;
}
}
break;
case AUDIO_U16:
{
Uint8 *src, *dst;
src = cvt->buf;
dst = cvt->buf;
if (SDL_AUDIO_ISBIGENDIAN(format)) {
for (i = cvt->len_cvt / 4; i; --i) {
sample = (Uint16) ((src[0] << 8) | src[1]) +
(Uint16) ((src[2] << 8) | src[3]);
sample /= 2;
dst[1] = (sample & 0xFF);
sample >>= 8;
dst[0] = (sample & 0xFF);
src += 4;
dst += 2;
}
} else {
for (i = cvt->len_cvt / 4; i; --i) {
sample = (Uint16) ((src[1] << 8) | src[0]) +
(Uint16) ((src[3] << 8) | src[2]);
sample /= 2;
dst[0] = (sample & 0xFF);
sample >>= 8;
dst[1] = (sample & 0xFF);
src += 4;
dst += 2;
}
}
}
break;
case AUDIO_S16:
{
Uint8 *src, *dst;
src = cvt->buf;
dst = cvt->buf;
if (SDL_AUDIO_ISBIGENDIAN(format)) {
for (i = cvt->len_cvt / 4; i; --i) {
sample = (Sint16) ((src[0] << 8) | src[1]) +
(Sint16) ((src[2] << 8) | src[3]);
sample /= 2;
dst[1] = (sample & 0xFF);
sample >>= 8;
dst[0] = (sample & 0xFF);
src += 4;
dst += 2;
}
} else {
for (i = cvt->len_cvt / 4; i; --i) {
sample = (Sint16) ((src[1] << 8) | src[0]) +
(Sint16) ((src[3] << 8) | src[2]);
sample /= 2;
dst[0] = (sample & 0xFF);
sample >>= 8;
dst[1] = (sample & 0xFF);
src += 4;
dst += 2;
}
}
}
break;
case AUDIO_S32:
{
const Uint32 *src = (const Uint32 *) cvt->buf;
Uint32 *dst = (Uint32 *) cvt->buf;
if (SDL_AUDIO_ISBIGENDIAN(format)) {
for (i = cvt->len_cvt / 8; i; --i, src += 2) {
const Sint64 added =
(((Sint64) (Sint32) SDL_SwapBE32(src[0])) +
((Sint64) (Sint32) SDL_SwapBE32(src[1])));
*(dst++) = SDL_SwapBE32((Uint32) ((Sint32) (added / 2)));
}
} else {
for (i = cvt->len_cvt / 8; i; --i, src += 2) {
const Sint64 added =
(((Sint64) (Sint32) SDL_SwapLE32(src[0])) +
((Sint64) (Sint32) SDL_SwapLE32(src[1])));
*(dst++) = SDL_SwapLE32((Uint32) ((Sint32) (added / 2)));
}
}
}
break;
case AUDIO_F32:
{
const float *src = (const float *) cvt->buf;
float *dst = (float *) cvt->buf;
if (SDL_AUDIO_ISBIGENDIAN(format)) {
for (i = cvt->len_cvt / 8; i; --i, src += 2) {
const float src1 = SDL_SwapFloatBE(src[0]);
const float src2 = SDL_SwapFloatBE(src[1]);
const double added = ((double) src1) + ((double) src2);
const float halved = (float) (added * 0.5);
*(dst++) = SDL_SwapFloatBE(halved);
}
} else {
for (i = cvt->len_cvt / 8; i; --i, src += 2) {
const float src1 = SDL_SwapFloatLE(src[0]);
const float src2 = SDL_SwapFloatLE(src[1]);
const double added = ((double) src1) + ((double) src2);
const float halved = (float) (added * 0.5);
*(dst++) = SDL_SwapFloatLE(halved);
}
}
}
break;
}
cvt->len_cvt /= 2;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
/* Discard top 4 channels */
static void SDLCALL
SDL_ConvertStrip(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
int i;
#ifdef DEBUG_CONVERT
