| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
and paths consistently for devices, I/O ports, memory
regions, memory banks, and memory shares. [Aaron Giles]
NOTE: there are likely regressions lurking here, mostly
due to devices not being properly found. I have temporarily
added more logging to -verbose to help understand what's
going on. Please let me know ASAP if anything that is being
actively worked on got broken.
As before, the driver device is the root device and all
other devices are owned by it. Previously all devices
were kept in a single master list, and the hierarchy was
purely logical. With this change, each device owns its
own list of subdevices, and the hierarchy is explicitly
manifest. This means when a device is removed, all of its
subdevices are automatically removed as well.
A side effect of this is that walking the device list is
no longer simple. To address this, a new set of iterator
classes is provided, which walks the device tree in a depth
first manner. There is a general device_iterator class for
walking all devices, plus templates for a device_type_iterator
and a device_interface_iterator which are used to build
iterators for identifying only devices of a given type or
with a given interface. Typedefs for commonly-used cases
(e.g., screen_device_iterator, memory_interface_iterator)
are provided. Iterators can also provide counts, and can
perform indexed lookups.
All device name lookups are now done relative to another
device. The maching_config and running_machine classes now
have a root_device() method to get the root of the hierarchy.
The existing machine->device("name") is now equivalent to
machine->root_device().subdevice("name").
A proper and normalized device path structure is now
supported. Device names that start with a colon are
treated as absolute paths from the root device. Device
names can also use a caret (^) to refer to the owning
device. Querying the device's tag() returns the device's
full path from the root. A new method basetag() returns
just the final tag.
The new pathing system is built on top of the
device_t::subtag() method, so anyone using that will
automatically support the new pathing rules. Each device
has its own internal map to cache successful lookups so
that subsequent lookups should be very fast.
Updated every place I could find that referenced devices,
memory regions, I/O ports, memory banks and memory shares
to leverage subtag/subdevice (or siblingtag/siblingdevice
which are built on top).
Removed the device_list class, as it doesn't apply any
more. Moved some of its methods into running_machine
instead.
Simplified the device callback system since the new
pathing can describe all of the special-case devices that
were previously handled manually.
Changed the core output function callbacks to be delegates.
Completely rewrote the validity checking mechanism. The
validity checker is now a proper C++ class, and temporarily
takes over the error and warning outputs. All errors and
warnings are collected during a session, and then output in
a consistent manner, with an explicit driver and source file
listed for each one, as well as additional device and/or
I/O port contexts where appropriate. Validity checkers
should no longer explicitly output this information, just
the error, assuming that the context is provided.
Rewrote the software_list_device as a modern device, getting
rid of the software_list_config abstraction and simplifying
things.
Changed the way FLAC compiles so that it works like other
external libraries, and also compiles successfully for MSVC
builds.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
existing modern devices and the legacy wrappers to work in this
environment. This in general greatly simplifies writing a modern
device. [Aaron Giles]
General notes:
* some more cleanup probably needs to happen behind this change,
but I needed to get it in before the next device modernization
or import from MESS :)
* new template function device_creator which automatically defines
the static function that creates the device; use this instead of
creating a static_alloc_device_config function
* added device_stop() method which is called at around the time
the previous device_t's destructor was called; if you auto_free
anything, do it here because the machine is gone when the
destructor is called
* changed the static_set_* calls to pass a device_t & instead of
a device_config *
* for many devices, the static config structure member names over-
lapped the device's names for devcb_* functions; in these cases
the members in the interface were renamed to have a _cb suffix
* changed the driver_enumerator to only cache 100 machine_configs
because caching them all took a ton of memory; fortunately this
implementation detail is completely hidden behind the
driver_enumerator interface
* got rid of the macros for creating derived classes; doing it
manually is now clean enough that it isn't worth hiding the
details in a macro
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
functionality in favor of alternate mechanisms. Errors are
now reported via an astring rather than via callbacks. Every
option must now specify a type (command, integer, float, string,
boolean, etc). Command behavior has changed so that only one
command is permitted. [Aaron Giles]
Changed fileio system to accept just a raw searchpath instead of
an options/option name combination. [Aaron Giles]
Created emu_options class dervied from core_options which wraps
core emulator options. Added mechanisms to cleanly change the
system name and add/remove system-specific options, versus the
old way using callbacks. Also added read accessors for all the
options, to ensure consistency in how parameters are handled.
