| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
| |
functions into methods of those classes. The most wide-ranging
change was converting device_reset() to device->reset(). Apart
from that it was mostly internal shuffling in the core.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
is now separate from runtime device state. I have larger plans
for devices, so there is some temporary scaffolding to hold
everything together, but this first step does separate things
out.
There is a new class 'running_device' which represents the
state of a live device. A list of these running_devices sits
in machine->devicelist and is created when a running_machine
is instantiated.
To access the configuration state, use device->baseconfig()
which returns a reference to the configuration.
The list of running_devices in machine->devicelist has a 1:1
correspondance with the list of device configurations in
machine->config->devicelist, and most navigation options work
equally on either (scanning by class, type, etc.)
For the most part, drivers will now deal with running_device
objects instead of const device_config objects. In fact, in
order to do this patch, I did the following global search &
replace:
const device_config -> running_device
device->static_config -> device->baseconfig().static_config
device->inline_config -> device->baseconfig().inline_config
and then fixed up the compiler errors that fell out.
Some specifics:
Removed device_get_info_* functions and replaced them with
methods called get_config_*.
Added methods for get_runtime_* to access runtime state from
the running_device.
DEVICE_GET_INFO callbacks are only passed a device_config *.
This means they have no access to the token or runtime state
at all. For most cases this is fine.
Added new DEVICE_GET_RUNTIME_INFO callback that is passed
the running_device for accessing data that is live at runtime.
In the future this will go away to make room for a cleaner
mechanism.
Cleaned up the handoff of memory regions from the memory
subsystem to the devices.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Created new central header "emu.h"; this should be included
by pretty much any driver or device as the first include. This
file in turn includes pretty much everything a driver or device
will need, minus any other devices it references. Note that
emu.h should *never* be included by another header file.
- Updated all files in the core (src/emu) to use emu.h.
- Removed a ton of redundant and poorly-tracked header includes
from within other header files.
- Temporarily changed driver.h to map to emu.h until we update
files outside of the core.
Added class wrapper around tagmap so it can be directly included
and accessed within objects that need it. Updated all users to
embed tagmap objects and changed them to call through the class.
Added nicer functions for finding devices, ports, and regions in
a machine:
machine->device("tag") -- return the named device, or NULL
machine->port("tag") -- return the named port, or NULL
machine->region("tag"[, &length[, &flags]]) -- return the
named region and optionally its length and flags
Made the device tag an astring. This required touching a lot of
code that printed the device to explicitly fetch the C-string
from it. (Thank you gcc for flagging that issue!)
|
| |
|
|
|
|
|
|
| |
* added saves to 6522via.c. this fixes problems of gameplan.c and trvquest.c games with -autosave
* added driver data struct and save states to toratora.c and sf.c
* enable GAME_SUPPORTS_SAVE flag to dday.c because some of the core changes have fixed the sound problem at loading
* added a couple of comments about header inclusions
|
|
|
|
|
| |
Replaced with machine->firstcpu which is a fast access to the head
of the list of CPUs.
|
|
|
|
|
|
|
|
|
| |
function here. Remaining devices have been converted to have
device-specific functions to do the same thing with proper type
checking.
CPUs still have a set_info function but it is CPU-specific now and
no longer piggybacks on the general device function.
|
|
|
|
| |
to make them compile as either C or C++.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
> On Mon, Jan 19, 2009 at 05:37:35AM -0800, R. Belmont wrote:
> > My mistake. I thought you were suggesting that we should actually
> > somehow handle malloc failures. Given that aborting is an OK way to
> > express failure, I'd suggest the return values be changed to DEFER
> > and DONT_DEFER to eliminate the conceptual imbalance of OK/DEFER.
>
> That's where comes the fact that we have 130 OK/DONT_DEFER and 1
> DEFER. It makes me think that the exceptional DEFER case should be
> handled by an exceptional function call.
>
> I know, code talks, but I'm at work right now :-)
Here we go.
OG.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
interfaces when handling strings. Namely, the generic
get_info functions allocate a temporary string and the
device in question copies its string to the target,
instead of assigning a const char *. Updated all device
and sound cores to operate this way.
Added the concept of a cpu_state_table, which is
supplied by the CPU cores and which describes all the
register state accessible to the debugger and other
subsystems. The format of the table is such that most
data can be simply fetched from memory without the
further involvement of the CPU core, including the
display of common formats. Extensibility points are
available for custom display and for importing/exporting
the data to intermediate variables for more complicated
scenarios. Updated the ADSP21xx, TMS340x0, and i86 cores
to use this.
Removed the old debugger register list, which was never
used. Replaced it with using ordering from the
cpu_state_table.