fprintf(stderr, "Converting down from 6 channels to stereo\n");
#endif
#define strip_chans_6_to_2(type) \
{ \
const type *src = (const type *) cvt->buf; \
type *dst = (type *) cvt->buf; \
for (i = cvt->len_cvt / (sizeof (type) * 6); i; --i) { \
dst[0] = src[0]; \
dst[1] = src[1]; \
src += 6; \
dst += 2; \
} \
}
/* this function only cares about typesize, and data as a block of bits. */
switch (SDL_AUDIO_BITSIZE(format)) {
case 8:
strip_chans_6_to_2(Uint8);
break;
case 16:
strip_chans_6_to_2(Uint16);
break;
case 32:
strip_chans_6_to_2(Uint32);
break;
}
#undef strip_chans_6_to_2
cvt->len_cvt /= 3;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
/* Discard top 2 channels of 6 */
static void SDLCALL
SDL_ConvertStrip_2(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
int i;
#ifdef DEBUG_CONVERT
fprintf(stderr, "Converting 6 down to quad\n");
#endif
#define strip_chans_6_to_4(type) \
{ \
const type *src = (const type *) cvt->buf; \
type *dst = (type *) cvt->buf; \
for (i = cvt->len_cvt / (sizeof (type) * 6); i; --i) { \
dst[0] = src[0]; \
dst[1] = src[1]; \
dst[2] = src[2]; \
dst[3] = src[3]; \
src += 6; \
dst += 4; \
} \
}
/* this function only cares about typesize, and data as a block of bits. */
switch (SDL_AUDIO_BITSIZE(format)) {
case 8:
strip_chans_6_to_4(Uint8);
break;
case 16:
strip_chans_6_to_4(Uint16);
break;
case 32:
strip_chans_6_to_4(Uint32);
break;
}
#undef strip_chans_6_to_4
cvt->len_cvt /= 6;
cvt->len_cvt *= 4;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
/* Duplicate a mono channel to both stereo channels */
static void SDLCALL
SDL_ConvertStereo(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
int i;
#ifdef DEBUG_CONVERT
fprintf(stderr, "Converting to stereo\n");
#endif
#define dup_chans_1_to_2(type) \
{ \
const type *src = (const type *) (cvt->buf + cvt->len_cvt); \
type *dst = (type *) (cvt->buf + cvt->len_cvt * 2); \
for (i = cvt->len_cvt / sizeof(type); i; --i) { \
src -= 1; \
dst -= 2; \
dst[0] = dst[1] = *src; \
} \
}
/* this function only cares about typesize, and data as a block of bits. */
switch (SDL_AUDIO_BITSIZE(format)) {
case 8:
dup_chans_1_to_2(Uint8);
break;
case 16:
dup_chans_1_to_2(Uint16);
break;
case 32:
dup_chans_1_to_2(Uint32);
break;
}
#undef dup_chans_1_to_2
cvt->len_cvt *= 2;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
/* Duplicate a stereo channel to a pseudo-5.1 stream */
static void SDLCALL
SDL_ConvertSurround(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
int i;
#ifdef DEBUG_CONVERT
fprintf(stderr, "Converting stereo to surround\n");
#endif
switch (format & (SDL_AUDIO_MASK_SIGNED |
SDL_AUDIO_MASK_BITSIZE |
SDL_AUDIO_MASK_DATATYPE)) {