Changed most core systems to access emu_options instead of
core_options. Also changed machine->options() to return emu_options.
[Aaron Giles]
Created cli_options class derived from emu_options which adds the
command-line specific options. Updated clifront code to leverage
the new class and the new core behaviors. cli_execute() now accepts
a cli_options object when called. [Aaron Giles]
Updated both SDL and Windows to have their own options classes,
derived from cli_options, which add the OSD-specific options on
top of everything else. Added accessors for all the options so
that queries are strongly typed and simplified. [Aaron Giles]
Out of whatsnew: I've surely screwed up some stuff, though I have
smoke tested a bunch of things. Let me know if you hit anything odd.
Also I know this change will impact the WINUI stuff, please let me
know if there are issues. All the functionality necessary should
still be present. If it's not obvious, please talk to me before
adding stuff to the core_options class.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to pass a core_options object to the constructor, along with
a search path. This required pushing either a running_machine
or a core_options through some code that wasn't previously
ready to handle it. emu_files can be reused over multiple
open/close sessions, and a lot of core code cleaned up
nicely as things were converted to them.
Also created a file_enumerator class for iterating over files
in a searchpath. This replaces the old mame_openpath functions.
Changed machine->options() to return a reference.
Removed public nvram_open() and fixed jchan/kaneko16 to
stop directly saving NVRAM.
Removed most of the mame_options() calls; this will soon go
away entirely, so don't add any more.
Added core_options to device_validity_check() so they can be
used to validate things.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
timers into the scheduler. Retain TIMER devices as a separate wrapper
in timer.c/.h. Inline wrappers are currently provided for all timer
operations; a future update will bulk clean these up.
Rather than using macros which hide generation of a string-ified name
for callback functions, the new methods require passing both a function
pointer plus a name string. A new macro FUNC() can be used to output
both, and another macro MFUNC() can be used to output a stub-wrapped
class member as a callback.
Also added a time() method on the machine, so that machine->time() gives
the current emulated time. A wrapper for timer_get_time is currently
provided but will be bulk replaced in the future.
For this update, convert all classic timer_alloc, timer_set,
timer_pulse, and timer_call_after_resynch calls into method calls on
the scheduler.
For new device timers, added methods to the device_t class that make
creating and managing these much simpler. Modern devices were updated
to use these.
Here are the regexes used; some manual cleanup (compiler-caught) will
be needed since regex doesn't handle nested parentheses cleanly
1. Convert timer_call_after_resynch calls
timer_call_after_resynch( *)\(( *)([^,;]+), *([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().synchronize\1\(\2FUNC(\6), \5, \4\)
2. Clean up trailing 0, NULL parameters
(synchronize[^;]+), 0, NULL\)
\1)
3. Clean up trailing NULL parameters
(synchronize[^;]+), NULL\)
\1)
4. Clean up completely empty parameter lists
synchronize\(FUNC\(NULL\)\)
synchronize()
5. Convert timer_set calls
timer_set( *)\(( *)([^,;]+), *([^,;]+), *([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().timer_set\1\(\2\4, FUNC(\7), \6, \5\)
6. Clean up trailing 0, NULL parameters
(timer_set[^;]+), 0, NULL\)
\1)
7. Clean up trailing NULL parameters
(timer_set[^;]+), NULL\)
\1)
8. Convert timer_set calls
timer_pulse( *)\(( *)([^,;]+), *([^,;]+), *([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().timer_pulse\1\(\2\4, FUNC(\7), \6, \5\)
9. Clean up trailing 0, NULL parameters
(timer_pulse[^;]+), 0, NULL\)
\1)
10. Clean up trailing NULL parameters
(timer_pulse[^;]+), NULL\)
\1)
11. Convert timer_alloc calls
timer_alloc( *)\(( *)([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().timer_alloc\1\(\2FUNC(\4), \5\)
12. Clean up trailing NULL parameters
(timer_alloc[^;]+), NULL\)
\1)
13. Clean up trailing 0 parameters
(timer_alloc[^;]+), 0\)
\1)
14. Fix oddities introduced
\&m_machine->scheduler()
m_machine.scheduler()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
attotime_zero => attotime::zero
attotime_never => attotime::never
ATTOTIME_IN_SEC(s) => attotime::from_seconds(s)
ATTOTIME_IN_MSEC(m) => attotime::from_msec(m)
ATTOTIME_IN_USEC(u) => attotime::from_usec(u)
ATTOTIME_IN_NSEC(n) => attotime::from_nsec(n)
ATTOTIME_IN_HZ(h) => attotime::from_hz(h)
Also, changed the following MCFG macros to require a full
attotime specification:
MCFG_TIMER_ADD_PERIODIC
MCFG_QUANTUM_TIME
MCFG_WATCHDOG_TIME_INIT
|
|
|
|
|
| |
There hasn't been a machine driver for many years.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
cleaner way to differentiate between multiple timers rather than
relying on the pointers. These values are also saved with the
timers. Updated the few devices using device timers to leverage
this.