Renamed REG_PC -> REG_GENPC, REG_SP -> REG_GENSP, and
REG_PREVIOUSPC -> REG_GENPCBASE. Updated a few spots
that were using these directly. Moved these definitions
into the end of the register area rather than leaving
them outside which put them in a weird range.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
specified when the device is added, and the clock is available in
the device_config directly via device->clock. Updated all devices
that have a clock to specify it when adding the device, rather than
as part of their configuration. As part of this work, also created
device-specific _ADD and _REMOVE macros to simplify configuration.
Dfined a generic device execute function callback, though it
is not used yet. The long term plan is that any device with an
execute callback will be scheduled along with the CPUs. Now that
CPUs are devices, their scheduling will be moved over to this
logic eventually.
Changed various NVRAM devices to fetch their default memory region
from the device->region rather than specifying it in the
configuration.
Moved a number of CPUINFO_PTR_* constants to CPUINFO_FCT_*.
Fixed several drivers that manually created their own gfx_elements
to fill in the machine object, so they no longer crash.
Fixed incorrect CPU display on info screen (recently broken).
Moved device startup to *before* the DRIVER_INIT is called. This
is to allow the DRIVER_INIT to configure devices that have been
properly allocated. So far I don't see any negative effects, but
be on the lookout if something weird shows up.
Rewrote the device iteration logic to make use of the typenext
field and the newly-introduced classnext field for iterating more
efficiently through devices of a given type or class.
Fixed behavior of MDRV_CPU_REPLACE so it does not delete and then
re-add a CPU (causing the order to change).
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Added new function cpuexec_describe_context(machine) which can be
used in logerror() and other printf-style functions to return a
description of the current CPU/PC given only the machine. Changed
several dozen sites to use this instead of directly interrogating
the activecpu.
Removed all other uses of activecpu throughout the system. Removed
activecpu from the machine structure to prevent future abuse.
Removed cpu_push_context() and cpu_pop_context(), and all call
sites.
Voodoo devices now require a CPU to be defined in the configuration
in order to know whom to steal cycles from or stall when FIFOs get
full. Updated all voodoo users to specify one.
CPD1869 devices now also require a CPU to be defined in the
configuration, in order to know which CPU's registers to fetch.
Updated all cdp1869 users to specify one.
Many other small changes to make this all work.
|
|
|
|
|
| |
and timer_get_time to pass the machine parameter. Moved timer globals
to hang off of the running_machine.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
are broken.
Changed READ/WRITE handlers to accept an address_space * instead of a
machine *. The address_space object was enhanced to contain a machine
and a pointer to the relevant CPU object.
Fixed a number of errors found by the compiler, mostly in the core and
CPU/sound handlers, but there is a lot remaining to fix.
Added new function cpu_get_address_space() to fetch the address space
for calling in manually to these functions. In some instances, code
which should eventually be converted to a device is hard-coding fetching
the program space of CPU #0 in order to have something valid to pass.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
related APIs now take a device pointer instead of an index.
All functions that take a CPU device are prefixed with cpu_*
All functions that are globally related to cpu execution
are prefixed with cpuexec_*. Below is a list of some of the
mappings:
cpu_boost_interleave -> cpuexec_boost_interleave
cpunum_suspend -> cpu_suspend
cpunum_resume -> cpu_resume
cpunum_is_suspended -> cpu_is_suspended
cpunum_get_clock -> cpu_get_clock
cpunum_set_clock -> cpu_set_clock
cpunum_get_clockscale -> cpu_get_clockscale
cpunum_set_clockscale -> cpu_set_clockscale
cpunum_get_localtime -> cpu_get_local_time
cpunum_gettotalcycles -> cpu_get_total_cycles
activecpu_eat_cycles -> cpu_eat_cycles
activecpu_adjust_icount -> cpu_adjust_icount
cpu_trigger -> cpuexec_trigger
cpu_triggertime -> cpuexec_triggertime
cpunum_set_input_line -> cpu_set_input_line
cpunum_set_irq_callback -> cpu_set_irq_callback
In addition, a number of functions retain the same name but
now require a specific CPU parameter to be passed in:
cpu_yield
cpu_spin
cpu_spinuntil_time
cpu_spinuntil_int
cpu_spinuntil_trigger
cpu_triggerint
Merged cpuint.c into cpuexec.c. One side-effect of this
change is that driver reset callbacks are called AFTER the
CPUs and devices are reset. This means that if you make
changes to the CPU state and expect the reset vectors to
recognize the changes in your reset routine, you will need
to manually reset the CPU after making the change (since it
has already been reset).
