| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
| |
|
| |
|
| |
|
|
|
|
| |
one (no whatsnew)
|
| |
|
|
|
|
| |
system default and machine default layouts already (no whatsnew)
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
[Ryan Holtz, Bat Country Entertainment]
- 5-pass post-processing: Upscale, Post-Process, Store Last Frame, Defocus 1, Defocus 2
- Many tunable effects including: Scanlines, defocus, linear deconvergence, radial deconvergence, pincushion, RGB colorspace convolution, YIQ colorspace convolution, saturation, simulated dot crawl, simulated chroma subsampling, aperture masking, and more.
- Requires a GPU that supports Shader Model 3.0 to be enabled and a powerful GPU, the entire pipeline consists of approximately 30 texel fetches and approximately 230 arthimetic ops.
- Will supersample the framebuffer up to 9x in both X and Y, but this requires an enormously powerful GPU that has not been invented; users with Radeon 5000-class cards should limit themselves to 3x, Radeon 4000 to 1.5x.
- The default configuration will NOT appear to do anything; it requires tuning to the user's liking.
- Should nicely fall back in all cases except missing shaders, and it might fall back correctly in that case as well. Report any anomalies.
- For obvious reasons, the Direct3D8 renderer cannont support this.
|
|
|
|
|
|
|
|
|
|
|
|
| |
- non-device timer callbacks
- machine state changing callbacks
- configuration callbacks
- per-screen VBLANK callbacks
- DRC backend callbacks
For the timer case only, I added wrappers for the old-style functions.
Over time, drivers should switch to device timers instead, reducing the
number of timers that are directly allocated through the scheduler.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
existing modern devices and the legacy wrappers to work in this
environment. This in general greatly simplifies writing a modern
device. [Aaron Giles]
General notes:
* some more cleanup probably needs to happen behind this change,
but I needed to get it in before the next device modernization
or import from MESS :)
* new template function device_creator which automatically defines
the static function that creates the device; use this instead of
creating a static_alloc_device_config function
* added device_stop() method which is called at around the time
the previous device_t's destructor was called; if you auto_free
anything, do it here because the machine is gone when the
destructor is called
* changed the static_set_* calls to pass a device_t & instead of
a device_config *
* for many devices, the static config structure member names over-
lapped the device's names for devcb_* functions; in these cases
the members in the interface were renamed to have a _cb suffix
* changed the driver_enumerator to only cache 100 machine_configs
because caching them all took a ton of memory; fortunately this
implementation detail is completely hidden behind the
driver_enumerator interface
* got rid of the macros for creating derived classes; doing it
manually is now clean enough that it isn't worth hiding the
details in a macro
|
|
|
|
|
|
|
|
|
|
|
| |
meant adding a machine() accessor but it's worth it for consistency.
This will allow future changes from reference to pointer to happen
transparently for devices. [Aaron Giles]
Simple S&R:
m_machine( *[^ (!=;])
machine()\1
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
loader rewrite, which is still in progress....)
Replaced mamedriv.c with a new driver list mechanism that is generated
by the build tools. The emulator core now expects the presence of a
file called src/$(TARGET)/$(SUBTARGET).lst which is just a raw list of
driver names, one per line. C and C++ comments are still permitted.