Added new function device_timer_call_after_resynch() which creates
a temporary 0-length timer that calls back through the device's
device_timer() method with a given device_timer_id.
Updated i8257_device to initialize its state and use device
timers.
(Fixes 04032: All sets in dkong.c: [debug] Game does not start.)
|
|
|
|
| |
so that drivers don't have to ask it to be manually saved.
|
|
|
|
|
|
|
|
|
|
|
| |
type safety. If legacy devices still use inline data, those types are not checked.
However, new devices no longer have access to the generic m_inline_data. Instead
their MDRV_* macros should map to calls to static functions in the device config
class which downcast a generic device_config to the specific device config, and
then set the appropriate values. This is not to be done inline in order to prevent
further code bloat in the constructors. See eeprom/7474/i2cmem/okim6295 for examples.
#ifdef'ed several unused machine driver definitions that weren't referenced.
|
|
|
|
| |
compile [Miodrag Milanovic]
|
|
|
|
|
|
| |
the device_config constructor. In situations where the proper name is not
known at construction time, a generic name can be specified and then
overridden later once the configuration is complete.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
performance as a result of this change. Do not panic; report issues to the
list in the short term and I will look into them. There are probably also
some details I forgot to mention. Please ask questions if anything is not
clear.
NOTE: This is a major internal change to the way devices are handled in
MAME. There is a small impact on drivers, but the bulk of the changes are
to the devices themselves. Full documentation on the new device handling
is in progress at http://mamedev.org/devwiki/index.php/MAME_Device_Basics
Defined two new casting helpers: [Aaron Giles]
downcast<type>(value) should be used for safe and efficient downcasting
from a base class to a derived class. It wraps static_cast<> by adding
an assert that a matching dynamic_cast<> returns the same result in
debug builds.
crosscast<type>(value) should be used for safe casting from one type to
another in multiple inheritance scenarios. It compiles to a
dynamic_cast<> plus an assert on the result. Since it does not optimize
down to static_cast<>, you should prefer downcast<> over crosscast<>
when you can.
Redefined running_device to be a proper C++ class (now called device_t).
Same for device_config (still called device_config). All devices and
device_configs must now be derived from these base classes. This means
each device type now has a pair of its own unique classes that describe
the device. Drivers are encouraged to use the specific device types
instead of the generic running_device or device_t classes. Drivers that
have a state class defined in their header file are encouraged to use
initializers off the constructor to locate devices. [Aaron Giles]
Removed the following fields from the device and device configuration
classes as they never were necessary or provided any use: device class,
device family, source file, version, credits. [Aaron Giles]
Added templatized variant of machine->device() which performs a downcast
as part of the device fetch. Thus machine->device<timer_device>("timer")
will locate a device named "timer", downcast it to a timer_device, and
assert if the downcast fails. [Aaron Giles]
Removed most publically accessible members of running_device/device_t in
favor of inline accessor functions. The only remaining public member is
machine. Thus all references to device->type are now device->type(), etc.
[Aaron Giles]
Created a number of device interface classes which are designed to be mix-
ins for the device classes, providing specific extended functionality and
information. There are standard interface classes for sound, execution,
state, nvram, memory, and disassembly. Devices can opt into 0 or more of
these classes. [Aaron Giles]
Converted the classic CPU device to a standard device that uses the
execution, state, memory, and disassembly interfaces. Used this new class
(cpu_device) to implement the existing CPU device interface. In the future
it will be possible to convert each CPU core to its own device type, but
for now they are still all CPU devices with a cpu_type() that specifies
exactly which kind of CPU. [Aaron Giles]
Created a new header devlegcy.h which wraps the old device interface using
some special template classes. To use these with an existing device,
simply remove from the device header the DEVICE_GET_INFO() declaration and
the #define mapping the ALL_CAPS name to the DEVICE_GET_INFO. In their
place #include "devlegcy.h" and use the DECLARE_LEGACY_DEVICE() macro.
