| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
| |
Coulom (nw)
|
| |
|
|
|
|
| |
loading a state(nw)
|
| |
|
| |
|
| |
|
| |
|
|
|
|
| |
interface. (no whatsnew)
|
| |
|
|
|
|
|
|
| |
i8251: fix rx (nw)
z80dart: fix rx (nw)
imd_dsk: fix free array crash (nw)
(mess) isbc_215g: hdd seeks (nw)
|
| |
|
|
|
|
| |
instead. [smf]
|
|
|
|
| |
updated the uarts that were testing for 1.5 stop bits to pass that in, but there are probably others & 1.5 stop bits is converted to 2 by diserial. However the 68681 requires stop bits to be specified in clocks, so this will change in the future. Replaced synchronous flag with start bit count, as some uarts can use a start bit in synchronous mode & that whether there is a start bit is all the flag is currently controlling. Updated rs232 terminal to allow startbits, stop bits 1.5 to be specified (although that is currently not supported by diserial) and individual transmit and receive baud rates. [smf]
|
| |
|
|
|
|
| |
r26274 there is random behaviour if you don't [smf]
|
| |
|
|
|
|
| |
from the error mask rather than throw all the other bits away. However I haven't seen any documentation for Z80DART that says there is an error FIFO at all. [smf]
|
|
|
|
| |
called after reset. It's no longer called if there has been no data sent.
|
| |
|
| |
|
|
|
|
| |
which allows multiple chips to be connected together without using glue methods. [smf]
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
| |
part. (nw)
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
READ/WRITE_DEVICE*_HANDLERs are now passed an
address_space &, and the 8-bit variants get a mem_mask
as well. This means they are now directly compatible
with the member function delegates. Added a generic
address space to the driver_device that can be used
when no specific address space is available. Also
added DECLARE_READ/WRITE_DEVICE*_HANDLER macros to
declare device callbacks with default mem_mask
parameters. [Aaron Giles]
|
| |
|
| |
|
|
|
|
|
|
| |
for identifying targets and simplified the code. [Aaron Giles]
I have some further ideas but this is a good midway point.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
existing modern devices and the legacy wrappers to work in this
environment. This in general greatly simplifies writing a modern
device. [Aaron Giles]
General notes:
* some more cleanup probably needs to happen behind this change,
but I needed to get it in before the next device modernization
or import from MESS :)
* new template function device_creator which automatically defines
the static function that creates the device; use this instead of
creating a static_alloc_device_config function
* added device_stop() method which is called at around the time
the previous device_t's destructor was called; if you auto_free
anything, do it here because the machine is gone when the
destructor is called
* changed the static_set_* calls to pass a device_t & instead of
a device_config *
* for many devices, the static config structure member names over-
lapped the device's names for devcb_* functions; in these cases
the members in the interface were renamed to have a _cb suffix
* changed the driver_enumerator to only cache 100 machine_configs
because caching them all took a ton of memory; fortunately this
implementation detail is completely hidden behind the
driver_enumerator interface
* got rid of the macros for creating derived classes; doing it
manually is now clean enough that it isn't worth hiding the
details in a macro
|
|
|
|
|
|
|
|
|
|
|
| |
meant adding a machine() accessor but it's worth it for consistency.
This will allow future changes from reference to pointer to happen
transparently for devices. [Aaron Giles]
Simple S&R:
m_machine( *[^ (!=;])
machine()\1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Remove redundant machine items from address_space and device_t.
Neither machine nor m_machine are directly accessible anymore.
Instead a new getter machine() is available which returns a
machine reference. So:
space->machine->xxx ==> space->machine().xxx
device->machine->yyy ==> device->machine().yyy
Globally changed all running_machine pointers to running_machine
references. Any function/method that takes a running_machine takes
it as a required parameter (1 or 2 exceptions). Being consistent
here gets rid of a lot of odd &machine or *machine, but it does
mean a very large bulk change across the project.
Structs which have a running_machine * now have that variable
renamed to m_machine, and now have a shiny new machine() method
that works like the space and device methods above. Since most of
these are things that should eventually be devices anyway, consider
this a step in that direction.