This file is parsed by a new build tool makelist which extracts the
driver names, sorts them, and generates a file called drivlist.c, which
is consumed by the core. [Aaron Giles]
Added new osdcore function osd_malloc_array() which is identical to
osd_malloc() but obviously hints that the underlying allocation is for
an array. Updated all callers to use the appropriate form. Modified the
Windows allocator to only use guard pages for array-style allocations,
allowing us to enable them once again in debug builds. [Aaron Giles]
Created new static class driver_list to wrap accesses to the list of
available drivers. Improved speed of driver lookups by relying on the
presorting done by makelist. [Aaron Giles]
Created helper class driver_enumerator as a helper for iterating through
the list of drivers. This class supports basic filtering and iteration,
and also serves as a temporary cache of machine_configs. [Aaron Giles]
Created cli_frontend object to wrap all the CLI handling code in
clifront.c. Updated/simplified all the code to take advantage of the
driver_enumerator. [Aaron Giles]
Created media_auditor object to wrap all the auditing functions in
audit.c. Updated all users to the new interface. Note that the new
auditing mechanism is slightly out of sync with the romload code in
terms of finding ROMs owned by devices, so it may mis-report some
issues until the new ROM loading code is in. [Aaron Giles]
Added concept of a per-device searchpath. For most devices, their
searchpath is just the short name of the device. For driver_devices, the
searchpath is driver[;parent[;bios]]. This searchpath will eventually be
used by the rom loader to find ROMs. For now it is used by the media
auditor only. [Aaron Giles]
Created info_xml_creator object to wrap all the info generation functions
in info.c. Converted the file to C++ and cleaned up the input processing
code. [Aaron Giles]
(not for whatsnew ... Known issues: auditing of CHDs appears busted, and
debug builds report unfreed memory if you use the built-in game picker)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Remove redundant machine items from address_space and device_t.
Neither machine nor m_machine are directly accessible anymore.
Instead a new getter machine() is available which returns a
machine reference. So:
space->machine->xxx ==> space->machine().xxx
device->machine->yyy ==> device->machine().yyy
Globally changed all running_machine pointers to running_machine
references. Any function/method that takes a running_machine takes
it as a required parameter (1 or 2 exceptions). Being consistent
here gets rid of a lot of odd &machine or *machine, but it does
mean a very large bulk change across the project.
Structs which have a running_machine * now have that variable
renamed to m_machine, and now have a shiny new machine() method
that works like the space and device methods above. Since most of
these are things that should eventually be devices anyway, consider
this a step in that direction.
98% of the update was done with regex searches. The changes are
architected such that the compiler will catch the remaining
errors:
// find things that use an embedded machine directly and replace
// with a machine() getter call
S: ->machine->
R: ->machine\(\)\.
// do the same if via a reference
S: \.machine->
R: \.machine\(\)\.
// convert function parameters to running_machine &
S: running_machine \*machine([^;])
R: running_machine \&machine\1
// replace machine-> with machine.
S: machine->
R: machine\.
// replace &machine() with machine()
S: \&([()->a-z0-9_]+machine\(\))
R: \1
// sanity check: look for this used as a cast
(running_machine &)
// and change to this:
*(running_machine *)
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to private member variables with accessors:
machine->m_respool ==> machine->respool()
machine->config ==> machine->config()
machine->gamedrv ==> machine->system()
machine->m_regionlist ==> machine->first_region()
machine->sample_rate ==> machine->sample_rate()
Also converted internal lists to use simple_list.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
functionality in favor of alternate mechanisms. Errors are
now reported via an astring rather than via callbacks. Every
option must now specify a type (command, integer, float, string,
boolean, etc). Command behavior has changed so that only one
command is permitted. [Aaron Giles]
Changed fileio system to accept just a raw searchpath instead of
an options/option name combination. [Aaron Giles]
Created emu_options class dervied from core_options which wraps
core emulator options. Added mechanisms to cleanly change the
system name and add/remove system-specific options, versus the
old way using callbacks. Also added read accessors for all the
options, to ensure consistency in how parameters are handled.
Changed most core systems to access emu_options instead of
core_options. Also changed machine->options() to return emu_options.
[Aaron Giles]
Created cli_options class derived from emu_options which adds the
command-line specific options. Updated clifront code to leverage
the new class and the new core behaviors. cli_execute() now accepts
a cli_options object when called. [Aaron Giles]
Updated both SDL and Windows to have their own options classes,
derived from cli_options, which add the OSD-specific options on
top of everything else. Added accessors for all the options so
that queries are strongly typed and simplified. [Aaron Giles]
Out of whatsnew: I've surely screwed up some stuff, though I have
smoke tested a bunch of things. Let me know if you hit anything odd.