In addition, there is a DECLARE_LEGACY_SOUND_DEVICE() macro for wrapping
existing sound devices into new-style devices, and a
DECLARE_LEGACY_NVRAM_DEVICE() for wrapping NVRAM devices. Also moved the
token and inline_config members to the legacy device class, as these are
not used in modern devices. [Aaron Giles]
Converted the standard base devices (VIDEO_SCREEN, SPEAKER, and TIMER)
from legacy devices to the new C++ style. Also renamed VIDEO_SCREEN to
simply SCREEN. The various global functions that were previously used to
access information or modify the state of these devices are now replaced
by methods on the device classes. Specifically:
video_screen_configure() == screen->configure()
video_screen_set_visarea() == screen->set_visible_area()
video_screen_update_partial() == screen->update_partial()
video_screen_update_now() == screen->update_now()
video_screen_get_vpos() == screen->vpos()
video_screen_get_hpos() == screen->hpos()
video_screen_get_vblank() == screen->vblank()
video_screen_get_hblank() == screen->hblank()
video_screen_get_width() == screen->width()
video_screen_get_height() == screen->height()
video_screen_get_visible_area() == screen->visible_area()
video_screen_get_time_until_pos() == screen->time_until_pos()
video_screen_get_time_until_vblank_start() ==
screen->time_until_vblank_start()
video_screen_get_time_until_vblank_end() ==
screen->time_until_vblank_end()
video_screen_get_time_until_update() == screen->time_until_update()
video_screen_get_scan_period() == screen->scan_period()
video_screen_get_frame_period() == screen->frame_period()
video_screen_get_frame_number() == screen->frame_number()
timer_device_adjust_oneshot() == timer->adjust()
timer_device_adjust_periodic() == timer->adjust()
timer_device_reset() == timer->reset()
timer_device_enable() == timer->enable()
timer_device_enabled() == timer->enabled()
timer_device_get_param() == timer->param()
timer_device_set_param() == timer->set_param()
timer_device_get_ptr() == timer->get_ptr()
timer_device_set_ptr() == timer->set_ptr()
timer_device_timeelapsed() == timer->time_elapsed()
timer_device_timeleft() == timer->time_left()
timer_device_starttime() == timer->start_time()
timer_device_firetime() == timer->fire_time()
Updated all drivers that use the above functions to fetch the specific
device type (timer_device or screen_device) and call the appropriate
method. [Aaron Giles]
Changed machine->primary_screen and the 'screen' parameter to VIDEO_UPDATE
to specifically pass in a screen_device object. [Aaron Giles]
Defined a new custom interface for the Z80 daisy chain. This interface
behaves like the standard interfaces, and can be added to any device that
implements the Z80 daisy chain behavior. Converted all existing Z80 daisy
chain devices to new-style devices that inherit this interface.
[Aaron Giles]
Changed the way CPU state tables are built up. Previously, these were data
structures defined by a CPU core which described all the registers and how
to output them. This functionality is now part of the state interface and
is implemented via the device_state_entry class. Updated all CPU cores
which were using the old data structure to use the new form. The syntax is
currently awkward, but will be cleaner for CPUs that are native new
devices. [Aaron Giles]
Converted the okim6295 and eeprom devices to the new model. These were
necessary because they both require multiple interfaces to operate and it
didn't make sense to create legacy device templates for these single cases.
(okim6295 needs the sound interface and the memory interface, while eeprom
requires both the nvram and memory interfaces). [Aaron Giles]
Changed parameters in a few callback functions from pointers to references
in situations where they are guaranteed to never be NULL. [Aaron Giles]
Removed MDRV_CPU_FLAGS() which was only used for disabling a CPU. Changed
it to MDRV_DEVICE_DISABLE() instead. Updated drivers. [Aaron Giles]
Reorganized the token parsing for machine configurations. The core parsing
code knows how to create/replace/remove devices, but all device token
parsing is now handled in the device_config class, which in turn will make
use of any interface classes or device-specific token handling for custom
token processing. [Aaron Giles]
Moved many validity checks out of validity.c and into the device interface
classes. For example, address space validation is now part of the memory
interface class. [Aaron Giles]
Consolidated address space parameters (bus width, endianness, etc.) into
a single address_space_config class. Updated all code that queried for
address space parameters to use the new mechanism. [Aaron Giles]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
is now separate from runtime device state. I have larger plans
for devices, so there is some temporary scaffolding to hold
everything together, but this first step does separate things
out.