98% of the update was done with regex searches. The changes are
architected such that the compiler will catch the remaining
errors:
// find things that use an embedded machine directly and replace
// with a machine() getter call
S: ->machine->
R: ->machine\(\)\.
// do the same if via a reference
S: \.machine->
R: \.machine\(\)\.
// convert function parameters to running_machine &
S: running_machine \*machine([^;])
R: running_machine \&machine\1
// replace machine-> with machine.
S: machine->
R: machine\.
// replace &machine() with machine()
S: \&([()->a-z0-9_]+machine\(\))
R: \1
// sanity check: look for this used as a cast
(running_machine &)
// and change to this:
*(running_machine *)
|
| |
|
|
|
|
|
| |
mandatory any more.
Most of files is rolled back to previous state. (no whatsnew)
|
|
|
|
|
|
| |
possible. [Miodrag Milanovic]
- Updated all devices containing ROM regions to have short names and all modern devices too
- Created new validation to check existence of short name if device contain ROM region defined
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
calls on the device object.
Regex used:
state_save_register_device_item( *)\(( *)([^,]+), *([^,]+),( *)([^ )]+)( *)\)
\3->save_item\1\(\2NAME\(\6\),\5\4\7\)
state_save_register_device_item_array( *)\(( *)([^,]+), *([^,]+),( *)([^ )]+)( *)\)
\3->save_item\1\(\2NAME\(\6\),\5\4\7\)
state_save_register_device_item_2d_array( *)\(( *)([^,]+), *([^,]+),( *)([^ )]+)( *)\)
\3->save_item\1\(\2NAME\(\6\),\5\4\7\)
state_save_register_device_item_bitmap( *)\(( *)([^,]+), *([^,]+),( *)([^ )]+)( *)\)
\3->save_item\1\(\2NAME\(\*\6\),\5\4\7\)
state_save_register_device_item_pointer( *)\(( *)([^,]+), *([^,]+),( *)([^,]+), *([^ )]+)( *)\)
\3->save_pointer\1\(\2NAME\(\6\),\5\7,\5\4\8\)
this->save_
save_
(save_item[^;]+), *0( *)\);
\1\2\);
(save_pointer[^;]+), *0( *)\);
\1\2\);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
timer_adjust_oneshot(t,...) => t->adjust(...)
timer_adjust_periodic(t,...) => t->adjust(...)
timer_reset(t,...) => t->reset(...)
timer_enable(t,...) => t->enable(...)
timer_enabled(t) => t->enabled()
timer_get_param(t) => t->param()
timer_get_ptr(t) => t->ptr()
timer_set_param(t,...) => t->set_param(...)
timer_set_ptr(t) => t->set_ptr(...)
timer_timeelapsed(t) => t->elapsed()
timer_timeleft(t) => t->remaining()
timer_starttime(t) => t->start()
timer_firetime(t) => t->expire()
Also remove some stray legacy cpuexec* macros that were
lurking in schedule.h):
cpuexec_describe_context(m) => m->describe_context()
cpuexec_boost_interleave(m,...) => m->scheduler().boot_interleave(...)
cpuexec_trigger(m,...) => m->scheduler().trigger(...)
cpuexec_triggertime(m,...) => m->scheduler().trigger(...)