Also I know this change will impact the WINUI stuff, please let me
know if there are issues. All the functionality necessary should
still be present. If it's not obvious, please talk to me before
adding stuff to the core_options class.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to pass a core_options object to the constructor, along with
a search path. This required pushing either a running_machine
or a core_options through some code that wasn't previously
ready to handle it. emu_files can be reused over multiple
open/close sessions, and a lot of core code cleaned up
nicely as things were converted to them.
Also created a file_enumerator class for iterating over files
in a searchpath. This replaces the old mame_openpath functions.
Changed machine->options() to return a reference.
Removed public nvram_open() and fixed jchan/kaneko16 to
stop directly saving NVRAM.
Removed most of the mame_options() calls; this will soon go
away entirely, so don't add any more.
Added core_options to device_validity_check() so they can be
used to validate things.
|
|
|
|
|
| |
destructor which was inappropriate, as textures are allocated and
recycled via a fixed size allocator.
|
|
|
|
|
| |
Converted global video routines into a video_manager.
Moved video manager initialization earlier in startup.
|
| |
|
| |
|
|
|
|
|
|
| |
allocated.
Fix texture leak in crsshair.c.
|
|
|
|
|
|
| |
Moved -effect implementation out of OSD code and into core since
the implementations were identical across Windows/SDL and implemented
in the core itself.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
running_machine definition and implementation.
Moved global machine-level operations and accessors into methods on the
running_machine class. For the most part, this doesn't affect drivers
except for a few occasional bits:
mame_get_phase() == machine->phase()
add_reset_callback() == machine->add_notifier(MACHINE_NOTIFY_RESET, ...)
add_exit_callback() == machine->add_notifier(MACHINE_NOTIFY_EXIT, ...)
mame_get_base_datetime() == machine->base_datetime()
mame_get_current_datetime() == machine->current_datetime()
Cleaned up the region_info class, removing most global region accessors
except for memory_region() and memory_region_length(). Again, this doesn't
generally affect drivers.
|
|
|
|
|
|
|
|
|
|
|
|
| |
this object which can be called multiple times to append new devices
after the initial machine configuration is set up. Updated member
variables to match new naming convention.
Changed the running_machine to take a constructed machine_config
object in the constructor, instead of creating one itself, for
consistency. Also added machine->total_colors() as a shortcut to
machine->config->m_total_colors.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
performance as a result of this change. Do not panic; report issues to the
list in the short term and I will look into them. There are probably also
some details I forgot to mention. Please ask questions if anything is not
clear.
NOTE: This is a major internal change to the way devices are handled in
MAME. There is a small impact on drivers, but the bulk of the changes are
to the devices themselves. Full documentation on the new device handling
is in progress at http://mamedev.org/devwiki/index.php/MAME_Device_Basics
Defined two new casting helpers: [Aaron Giles]
downcast<type>(value) should be used for safe and efficient downcasting
from a base class to a derived class. It wraps static_cast<> by adding
an assert that a matching dynamic_cast<> returns the same result in
debug builds.
crosscast<type>(value) should be used for safe casting from one type to
another in multiple inheritance scenarios. It compiles to a
dynamic_cast<> plus an assert on the result. Since it does not optimize
down to static_cast<>, you should prefer downcast<> over crosscast<>
when you can.
Redefined running_device to be a proper C++ class (now called device_t).
Same for device_config (still called device_config). All devices and
device_configs must now be derived from these base classes. This means
each device type now has a pair of its own unique classes that describe
the device. Drivers are encouraged to use the specific device types
instead of the generic running_device or device_t classes. Drivers that
have a state class defined in their header file are encouraged to use
initializers off the constructor to locate devices. [Aaron Giles]
Removed the following fields from the device and device configuration
classes as they never were necessary or provided any use: device class,
device family, source file, version, credits. [Aaron Giles]
Added templatized variant of machine->device() which performs a downcast
as part of the device fetch. Thus machine->device<timer_device>("timer")
will locate a device named "timer", downcast it to a timer_device, and
assert if the downcast fails. [Aaron Giles]
Removed most publically accessible members of running_device/device_t in
favor of inline accessor functions. The only remaining public member is
machine. Thus all references to device->type are now device->type(), etc.