There is a new class 'running_device' which represents the
state of a live device. A list of these running_devices sits
in machine->devicelist and is created when a running_machine
is instantiated.
To access the configuration state, use device->baseconfig()
which returns a reference to the configuration.
The list of running_devices in machine->devicelist has a 1:1
correspondance with the list of device configurations in
machine->config->devicelist, and most navigation options work
equally on either (scanning by class, type, etc.)
For the most part, drivers will now deal with running_device
objects instead of const device_config objects. In fact, in
order to do this patch, I did the following global search &
replace:
const device_config -> running_device
device->static_config -> device->baseconfig().static_config
device->inline_config -> device->baseconfig().inline_config
and then fixed up the compiler errors that fell out.
Some specifics:
Removed device_get_info_* functions and replaced them with
methods called get_config_*.
Added methods for get_runtime_* to access runtime state from
the running_device.
DEVICE_GET_INFO callbacks are only passed a device_config *.
This means they have no access to the token or runtime state
at all. For most cases this is fine.
Added new DEVICE_GET_RUNTIME_INFO callback that is passed
the running_device for accessing data that is live at runtime.
In the future this will go away to make room for a cleaner
mechanism.
Cleaned up the handoff of memory regions from the memory
subsystem to the devices.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Created new central header "emu.h"; this should be included
by pretty much any driver or device as the first include. This
file in turn includes pretty much everything a driver or device
will need, minus any other devices it references. Note that
emu.h should *never* be included by another header file.
- Updated all files in the core (src/emu) to use emu.h.
- Removed a ton of redundant and poorly-tracked header includes
from within other header files.
- Temporarily changed driver.h to map to emu.h until we update
files outside of the core.
Added class wrapper around tagmap so it can be directly included
and accessed within objects that need it. Updated all users to
embed tagmap objects and changed them to call through the class.
Added nicer functions for finding devices, ports, and regions in
a machine:
machine->device("tag") -- return the named device, or NULL
machine->port("tag") -- return the named port, or NULL
machine->region("tag"[, &length[, &flags]]) -- return the
named region and optionally its length and flags
Made the device tag an astring. This required touching a lot of
code that printed the device to explicitly fetch the C-string
from it. (Thank you gcc for flagging that issue!)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
osd_free(). They take the same parameters as malloc() and free().
Renamed mamecore.h -> emucore.h.
New C++-aware memory manager, implemented in emualloc.*. This is a
simple manager that allows you to add any type of object to a
resource pool. Most commonly, allocated objects are added, and so
a set of allocation macros is provided to allow you to manage
objects in a particular pool:
pool_alloc(p, t) = allocate object of type 't' and add to pool 'p'
pool_alloc_clear(p, t) = same as above, but clear the memory first
pool_alloc_array(p, t, c) = allocate an array of 'c' objects of type
't' and add to pool 'p'
pool_alloc_array_clear(p, t, c) = same, but with clearing
pool_free(p, v) = free object 'v' and remove it from the pool
Note that pool_alloc[_clear] is roughly equivalent to "new t" and
pool_alloc_array[_clear] is roughly equivalent to "new t[c]". Also
note that pool_free works for single objects and arrays.
There is a single global_resource_pool defined which should be used
for any global allocations. It has equivalent macros to the pool_*
macros above that automatically target the global pool.
In addition, the memory module defines global new/delete overrides
that access file and line number parameters so that allocations can
be tracked. Currently this tracking is only done if MAME_DEBUG is
enabled. In debug builds, any unfreed memory will be printed at
the end of the session.
emualloc.h also has #defines to disable malloc/free/realloc/calloc.
Since emualloc.h is included by emucore.h, this means pretty much
all code within the emulator is forced to use the new allocators.
Although straight new/delete do work, their use is discouraged, as
any allocations made with them will not be tracked.
Changed the familar auto_alloc_* macros to map to the resource pool
model described above. The running_machine is now a class and contains
a resource pool which is automatically destructed upon deletion. If
you are a driver writer, all your allocations should be done with
auto_alloc_*.
Changed all drivers and files in the core using malloc/realloc or the
old alloc_*_or_die macros to use (preferably) the auto_alloc_* macros
instead, or the global_alloc_* macros if necessary.
Added simple C++ wrappers for astring and bitmap_t, as these need
proper constructors/destructors to be used for auto_alloc_astring and
auto_alloc_bitmap.