case AUDIO_U8:
{
Uint8 *src, *dst, lf, rf, ce;
src = (Uint8 *) (cvt->buf + cvt->len_cvt);
dst = (Uint8 *) (cvt->buf + cvt->len_cvt * 3);
for (i = cvt->len_cvt; i; --i) {
dst -= 6;
src -= 2;
lf = src[0];
rf = src[1];
ce = (lf / 2) + (rf / 2);
dst[0] = lf;
dst[1] = rf;
dst[2] = lf - ce;
dst[3] = rf - ce;
dst[4] = ce;
dst[5] = ce;
}
}
break;
case AUDIO_S8:
{
Sint8 *src, *dst, lf, rf, ce;
src = (Sint8 *) cvt->buf + cvt->len_cvt;
dst = (Sint8 *) cvt->buf + cvt->len_cvt * 3;
for (i = cvt->len_cvt; i; --i) {
dst -= 6;
src -= 2;
lf = src[0];
rf = src[1];
ce = (lf / 2) + (rf / 2);
dst[0] = lf;
dst[1] = rf;
dst[2] = lf - ce;
dst[3] = rf - ce;
dst[4] = ce;
dst[5] = ce;
}
}
break;
case AUDIO_U16:
{
Uint8 *src, *dst;
Uint16 lf, rf, ce, lr, rr;
src = cvt->buf + cvt->len_cvt;
dst = cvt->buf + cvt->len_cvt * 3;
if (SDL_AUDIO_ISBIGENDIAN(format)) {
for (i = cvt->len_cvt / 4; i; --i) {
dst -= 12;
src -= 4;
lf = (Uint16) ((src[0] << 8) | src[1]);
rf = (Uint16) ((src[2] << 8) | src[3]);
ce = (lf / 2) + (rf / 2);
rr = lf - ce;
lr = rf - ce;
dst[1] = (lf & 0xFF);
dst[0] = ((lf >> 8) & 0xFF);
dst[3] = (rf & 0xFF);
dst[2] = ((rf >> 8) & 0xFF);
dst[1 + 4] = (lr & 0xFF);
dst[0 + 4] = ((lr >> 8) & 0xFF);
dst[3 + 4] = (rr & 0xFF);
dst[2 + 4] = ((rr >> 8) & 0xFF);
dst[1 + 8] = (ce & 0xFF);
dst[0 + 8] = ((ce >> 8) & 0xFF);
dst[3 + 8] = (ce & 0xFF);
dst[2 + 8] = ((ce >> 8) & 0xFF);
}
} else {
for (i = cvt->len_cvt / 4; i; --i) {
dst -= 12;
src -= 4;
lf = (Uint16) ((src[1] << 8) | src[0]);
rf = (Uint16) ((src[3] << 8) | src[2]);
ce = (lf / 2) + (rf / 2);
rr = lf - ce;
lr = rf - ce;
dst[0] = (lf & 0xFF);
dst[1] = ((lf >> 8) & 0xFF);
dst[2] = (rf & 0xFF);
dst[3] = ((rf >> 8) & 0xFF);
dst[0 + 4] = (lr & 0xFF);
dst[1 + 4] = ((lr >> 8) & 0xFF);
dst[2 + 4] = (rr & 0xFF);
dst[3 + 4] = ((rr >> 8) & 0xFF);
dst[0 + 8] = (ce & 0xFF);
dst[1 + 8] = ((ce >> 8) & 0xFF);
dst[2 + 8] = (ce & 0xFF);
dst[3 + 8] = ((ce >> 8) & 0xFF);
}
}
}
break;
case AUDIO_S16:
{
Uint8 *src, *dst;
Sint16 lf, rf, ce, lr, rr;
src = cvt->buf + cvt->len_cvt;
dst = cvt->buf + cvt->len_cvt * 3;
if (SDL_AUDIO_ISBIGENDIAN(format)) {
for (i = cvt->len_cvt / 4; i; --i) {
dst -= 12;
src -= 4;
lf = (Sint16) ((src[0] << 8) | src[1]);
rf = (Sint16) ((src[2] << 8) | src[3]);
ce = (lf / 2) + (rf / 2);
rr = lf - ce;
lr = rf - ce;
dst[1] = (lf & 0xFF);
dst[0] = ((lf >> 8) & 0xFF);
dst[3] = (rf & 0xFF);
dst[2] = ((rf >> 8) & 0xFF);
dst[1 + 4] = (lr & 0xFF);
dst[0 + 4] = ((lr >> 8) & 0xFF);
dst[3 + 4] = (rr & 0xFF);
dst[2 + 4] = ((rr >> 8) & 0xFF);
dst[1 + 8] = (ce & 0xFF);
dst[0 + 8] = ((ce >> 8) & 0xFF);
dst[3 + 8] = (ce & 0xFF);
dst[2 + 8] = ((ce >> 8) & 0xFF);
}
} else {