[Aaron Giles]
Created a number of device interface classes which are designed to be mix-
ins for the device classes, providing specific extended functionality and
information. There are standard interface classes for sound, execution,
state, nvram, memory, and disassembly. Devices can opt into 0 or more of
these classes. [Aaron Giles]
Converted the classic CPU device to a standard device that uses the
execution, state, memory, and disassembly interfaces. Used this new class
(cpu_device) to implement the existing CPU device interface. In the future
it will be possible to convert each CPU core to its own device type, but
for now they are still all CPU devices with a cpu_type() that specifies
exactly which kind of CPU. [Aaron Giles]
Created a new header devlegcy.h which wraps the old device interface using
some special template classes. To use these with an existing device,
simply remove from the device header the DEVICE_GET_INFO() declaration and
the #define mapping the ALL_CAPS name to the DEVICE_GET_INFO. In their
place #include "devlegcy.h" and use the DECLARE_LEGACY_DEVICE() macro.
In addition, there is a DECLARE_LEGACY_SOUND_DEVICE() macro for wrapping
existing sound devices into new-style devices, and a
DECLARE_LEGACY_NVRAM_DEVICE() for wrapping NVRAM devices. Also moved the
token and inline_config members to the legacy device class, as these are
not used in modern devices. [Aaron Giles]
Converted the standard base devices (VIDEO_SCREEN, SPEAKER, and TIMER)
from legacy devices to the new C++ style. Also renamed VIDEO_SCREEN to
simply SCREEN. The various global functions that were previously used to
access information or modify the state of these devices are now replaced
by methods on the device classes. Specifically:
video_screen_configure() == screen->configure()
video_screen_set_visarea() == screen->set_visible_area()
video_screen_update_partial() == screen->update_partial()
video_screen_update_now() == screen->update_now()
video_screen_get_vpos() == screen->vpos()
video_screen_get_hpos() == screen->hpos()
video_screen_get_vblank() == screen->vblank()
video_screen_get_hblank() == screen->hblank()
video_screen_get_width() == screen->width()
video_screen_get_height() == screen->height()
video_screen_get_visible_area() == screen->visible_area()
video_screen_get_time_until_pos() == screen->time_until_pos()
video_screen_get_time_until_vblank_start() ==
screen->time_until_vblank_start()
video_screen_get_time_until_vblank_end() ==
screen->time_until_vblank_end()
video_screen_get_time_until_update() == screen->time_until_update()
video_screen_get_scan_period() == screen->scan_period()
video_screen_get_frame_period() == screen->frame_period()
video_screen_get_frame_number() == screen->frame_number()
timer_device_adjust_oneshot() == timer->adjust()
timer_device_adjust_periodic() == timer->adjust()
timer_device_reset() == timer->reset()
timer_device_enable() == timer->enable()
timer_device_enabled() == timer->enabled()
timer_device_get_param() == timer->param()
timer_device_set_param() == timer->set_param()
timer_device_get_ptr() == timer->get_ptr()
timer_device_set_ptr() == timer->set_ptr()
timer_device_timeelapsed() == timer->time_elapsed()
timer_device_timeleft() == timer->time_left()
timer_device_starttime() == timer->start_time()
timer_device_firetime() == timer->fire_time()
Updated all drivers that use the above functions to fetch the specific
device type (timer_device or screen_device) and call the appropriate
method. [Aaron Giles]
Changed machine->primary_screen and the 'screen' parameter to VIDEO_UPDATE
to specifically pass in a screen_device object. [Aaron Giles]
Defined a new custom interface for the Z80 daisy chain. This interface
behaves like the standard interfaces, and can be added to any device that
implements the Z80 daisy chain behavior. Converted all existing Z80 daisy
chain devices to new-style devices that inherit this interface.