Specific regex'es used:
timer_adjust_oneshot( *)\(( *)([^,;]+), *
\3->adjust\1\(\2
timer_adjust_periodic( *)\(( *)([^,;]+), *
\3->adjust\1\(\2
(->adjust.*), *0( *)\)
\1\2\)
timer_reset( *)\(( *)([^,;]+), *
\3->reset\1\(\2
(->reset *\(.*)attotime::never
\1
timer_enable( *)\(( *)([^,;]+), *
\3->enable\1\(\2
timer_enabled( *)\(( *)([^,;)]+)\)
\3->enabled\1\(\2\)
timer_get_param( *)\(( *)([^,;)]+)\)
\3->param\1\(\2\)
timer_get_ptr( *)\(( *)([^,;)]+)\)
\3->ptr\1\(\2\)
timer_timeelapsed( *)\(( *)([^,;)]+)\)
\3->elapsed\1\(\2\)
timer_timeleft( *)\(( *)([^,;)]+)\)
\3->remaining\1\(\2\)
timer_starttime( *)\(( *)([^,;)]+)\)
\3->start\1\(\2\)
timer_firetime( *)\(( *)([^,;)]+)\)
\3->expire\1\(\2\)
timer_set_param( *)\(( *)([^,;]+), *
\3->set_param\1\(\2
timer_set_ptr( *)\(( *)([^,;]+), *
\3->set_ptr\1\(\2
cpuexec_describe_context( *)\(( *)([^,;)]+)\)
\3->describe_context\1\(\2\)
\&m_machine->describe_context
m_machine.describe_context
cpuexec_boost_interleave( *)\(( *)([^,;]+), *
\3->scheduler().boost_interleave\1\(\2
cpuexec_trigger( *)\(( *)([^,;]+), *
\3->scheduler().trigger\1\(\2
cpuexec_triggertime( *)\(( *)([^,;]+), *
\3->scheduler().trigger\1\(\2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
timers into the scheduler. Retain TIMER devices as a separate wrapper
in timer.c/.h. Inline wrappers are currently provided for all timer
operations; a future update will bulk clean these up.
Rather than using macros which hide generation of a string-ified name
for callback functions, the new methods require passing both a function
pointer plus a name string. A new macro FUNC() can be used to output
both, and another macro MFUNC() can be used to output a stub-wrapped
class member as a callback.
Also added a time() method on the machine, so that machine->time() gives
the current emulated time. A wrapper for timer_get_time is currently
provided but will be bulk replaced in the future.
For this update, convert all classic timer_alloc, timer_set,
timer_pulse, and timer_call_after_resynch calls into method calls on
the scheduler.
For new device timers, added methods to the device_t class that make
creating and managing these much simpler. Modern devices were updated
to use these.
Here are the regexes used; some manual cleanup (compiler-caught) will
be needed since regex doesn't handle nested parentheses cleanly
1. Convert timer_call_after_resynch calls
timer_call_after_resynch( *)\(( *)([^,;]+), *([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().synchronize\1\(\2FUNC(\6), \5, \4\)
2. Clean up trailing 0, NULL parameters
(synchronize[^;]+), 0, NULL\)
\1)
3. Clean up trailing NULL parameters
(synchronize[^;]+), NULL\)
\1)
4. Clean up completely empty parameter lists
synchronize\(FUNC\(NULL\)\)
synchronize()
5. Convert timer_set calls
timer_set( *)\(( *)([^,;]+), *([^,;]+), *([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().timer_set\1\(\2\4, FUNC(\7), \6, \5\)
6. Clean up trailing 0, NULL parameters
(timer_set[^;]+), 0, NULL\)
\1)
7. Clean up trailing NULL parameters
(timer_set[^;]+), NULL\)
\1)
8. Convert timer_set calls
timer_pulse( *)\(( *)([^,;]+), *([^,;]+), *([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().timer_pulse\1\(\2\4, FUNC(\7), \6, \5\)
9. Clean up trailing 0, NULL parameters
(timer_pulse[^;]+), 0, NULL\)
\1)
10. Clean up trailing NULL parameters
(timer_pulse[^;]+), NULL\)
\1)
11. Convert timer_alloc calls
timer_alloc( *)\(( *)([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().timer_alloc\1\(\2FUNC(\4), \5\)
12. Clean up trailing NULL parameters
(timer_alloc[^;]+), NULL\)
\1)
13. Clean up trailing 0 parameters
(timer_alloc[^;]+), 0\)
\1)
14. Fix oddities introduced
\&m_machine->scheduler()
m_machine.scheduler()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
attotime_zero => attotime::zero
attotime_never => attotime::never
ATTOTIME_IN_SEC(s) => attotime::from_seconds(s)
ATTOTIME_IN_MSEC(m) => attotime::from_msec(m)
ATTOTIME_IN_USEC(u) => attotime::from_usec(u)
ATTOTIME_IN_NSEC(n) => attotime::from_nsec(n)
ATTOTIME_IN_HZ(h) => attotime::from_hz(h)
Also, changed the following MCFG macros to require a full
attotime specification:
MCFG_TIMER_ADD_PERIODIC
MCFG_QUANTUM_TIME
MCFG_WATCHDOG_TIME_INIT
|