for (i = cvt->len_cvt / 4; i; --i) {
dst -= 12;
src -= 4;
lf = (Sint16) ((src[1] << 8) | src[0]);
rf = (Sint16) ((src[3] << 8) | src[2]);
ce = (lf / 2) + (rf / 2);
rr = lf - ce;
lr = rf - ce;
dst[0] = (lf & 0xFF);
dst[1] = ((lf >> 8) & 0xFF);
dst[2] = (rf & 0xFF);
dst[3] = ((rf >> 8) & 0xFF);
dst[0 + 4] = (lr & 0xFF);
dst[1 + 4] = ((lr >> 8) & 0xFF);
dst[2 + 4] = (rr & 0xFF);
dst[3 + 4] = ((rr >> 8) & 0xFF);
dst[0 + 8] = (ce & 0xFF);
dst[1 + 8] = ((ce >> 8) & 0xFF);
dst[2 + 8] = (ce & 0xFF);
dst[3 + 8] = ((ce >> 8) & 0xFF);
}
}
}
break;
case AUDIO_S32:
{
Sint32 lf, rf, ce;
const Uint32 *src = (const Uint32 *) (cvt->buf + cvt->len_cvt);
Uint32 *dst = (Uint32 *) (cvt->buf + cvt->len_cvt * 3);
if (SDL_AUDIO_ISBIGENDIAN(format)) {
for (i = cvt->len_cvt / 8; i; --i) {
dst -= 6;
src -= 2;
lf = (Sint32) SDL_SwapBE32(src[0]);
rf = (Sint32) SDL_SwapBE32(src[1]);
ce = (lf / 2) + (rf / 2);
dst[0] = SDL_SwapBE32((Uint32) lf);
dst[1] = SDL_SwapBE32((Uint32) rf);
dst[2] = SDL_SwapBE32((Uint32) (lf - ce));
dst[3] = SDL_SwapBE32((Uint32) (rf - ce));
dst[4] = SDL_SwapBE32((Uint32) ce);
dst[5] = SDL_SwapBE32((Uint32) ce);
}
} else {
for (i = cvt->len_cvt / 8; i; --i) {
dst -= 6;
src -= 2;
lf = (Sint32) SDL_SwapLE32(src[0]);
rf = (Sint32) SDL_SwapLE32(src[1]);
ce = (lf / 2) + (rf / 2);
dst[0] = src[0];
dst[1] = src[1];
dst[2] = SDL_SwapLE32((Uint32) (lf - ce));
dst[3] = SDL_SwapLE32((Uint32) (rf - ce));
dst[4] = SDL_SwapLE32((Uint32) ce);
dst[5] = SDL_SwapLE32((Uint32) ce);
}
}
}
break;
case AUDIO_F32:
{
float lf, rf, ce;
const float *src = (const float *) (cvt->buf + cvt->len_cvt);
float *dst = (float *) (cvt->buf + cvt->len_cvt * 3);
if (SDL_AUDIO_ISBIGENDIAN(format)) {
for (i = cvt->len_cvt / 8; i; --i) {
dst -= 6;
src -= 2;
lf = SDL_SwapFloatBE(src[0]);
rf = SDL_SwapFloatBE(src[1]);
ce = (lf * 0.5f) + (rf * 0.5f);
dst[0] = src[0];
dst[1] = src[1];
dst[2] = SDL_SwapFloatBE(lf - ce);
dst[3] = SDL_SwapFloatBE(rf - ce);
dst[4] = dst[5] = SDL_SwapFloatBE(ce);
}
} else {
for (i = cvt->len_cvt / 8; i; --i) {
dst -= 6;
src -= 2;
lf = SDL_SwapFloatLE(src[0]);
rf = SDL_SwapFloatLE(src[1]);
ce = (lf * 0.5f) + (rf * 0.5f);
dst[0] = src[0];
dst[1] = src[1];
dst[2] = SDL_SwapFloatLE(lf - ce);
dst[3] = SDL_SwapFloatLE(rf - ce);
dst[4] = dst[5] = SDL_SwapFloatLE(ce);
}
}
}
break;
}
cvt->len_cvt *= 3;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
/* Duplicate a stereo channel to a pseudo-4.0 stream */
static void SDLCALL
SDL_ConvertSurround_4(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
int i;
#ifdef DEBUG_CONVERT
fprintf(stderr, "Converting stereo to quad\n");
#endif
switch (format & (SDL_AUDIO_MASK_SIGNED |