[Aaron Giles]
Changed the way CPU state tables are built up. Previously, these were data
structures defined by a CPU core which described all the registers and how
to output them. This functionality is now part of the state interface and
is implemented via the device_state_entry class. Updated all CPU cores
which were using the old data structure to use the new form. The syntax is
currently awkward, but will be cleaner for CPUs that are native new
devices. [Aaron Giles]
Converted the okim6295 and eeprom devices to the new model. These were
necessary because they both require multiple interfaces to operate and it
didn't make sense to create legacy device templates for these single cases.
(okim6295 needs the sound interface and the memory interface, while eeprom
requires both the nvram and memory interfaces). [Aaron Giles]
Changed parameters in a few callback functions from pointers to references
in situations where they are guaranteed to never be NULL. [Aaron Giles]
Removed MDRV_CPU_FLAGS() which was only used for disabling a CPU. Changed
it to MDRV_DEVICE_DISABLE() instead. Updated drivers. [Aaron Giles]
Reorganized the token parsing for machine configurations. The core parsing
code knows how to create/replace/remove devices, but all device token
parsing is now handled in the device_config class, which in turn will make
use of any interface classes or device-specific token handling for custom
token processing. [Aaron Giles]
Moved many validity checks out of validity.c and into the device interface
classes. For example, address space validation is now part of the memory
interface class. [Aaron Giles]
Consolidated address space parameters (bus width, endianness, etc.) into
a single address_space_config class. Updated all code that queried for
address space parameters to use the new mechanism. [Aaron Giles]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Added a check for the OPTION_READCONFIG option before executing
the code which would attempt to incorporate configuration file
settings into the current configuration, because if OPTION_READCONFIG
is set to false, then there is no reason to even try to do this as
every single configuration file will be ignored (because config files
have been turned off by OPTION_READCONFIG). [Bryan Ischo]
Fixed small memory leak in mame.c. [Bryan Ischo]
Fixed double-free error in render.c. [Bryan Ischo]
Made core_strdup use osd_malloc instead of malloc. [Bryan Ischo]
|
|
|
|
|
|
| |
Added inline tag() function to return a const char * version. Updated
callers to use this instead of directly accessing tag.cstr() which
was awkward.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- added support for arbitrary number of containers for render_target
- added command-line parameter -debug_internal (-di) to use the internal debugger when in debug mode
- internal debugger supports all views except memory view
- added "Debug" view to layout/vertical.lay to create more place for debug views in vertical games.
The colors are ugly. Font rendering needs improvement. There are no shortcut keys right now. There is still a lot of room for more improvements.
However, it works and does not depend on any ui toolkit. The interface has been designed to support displaying views programmatically e.g. from the ui.
Currently, the ui render target is used. In order to support views being displayed in separate windows further changes are needed:
- the osd layer must support creating and closing windows (render targets) on demand.
- There must be a mode for render targets where their bounds follows the window size - Currently the render target size depends on the aspect of currently selected "artwork" view.
- Render target needs a name property.
Short HowTo:
- Start MAME with "-debug -di"
- Console, register and disasm views will be shown. Place them by dragging the view on the title bar.
- Views can be resized by dragging the bottom-right yellow square.
- The view having the focus has a green background title bar.
- Hit "Tab" (IPT_UI_CONFIGURE) to show the menu.
- Console and disasm views support a very simple facility to support entering commands and addresses. Just start typing. Hit "enter" when finished.
|
|
|
|
|
|
|
| |
- ui_input_frame_update is now global
- moved element_component from rendlay.c to rendlay.h
- added ability to rendlay.c to define "container" components. These simply provide a render_container.
I plan to remove the above again and simply use one container covering the whole render_target. This container will be rendered after the artwork and before the ui. For this to work, DViews need move and resize support. Render_targets will than be equivalent to virtual desktops.
|
|
|
|
| |
Fixes -video ddraw issue.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
is now separate from runtime device state. I have larger plans
for devices, so there is some temporary scaffolding to hold
everything together, but this first step does separate things
out.