Removed references to the winalloc prefix file. Most of its
functionality has moved into the core, save for the guard page
allocations, which are now implemented in osd_alloc and osd_free.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Sent: Wednesday, August 12, 2009 4:27 PM
To: submit@mamedev.org
Subject: twin16 update
Hello,
Attached is an update for the Konami twin16 driver, see diff for details.
Functional changes:
- improved sprite status register, this fixed the rogue sprites problem in devilw
- added fround coin counters
- lowered k007232 volume
- added savestate support
- added shadows
- fixed devilw and gradius2 sprite lag
- added text layer x/y flipping
- reverted gradius2 sprite-background priority hack, this fixes severe priority problems in
devilw, but reintroduces bugs on gradius2 level 7 and ending
affected mametesters bugs:
fixed: 02267, 00191, 02553
partial, due to revert: 02523 (intro is ok again, but old priority bugs are reintroduced),
02268 (ok in-game, small priority problem in prologue)
Greets,
hap
|
|
|
|
| |
works now that device types are not needed.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
assumption that all device tags are unique. Specifically, the
following no longer need to provide a device type:
AM_DEVREAD/WRITE
DEVCB_DEVICE_HANDLER
devtag_get_device
devtag_reset
device_list_find_by_tag
as well as several device interfaces that referenced other devices.
Also fixed assertion due to overflow in the recent sound fix.
|
|
|
|
| |
faster with maximum interleave now.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
specified when the device is added, and the clock is available in
the device_config directly via device->clock. Updated all devices
that have a clock to specify it when adding the device, rather than
as part of their configuration. As part of this work, also created
device-specific _ADD and _REMOVE macros to simplify configuration.
Dfined a generic device execute function callback, though it
is not used yet. The long term plan is that any device with an
execute callback will be scheduled along with the CPUs. Now that
CPUs are devices, their scheduling will be moved over to this
logic eventually.
Changed various NVRAM devices to fetch their default memory region
from the device->region rather than specifying it in the
configuration.
Moved a number of CPUINFO_PTR_* constants to CPUINFO_FCT_*.
Fixed several drivers that manually created their own gfx_elements
to fill in the machine object, so they no longer crash.
Fixed incorrect CPU display on info screen (recently broken).
Moved device startup to *before* the DRIVER_INIT is called. This
is to allow the DRIVER_INIT to configure devices that have been
properly allocated. So far I don't see any negative effects, but
be on the lookout if something weird shows up.
Rewrote the device iteration logic to make use of the typenext
field and the newly-introduced classnext field for iterating more
efficiently through devices of a given type or class.
Fixed behavior of MDRV_CPU_REPLACE so it does not delete and then
re-add a CPU (causing the order to change).
|
|
|
|
|
| |
and timer_get_time to pass the machine parameter. Moved timer globals
to hang off of the running_machine.
|
|
|
|
|
|
|
|
| |
Removed ATTOTIME_TO_CYCLES() and ATTOTIME_IN_CYCLES(). Replaced them
with functions in cpuexec: cpu_clocks_to_attotime() and
cpu_attotime_to_clocks(), both of which take CPU devices instead of
indexes. Updated all callers, many of which were using the functions
dubiously.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
means of setting the minimum useful scheduling quantum, and clamping
all quanta to that value.
Changed interleave/boost handling to use scheduling quanta instead
of timers.
Added machine parameter to cpu_boost_interleave.
Updated cpuexec to compute the "perfect" interleave value taking into
account the minimum number of cycles per instruction specified by the
CPU core. Updated Z80 core to indicate that the minimum cpi is 2. Fixed
incorrect minimum cpi in the 68020+ cores.
Simplified a bit of logic in cpuexec_timeslice.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
fine and basic searching/playback/skipping is functional. Still a bit
glitchy.
Firefox improvements:
- removed need for deprecat.h
- memory map is complete from schematics
- gutted laserdisc hacks in favor of actual laserdisc implementation
- fixed all CPU and sound clocks
Removed old laserdsc.c implementation.
Added generic timer devices, which simply allocate a timer but don't
prime it. This is the preferred method for allocating timers, and may
eventually be the only mechanism for doing so in the future.
|
|
|
|
|
|
|
|
| |
Subject: Machine -> machine
This is a big patch adding running_machine* parameters and using
"machine" where available.
|
|
|
|
|
| |
Renames duration to start_delay in timer_adjust_periodic() as well
Moves MDRV_ macros into proper header files
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Converted Centipede, as an example.