SDL_AUDIO_MASK_BITSIZE |
SDL_AUDIO_MASK_DATATYPE)) {
case AUDIO_U8:
{
Uint8 *src, *dst, lf, rf, ce;
src = (Uint8 *) (cvt->buf + cvt->len_cvt);
dst = (Uint8 *) (cvt->buf + cvt->len_cvt * 2);
for (i = cvt->len_cvt; i; --i) {
dst -= 4;
src -= 2;
lf = src[0];
rf = src[1];
ce = (lf / 2) + (rf / 2);
dst[0] = lf;
dst[1] = rf;
dst[2] = lf - ce;
dst[3] = rf - ce;
}
}
break;
case AUDIO_S8:
{
Sint8 *src, *dst, lf, rf, ce;
src = (Sint8 *) cvt->buf + cvt->len_cvt;
dst = (Sint8 *) cvt->buf + cvt->len_cvt * 2;
for (i = cvt->len_cvt; i; --i) {
dst -= 4;
src -= 2;
lf = src[0];
rf = src[1];
ce = (lf / 2) + (rf / 2);
dst[0] = lf;
dst[1] = rf;
dst[2] = lf - ce;
dst[3] = rf - ce;
}
}
break;
case AUDIO_U16:
{
Uint8 *src, *dst;
Uint16 lf, rf, ce, lr, rr;
src = cvt->buf + cvt->len_cvt;
dst = cvt->buf + cvt->len_cvt * 2;
if (SDL_AUDIO_ISBIGENDIAN(format)) {
for (i = cvt->len_cvt / 4; i; --i) {
dst -= 8;
src -= 4;
lf = (Uint16) ((src[0] << 8) | src[1]);
rf = (Uint16) ((src[2] << 8) | src[3]);
ce = (lf / 2) + (rf / 2);
rr = lf - ce;
lr = rf - ce;
dst[1] = (lf & 0xFF);
dst[0] = ((lf >> 8) & 0xFF);
dst[3] = (rf & 0xFF);
dst[2] = ((rf >> 8) & 0xFF);
dst[1 + 4] = (lr & 0xFF);
dst[0 + 4] = ((lr >> 8) & 0xFF);
dst[3 + 4] = (rr & 0xFF);
dst[2 + 4] = ((rr >> 8) & 0xFF);
}
} else {
for (i = cvt->len_cvt / 4; i; --i) {
dst -= 8;
src -= 4;
lf = (Uint16) ((src[1] << 8) | src[0]);
rf = (Uint16) ((src[3] << 8) | src[2]);
ce = (lf / 2) + (rf / 2);
rr = lf - ce;
lr = rf - ce;
dst[0] = (lf & 0xFF);
dst[1] = ((lf >> 8) & 0xFF);
dst[2] = (rf & 0xFF);
dst[3] = ((rf >> 8) & 0xFF);
dst[0 + 4] = (lr & 0xFF);
dst[1 + 4] = ((lr >> 8) & 0xFF);
dst[2 + 4] = (rr & 0xFF);
dst[3 + 4] = ((rr >> 8) & 0xFF);
}
}
}
break;
case AUDIO_S16:
{
Uint8 *src, *dst;
Sint16 lf, rf, ce, lr, rr;
src = cvt->buf + cvt->len_cvt;
dst = cvt->buf + cvt->len_cvt * 2;
if (SDL_AUDIO_ISBIGENDIAN(format)) {
for (i = cvt->len_cvt / 4; i; --i) {
dst -= 8;
src -= 4;
lf = (Sint16) ((src[0] << 8) | src[1]);
rf = (Sint16) ((src[2] << 8) | src[3]);
ce = (lf / 2) + (rf / 2);
rr = lf - ce;
lr = rf - ce;
dst[1] = (lf & 0xFF);
dst[0] = ((lf >> 8) & 0xFF);
dst[3] = (rf & 0xFF);
dst[2] = ((rf >> 8) & 0xFF);
dst[1 + 4] = (lr & 0xFF);
dst[0 + 4] = ((lr >> 8) & 0xFF);
dst[3 + 4] = (rr & 0xFF);
dst[2 + 4] = ((rr >> 8) & 0xFF);
}
} else {
for (i = cvt->len_cvt / 4; i; --i) {
dst -= 8;
src -= 4;
lf = (Sint16) ((src[1] << 8) | src[0]);
rf = (Sint16) ((src[3] << 8) | src[2]);
ce = (lf / 2) + (rf / 2);
rr = lf - ce;
lr = rf - ce;
dst[0] = (lf & 0xFF);
dst[1] = ((lf >> 8) & 0xFF);
dst[2] = (rf & 0xFF);
dst[3] = ((rf >> 8) & 0xFF);
dst[0 + 4] = (lr & 0xFF);
dst[1 + 4] = ((lr >> 8) & 0xFF);
dst[2 + 4] = (rr & 0xFF);