Added a number of inline helper functions to cpuintrf.h for
managing addresses
Removed cpu_gettotalcpu(). This information is rarely needed
outside of the core and can be obtained by looking at the
machine->cpu[] array.
Changed CPU interrupt acknowledge callbacks to pass a CPU
device instead of machine/cpunum pair.
Changed VBLANK and periodic timer callbacks to pass a CPU
device instead of machine/cpunum pair.
Renamed all information getters from cpu_* to cpu_get_* and
from cputype_* to cputype_get_*.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* added a set of cpu_* calls which accept a CPU device object;
these are now the preferred means of manipulating a CPU
* removed the cpunum_* calls; added an array of cpu[] to the
running_machine object; converted all existing cpunum_* calls
to cpu_* calls, pulling the CPU device object from the new
array in the running_machine
* removed the activecpu_* calls; added an activecpu member to
the running_machine object; converted all existing activecpu_*
calls to cpu_* calls, pulling the active CPU device object
from the running_machine
* changed cpuintrf_push_context() to cpu_push_context(), taking
a CPU object pointer; changed cpuintrf_pop_context() to
cpu_pop_context(); eventually these will go away
* many other similar changes moving toward a model where all CPU
references are done by the CPU object and not by index
|
|
|
|
|
|
|
| |
Subject: another Machine -> machine cleanup
This cleans up most of the Machine stuff in src/emu/machine. There is
a bit left to clean up, but it's mostly stuck at some interfaces now.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Subject: [patch] More Machine->machine changes, add machine to irq
callbacks
Hi mamedev,
Here are two more patches to eliminate Machine globals. The first
patch was autogenerated by the attached fixup script. That script has
been updated to catch additional cases which it previously missed
(when Machine is the last parameter to a function or Machine is used
in an assignment). This makes ~50 more files deprecat.h free.
A sizable chunk (~20%) of the remaining uses of the Machine global in
the drivers are due to irq callbacks for sound and machine updates.
Typically such callbacks need to call cpunum_set_input_line, which
requires a machine parameter, so if the callbacks don't pass the
machine parameter, these routines have no choice but to reference the
global variable.
The second patch attempts to address most cases of this by adding the
machine parameter to the callback interfaces. This allows us to
remove #include "deprecat.h" from ~150 files, at the cost of having to
fix up hundreds of callbacks.
In total, these patches reduced the number of files with deprecat.h
from 783 to 575.
~aa
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Subject: [patch] Remove more Machine globals, #include "deprecat.h"
Hi mamedev,
The attached patch goes through and converts a number of Machine
globals to machine locals, and then removes #include "deprecat.h" if
appropriate. The script that generated it is included, since the
patch itself is rather large and would have been time consuming to
produce otherwise.
The script doesn't convert cases of Machine that aren't in common
macros. I'll try to tackle those later if someone doesn't beat me to
it.
~aa
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Updated all call-through handlers appropriately. Renamed read8_handler to
read8_machine_func, replicating this pattern throughout.
Defined new set of memory handler functions which are similar but which
pass a const device_config * in place of the running_machine *. These are
called read8_device_func, etc. Added macros READ8_DEVICE_HANDLER() for
specifying functions of this type. Note that some plumbing still needs to
happen in memory.c before this will work.
This check-in should remove the need for the global Machine and in turn
"deprecat.h" for a lot of drivers, but that work has not been done. On
the flip side, some new accesses to the global Machine were added in the
emu/ files. These should be addressed over time, but are smaller in
number than the references in the driver.
|
|
|
|
|
| |
Updated all call sites.
Fixed recent build breaks.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Updated all CPU cores to return a CPUINFO_INT_CLOCK_MULTIPLIER of 1.
Changed the core to actually respect both CPUINFO_INT_CLOCK_MULTIPLIER and CPUINFO_INT_CLOCK_DIVIDER.
Updated a number of drivers to use cpunum_get_clock() instead of Machine->drv->cpu[x].clock.
***** Raw input clock speeds should now be specified for all CPUs in the MACHINE_DRIVER. *****
Removed explicit divisors from all drivers using the following CPU types,
which were already specifying non-1 values for CPUINFO_INT_CLOCK_DIVIDER:
* COP4x0
* I8039/8048 families
* M68(7)05, HD63705
* M6809E
* PIC16C5X
* TMS32010
* TMS340x0
In a few cases, it appears that the divisor was not being used, so I guessed in those cases whether or not
the specified clock speed was raw.
|
| |
|
|
|
|
|
|
|
| |
This patch fixes the following issue in the 6522 emulation:
- When writing to the ACR register with the timer 1 in continuous
counting mode, the timer 1 value should not be reloaded but keep on
counting.
|
| |
|
|
|