There is a new class 'running_device' which represents the
state of a live device. A list of these running_devices sits
in machine->devicelist and is created when a running_machine
is instantiated.
To access the configuration state, use device->baseconfig()
which returns a reference to the configuration.
The list of running_devices in machine->devicelist has a 1:1
correspondance with the list of device configurations in
machine->config->devicelist, and most navigation options work
equally on either (scanning by class, type, etc.)
For the most part, drivers will now deal with running_device
objects instead of const device_config objects. In fact, in
order to do this patch, I did the following global search &
replace:
const device_config -> running_device
device->static_config -> device->baseconfig().static_config
device->inline_config -> device->baseconfig().inline_config
and then fixed up the compiler errors that fell out.
Some specifics:
Removed device_get_info_* functions and replaced them with
methods called get_config_*.
Added methods for get_runtime_* to access runtime state from
the running_device.
DEVICE_GET_INFO callbacks are only passed a device_config *.
This means they have no access to the token or runtime state
at all. For most cases this is fine.
Added new DEVICE_GET_RUNTIME_INFO callback that is passed
the running_device for accessing data that is live at runtime.
In the future this will go away to make room for a cleaner
mechanism.
Cleaned up the handoff of memory regions from the memory
subsystem to the devices.
|
|
|
|
|
|
|
|
| |
along with a tagmap. Changed memory regions, input ports, and devices
to use this class. For devices, converted typenext and classnext
fields into methods which dynamically search for the next item.
Changed a number of macros to use the features of the class, removing
the need for a bunch of helper functions.
|
|
|
|
| |
Fixes "attempt to free untracked memory" in several games.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Created new central header "emu.h"; this should be included
by pretty much any driver or device as the first include. This
file in turn includes pretty much everything a driver or device
will need, minus any other devices it references. Note that
emu.h should *never* be included by another header file.
- Updated all files in the core (src/emu) to use emu.h.
- Removed a ton of redundant and poorly-tracked header includes
from within other header files.
- Temporarily changed driver.h to map to emu.h until we update
files outside of the core.
Added class wrapper around tagmap so it can be directly included
and accessed within objects that need it. Updated all users to
embed tagmap objects and changed them to call through the class.
Added nicer functions for finding devices, ports, and regions in
a machine:
machine->device("tag") -- return the named device, or NULL
machine->port("tag") -- return the named port, or NULL
machine->region("tag"[, &length[, &flags]]) -- return the
named region and optionally its length and flags
Made the device tag an astring. This required touching a lot of
code that printed the device to explicitly fetch the C-string
from it. (Thank you gcc for flagging that issue!)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
osd_free(). They take the same parameters as malloc() and free().
Renamed mamecore.h -> emucore.h.
New C++-aware memory manager, implemented in emualloc.*. This is a
simple manager that allows you to add any type of object to a
resource pool. Most commonly, allocated objects are added, and so
a set of allocation macros is provided to allow you to manage
objects in a particular pool:
pool_alloc(p, t) = allocate object of type 't' and add to pool 'p'
pool_alloc_clear(p, t) = same as above, but clear the memory first
pool_alloc_array(p, t, c) = allocate an array of 'c' objects of type
't' and add to pool 'p'
pool_alloc_array_clear(p, t, c) = same, but with clearing
pool_free(p, v) = free object 'v' and remove it from the pool
Note that pool_alloc[_clear] is roughly equivalent to "new t" and
pool_alloc_array[_clear] is roughly equivalent to "new t[c]". Also
note that pool_free works for single objects and arrays.
There is a single global_resource_pool defined which should be used
for any global allocations. It has equivalent macros to the pool_*
macros above that automatically target the global pool.
In addition, the memory module defines global new/delete overrides
that access file and line number parameters so that allocations can
be tracked. Currently this tracking is only done if MAME_DEBUG is
enabled. In debug builds, any unfreed memory will be printed at
the end of the session.
emualloc.h also has #defines to disable malloc/free/realloc/calloc.