dst[3 + 4] = ((rr >> 8) & 0xFF);
}
}
}
break;
case AUDIO_S32:
{
const Uint32 *src = (const Uint32 *) (cvt->buf + cvt->len_cvt);
Uint32 *dst = (Uint32 *) (cvt->buf + cvt->len_cvt * 2);
Sint32 lf, rf, ce;
if (SDL_AUDIO_ISBIGENDIAN(format)) {
for (i = cvt->len_cvt / 8; i; --i) {
dst -= 4;
src -= 2;
lf = (Sint32) SDL_SwapBE32(src[0]);
rf = (Sint32) SDL_SwapBE32(src[1]);
ce = (lf / 2) + (rf / 2);
dst[0] = src[0];
dst[1] = src[1];
dst[2] = SDL_SwapBE32((Uint32) (lf - ce));
dst[3] = SDL_SwapBE32((Uint32) (rf - ce));
}
} else {
for (i = cvt->len_cvt / 8; i; --i) {
dst -= 4;
src -= 2;
lf = (Sint32) SDL_SwapLE32(src[0]);
rf = (Sint32) SDL_SwapLE32(src[1]);
ce = (lf / 2) + (rf / 2);
dst[0] = src[0];
dst[1] = src[1];
dst[2] = SDL_SwapLE32((Uint32) (lf - ce));
dst[3] = SDL_SwapLE32((Uint32) (rf - ce));
}
}
}
break;
case AUDIO_F32:
{
const float *src = (const float *) (cvt->buf + cvt->len_cvt);
float *dst = (float *) (cvt->buf + cvt->len_cvt * 2);
float lf, rf, ce;
if (SDL_AUDIO_ISBIGENDIAN(format)) {
for (i = cvt->len_cvt / 8; i; --i) {
dst -= 4;
src -= 2;
lf = SDL_SwapFloatBE(src[0]);
rf = SDL_SwapFloatBE(src[1]);
ce = (lf / 2) + (rf / 2);
dst[0] = src[0];
dst[1] = src[1];
dst[2] = SDL_SwapFloatBE(lf - ce);
dst[3] = SDL_SwapFloatBE(rf - ce);
}
} else {
for (i = cvt->len_cvt / 8; i; --i) {
dst -= 4;
src -= 2;
lf = SDL_SwapFloatLE(src[0]);
rf = SDL_SwapFloatLE(src[1]);
ce = (lf / 2) + (rf / 2);
dst[0] = src[0];
dst[1] = src[1];
dst[2] = SDL_SwapFloatLE(lf - ce);
dst[3] = SDL_SwapFloatLE(rf - ce);
}
}
}
break;
}
cvt->len_cvt *= 2;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
int
SDL_ConvertAudio(SDL_AudioCVT * cvt)
{
/* !!! FIXME: (cvt) should be const; stack-copy it here. */
/* !!! FIXME: (actually, we can't...len_cvt needs to be updated. Grr.) */
/* Make sure there's data to convert */
if (cvt->buf == NULL) {
SDL_SetError("No buffer allocated for conversion");
return (-1);
}
/* Return okay if no conversion is necessary */
cvt->len_cvt = cvt->len;
if (cvt->filters[0] == NULL) {
return (0);
}
/* Set up the conversion and go! */
cvt->filter_index = 0;
cvt->filters[0] (cvt, cvt->src_format);
return (0);
}
static SDL_AudioFilter
SDL_HandTunedTypeCVT(SDL_AudioFormat src_fmt, SDL_AudioFormat dst_fmt)
{
/*
* Fill in any future conversions that are specialized to a
* processor, platform, compiler, or library here.
*/
return NULL; /* no specialized converter code available. */
}
/*
* Find a converter between two data types. We try to select a hand-tuned
* asm/vectorized/optimized function first, and then fallback to an
* autogenerated function that is customized to convert between two
* specific data types.