To define a scanline timer, use something like this:
MDRV_TIMER_ADD("32V", SCANLINE, generate_interrupt)
MDRV_TIMER_SCANLINE("main", 0, 16)
The first number is the first scanline the timer will fire on, the 2nd number is the increment.
So in this case, the timer will fire on 0, 16, 32, ..., 224, 240, then wrap around
because the screen is defined as 256 lines high.
The current scanline is passed to the callback in its 'param' argument
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Where applicable, added a parallel set of timer functions that take a device_config instead of emu_timer:
void timer_device_adjust_oneshot(const device_config *timer, attotime duration, INT32 param);
void timer_device_adjust_periodic(const device_config *timer, attotime duration, INT32 param, attotime period);
void timer_device_reset(const device_config *timer, attotime duration);
int timer_device_enable(const device_config *timer, int enable);
int timer_device_enabled(const device_config *timer);
int timer_device_get_param(const device_config *timer);
void *timer_device_get_param_ptr(const device_config *timer);
attotime timer_device_timeelapsed(const device_config *timer);
attotime timer_device_timeleft(const device_config *timer);
attotime timer_device_starttime(const device_config *timer);
attotime timer_device_firetime(const device_config *timer);
- Added MACHINE_CONFIG macros:
MDRV_TIMER_ADD(_tag, _type, _callback) /* type can only be PERIODIC right now (can scanline based later, or even NE555) */
MDRV_TIMER_REMOVE(_tag)
MDRV_TIMER_MODIFY(_tag)
MDRV_TIMER_TYPE(_type)
MDRV_TIMER_CALLBACK(_callback)
MDRV_TIMER_DURATION(_duration)
MDRV_TIMER_PERIOD(_period)
MDRV_TIMER_PARAM(_param)
MDRV_TIMER_PTR(_ptr)
- Modified Space Encounters to create two timers and use those:
MDRV_TIMER_ADD("STROBE_ON", PERIODIC, spcenctr_strobe_timer_callback)
MDRV_TIMER_PARAM(TRUE) /* indicates strobe ON */
MDRV_TIMER_PERIOD(UINT64_ATTOTIME_IN_HZ(SPCENCTR_STROBE_FREQ))
MDRV_TIMER_ADD("STROBE_OFF", PERIODIC, spcenctr_strobe_timer_callback)
MDRV_TIMER_PARAM(FALSE) /* indicates strobe OFF */
MDRV_TIMER_DURATION(UINT64_ATTOTIME_IN_HZ(SPCENCTR_STROBE_FREQ * 100 / SPCENCTR_DUTY_CYCLE))
MDRV_TIMER_PERIOD(UINT64_ATTOTIME_IN_HZ(SPCENCTR_STROBE_FREQ))
|
|
|
|
|
|
|
|
|
|
| |
suffixed with _func. Did this throughout the core and
drivers I was familiar with.
Fixed gcc compiler error with recent render.c changes.
gcc does not like explicit (int) casts on float or
double functions. This is fracking annoying and stupid,
but there you have it.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
constructors to tokenized lists. For the most part
this is a non-invasive change, except for those drivers
using MDRV_WATCHDOG_TIME_INIT. In order to allow for
tokenization of attotimes, a set of new macros is
provided called UINT64_ATTOTIME_IN_x() which follows the
same pattern as ATTOTIME_IN_x() but packs the attotime
down into a single 64-bit value for easier tokenization.
Separated MDRV_DEVICE_CONFIG_DATA into 32-bit and 64-bit
versions. Added floating-point versions with configurable
resolutions.
Fixed several errors in the machine drivers which were
caught by the additional checks now done in the machine
config detokenization code.
Converted speakers into devices. Machine->config no
longer houses an array of speakers; instead they are
iterated through using the new macros (defined in sound.h)
speaker_output_first() and speaker_output_next(). Updated
all relevant code to do this.
Improved game info display with multiple screens. Fixed
bug which caused all screens to display equally.
Added typedefs for all the machine config callback
functions at the top of driver.h.
|
|
|
|
|
| |
Updated all call sites.
Fixed recent build breaks.
|
|
|
|
|
|
| |
- removed years from copyright notices
- removed redundant (c) from copyright notices
- updated "the MAME Team" to be "Nicola Salmoria and the MAME Team"
|
| |
|
|
|