Since emualloc.h is included by emucore.h, this means pretty much
all code within the emulator is forced to use the new allocators.
Although straight new/delete do work, their use is discouraged, as
any allocations made with them will not be tracked.
Changed the familar auto_alloc_* macros to map to the resource pool
model described above. The running_machine is now a class and contains
a resource pool which is automatically destructed upon deletion. If
you are a driver writer, all your allocations should be done with
auto_alloc_*.
Changed all drivers and files in the core using malloc/realloc or the
old alloc_*_or_die macros to use (preferably) the auto_alloc_* macros
instead, or the global_alloc_* macros if necessary.
Added simple C++ wrappers for astring and bitmap_t, as these need
proper constructors/destructors to be used for auto_alloc_astring and
auto_alloc_bitmap.
Removed references to the winalloc prefix file. Most of its
functionality has moved into the core, save for the guard page
allocations, which are now implemented in osd_alloc and osd_free.
|
| |
|
|
|
|
|
|
| |
Updated device and input port lists to use the tagmap for
tag searches. Also removed the whole "quark" thing from the
validity checker in favor of using the tagmaps.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This update changes the way we handle memory allocation. Rather
than allocating in terms of bytes, allocations are now done in
terms of objects. This is done via new set of macros that replace
the malloc_or_die() macro:
alloc_or_die(t) - allocate memory for an object of type 't'
alloc_array_or_die(t,c) - allocate memory for an array of 'c' objects of type 't'
alloc_clear_or_die(t) - same as alloc_or_die but memset's the memory to 0
alloc_array_clear_or_die(t,c) - same as alloc_array_or_die but memset's the memory to 0
All original callers of malloc_or_die have been updated to call these
new macros. If you just need an array of bytes, you can use
alloc_array_or_die(UINT8, numbytes).
Made a similar change to the auto_* allocation macros. In addition,
added 'machine' as a required parameter to the auto-allocation macros,
as the resource pools will eventually be owned by the machine object.
The new macros are:
auto_alloc(m,t) - allocate memory for an object of type 't'
auto_alloc_array(m,t,c) - allocate memory for an array of 'c' objects of type 't'
auto_alloc_clear(m,t) - allocate and memset
auto_alloc_array_clear(m,t,c) - allocate and memset
All original calls or auto_malloc have been updated to use the new
macros. In addition, auto_realloc(), auto_strdup(), auto_astring_alloc(),
and auto_bitmap_alloc() have been updated to take a machine parameter.
Changed validity check allocations to not rely on auto_alloc* anymore
because they are not done in the context of a machine.
One final change that is included is the removal of SMH_BANKn macros.
Just use SMH_BANK(n) instead, which is what the previous macros mapped
to anyhow.
|
|
|
|
| |
to make them compile as either C or C++.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Sent: Thursday, December 11, 2008 7:13 AM
To: submit@mamedev.org
Cc: atariace@hotmail.com
Subject: [patch] Remove deprecat.h from rendlay.c
Hi mamedev,
This patch squashes another deprecated use of Machine from the mame
core by plumbing machine_config into rendlay.c
~aa
|
|
|
|
| |
problems in some display core functions
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
deprecat.h.
Changed render_texture_set_bitmap() to accept a palette object
instead of a palette index. The renderer remains optimized for the
system palette but will work if objects have their own palette as
well.
Changed renderer to permit palettes for RGB and YUY textures. If
specified, these palettes specify a 32-entry (RGB15) or 256-entry
(others) lookup for applying additional brightness/contrast/gamma
on a per-texture basis.
Removed rescale notification. It never really worked that well and
violated proper layering.
Renamed palette_set_brightness() to palette_set_pen_contrast() for
clarity.
Changed palette objects to support global brightness/contrast/gamma
in addition to per-group and per-entry controls.
|
|
|
|
|
| |
can be set directly in the palette entry and will be respected for
laserdisc overlays.
|