*/
static int
SDL_BuildAudioTypeCVT(SDL_AudioCVT * cvt,
SDL_AudioFormat src_fmt, SDL_AudioFormat dst_fmt)
{
if (src_fmt != dst_fmt) {
const Uint16 src_bitsize = SDL_AUDIO_BITSIZE(src_fmt);
const Uint16 dst_bitsize = SDL_AUDIO_BITSIZE(dst_fmt);
SDL_AudioFilter filter = SDL_HandTunedTypeCVT(src_fmt, dst_fmt);
/* No hand-tuned converter? Try the autogenerated ones. */
if (filter == NULL) {
int i;
for (i = 0; sdl_audio_type_filters[i].filter != NULL; i++) {
const SDL_AudioTypeFilters *filt = &sdl_audio_type_filters[i];
if ((filt->src_fmt == src_fmt) && (filt->dst_fmt == dst_fmt)) {
filter = filt->filter;
break;
}
}
if (filter == NULL) {
SDL_SetError("No conversion available for these formats");
return -1;
}
}
/* Update (cvt) with filter details... */
cvt->filters[cvt->filter_index++] = filter;
if (src_bitsize < dst_bitsize) {
const int mult = (dst_bitsize / src_bitsize);
cvt->len_mult *= mult;
cvt->len_ratio *= mult;
} else if (src_bitsize > dst_bitsize) {
cvt->len_ratio /= (src_bitsize / dst_bitsize);
}
return 1; /* added a converter. */
}
return 0; /* no conversion necessary. */
}
static SDL_AudioFilter
SDL_HandTunedResampleCVT(SDL_AudioCVT * cvt, int dst_channels,
int src_rate, int dst_rate)
{
/*
* Fill in any future conversions that are specialized to a
* processor, platform, compiler, or library here.
*/
return NULL; /* no specialized converter code available. */
}
static int
SDL_FindFrequencyMultiple(const int src_rate, const int dst_rate)
{
int retval = 0;
/* If we only built with the arbitrary resamplers, ignore multiples. */
#if !LESS_RESAMPLERS
int lo, hi;
int div;
SDL_assert(src_rate != 0);
SDL_assert(dst_rate != 0);
SDL_assert(src_rate != dst_rate);
if (src_rate < dst_rate) {
lo = src_rate;
hi = dst_rate;
} else {
lo = dst_rate;
hi = src_rate;
}
/* zero means "not a supported multiple" ... we only do 2x and 4x. */
if ((hi % lo) != 0)
return 0; /* not a multiple. */
div = hi / lo;
retval = ((div == 2) || (div == 4)) ? div : 0;
#endif
return retval;
}
static int
SDL_BuildAudioResampleCVT(SDL_AudioCVT * cvt, int dst_channels,
int src_rate, int dst_rate)
{
if (src_rate != dst_rate) {
SDL_AudioFilter filter = SDL_HandTunedResampleCVT(cvt, dst_channels,
src_rate, dst_rate);
/* No hand-tuned converter? Try the autogenerated ones. */
if (filter == NULL) {
int i;
const int upsample = (src_rate < dst_rate) ? 1 : 0;
const int multiple =
SDL_FindFrequencyMultiple(src_rate, dst_rate);
for (i = 0; sdl_audio_rate_filters[i].filter != NULL; i++) {
const SDL_AudioRateFilters *filt = &sdl_audio_rate_filters[i];
if ((filt->fmt == cvt->dst_format) &&
(filt->channels == dst_channels) &&
(filt->upsample == upsample) &&
(filt->multiple == multiple)) {
filter = filt->filter;
break;
}
}
if (filter == NULL) {
SDL_SetError("No conversion available for these rates");
return -1;
}
}
/* Update (cvt) with filter details... */
cvt->filters[cvt->filter_index++] = filter;
if (src_rate < dst_rate) {
const double mult = ((double) dst_rate) / ((double) src_rate);
cvt->len_mult *= (int) SDL_ceil(mult);
cvt->len_ratio *= mult;
} else {
cvt->len_ratio /= ((double) src_rate) / ((double) dst_rate);
}
return 1; /* added a converter. */
}
return 0; /* no conversion necessary. */
}
/* Creates a set of audio filters to convert from one format to another.
Returns -1 if the format conversion is not supported, 0 if there's
no conversion needed, or 1 if the audio filter is set up.
*/
int
SDL_BuildAudioCVT(SDL_AudioCVT * cvt,
SDL_AudioFormat src_fmt, Uint8 src_channels, int src_rate,
SDL_AudioFormat dst_fmt, Uint8 dst_channels, int dst_rate)
{
/*
* !!! FIXME: reorder filters based on which grow/shrink the buffer.
* !!! FIXME: ideally, we should do everything that shrinks the buffer
* !!! FIXME: first, so we don't have to process as many bytes in a given
* !!! FIXME: filter and abuse the CPU cache less. This might not be as
* !!! FIXME: good in practice as it sounds in theory, though.
*/
/* Sanity check target pointer */
if (cvt == NULL) {
return SDL_InvalidParamError("cvt");
}
/* there are no unsigned types over 16 bits, so catch this up front. */
if ((SDL_AUDIO_BITSIZE(src_fmt) > 16) && (!SDL_AUDIO_ISSIGNED(src_fmt))) {
return SDL_SetError("Invalid source format");
}
if ((SDL_AUDIO_BITSIZE(dst_fmt) > 16) && (!SDL_AUDIO_ISSIGNED(dst_fmt))) {
return SDL_SetError("Invalid destination format");
}
/* prevent possible divisions by zero, etc. */
if ((src_channels == 0) || (dst_channels == 0)) {
return SDL_SetError("Source or destination channels is zero");
}
if ((src_rate == 0) || (dst_rate == 0)) {
return SDL_SetError("Source or destination rate is zero");
}
#ifdef DEBUG_CONVERT
printf("Build format %04x->%04x, channels %u->%u, rate %d->%d\n",
src_fmt, dst_fmt, src_channels, dst_channels, src_rate, dst_rate);
#endif
/* Start off with no conversion necessary */
SDL_zerop(cvt);
cvt->src_format = src_fmt;
cvt->dst_format = dst_fmt;
cvt->needed = 0;
cvt->filter_index = 0;
cvt->filters[0] = NULL;
cvt->len_mult = 1;
cvt->len_ratio = 1.0;
cvt->rate_incr = ((double) dst_rate) / ((double) src_rate);
/* Convert data types, if necessary. Updates (cvt). */
if (SDL_BuildAudioTypeCVT(cvt, src_fmt, dst_fmt) == -1) {
return -1; /* shouldn't happen, but just in case... */
}
/* Channel conversion */
if (src_channels != dst_channels) {
if ((src_channels == 1) && (dst_channels > 1)) {
cvt->filters[cvt->filter_index++] = SDL_ConvertStereo;
cvt->len_mult *= 2;
src_channels = 2;
cvt->len_ratio *= 2;
}
if ((src_channels == 2) && (dst_channels == 6)) {
cvt->filters[cvt->filter_index++] = SDL_ConvertSurround;
src_channels = 6;
cvt->len_mult *= 3;
cvt->len_ratio *= 3;
}
if ((src_channels == 2) && (dst_channels == 4)) {
cvt->filters[cvt->filter_index++] = SDL_ConvertSurround_4;
src_channels = 4;
cvt->len_mult *= 2;
cvt->len_ratio *= 2;
}
while ((src_channels * 2) <= dst_channels) {
cvt->filters[cvt->filter_index++] = SDL_ConvertStereo;
cvt->len_mult *= 2;
src_channels *= 2;
cvt->len_ratio *= 2;
}
if ((src_channels == 6) && (dst_channels <= 2)) {
cvt->filters[cvt->filter_index++] = SDL_ConvertStrip;
src_channels = 2;
cvt->len_ratio /= 3;
}
if ((src_channels == 6) && (dst_channels == 4)) {
cvt->filters[cvt->filter_index++] = SDL_ConvertStrip_2;
src_channels = 4;
cvt->len_ratio /= 2;
}
/* This assumes that 4 channel audio is in the format:
Left {front/back} + Right {front/back}
so converting to L/R stereo works properly.
*/
while (((src_channels % 2) == 0) &&
((src_channels / 2) >= dst_channels)) {
cvt->filters[cvt->filter_index++] = SDL_ConvertMono;
src_channels /= 2;
cvt->len_ratio /= 2;
}
if (src_channels != dst_channels) {
/* Uh oh.. */ ;
}
}
/* Do rate conversion, if necessary. Updates (cvt). */
if (SDL_BuildAudioResampleCVT(cvt, dst_channels, src_rate, dst_rate) ==
-1) {
return -1; /* shouldn't happen, but just in case... */
}
/* Set up the filter information */
if (cvt->filter_index != 0) {
cvt->needed = 1;
cvt->src_format = src_fmt;
cvt->dst_format = dst_fmt;
cvt->len = 0;
cvt->buf = NULL;
cvt->filters[cvt->filter_index] = NULL;
}
return (cvt->needed);
}
/* vi: set ts=4 sw=4 expandtab: */