| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Remove redundant machine items from address_space and device_t.
Neither machine nor m_machine are directly accessible anymore.
Instead a new getter machine() is available which returns a
machine reference. So:
space->machine->xxx ==> space->machine().xxx
device->machine->yyy ==> device->machine().yyy
Globally changed all running_machine pointers to running_machine
references. Any function/method that takes a running_machine takes
it as a required parameter (1 or 2 exceptions). Being consistent
here gets rid of a lot of odd &machine or *machine, but it does
mean a very large bulk change across the project.
Structs which have a running_machine * now have that variable
renamed to m_machine, and now have a shiny new machine() method
that works like the space and device methods above. Since most of
these are things that should eventually be devices anyway, consider
this a step in that direction.
98% of the update was done with regex searches. The changes are
architected such that the compiler will catch the remaining
errors:
// find things that use an embedded machine directly and replace
// with a machine() getter call
S: ->machine->
R: ->machine\(\)\.
// do the same if via a reference
S: \.machine->
R: \.machine\(\)\.
// convert function parameters to running_machine &
S: running_machine \*machine([^;])
R: running_machine \&machine\1
// replace machine-> with machine.
S: machine->
R: machine\.
// replace &machine() with machine()
S: \&([()->a-z0-9_]+machine\(\))
R: \1
// sanity check: look for this used as a cast
(running_machine &)
// and change to this:
*(running_machine *)
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to private member variables with accessors:
machine->m_respool ==> machine->respool()
machine->config ==> machine->config()
machine->gamedrv ==> machine->system()
machine->m_regionlist ==> machine->first_region()
machine->sample_rate ==> machine->sample_rate()
Also converted internal lists to use simple_list.
|
| |
|
|
|
|
|
|
|
|
| |
frontend by deriving from drc_frontend and implementing the
describe method.
RB, if you send me your latest SH4 WIP, I'll convert it for you
if this makes you cranky. :)
|
|
|
|
|
| |
They both already existed. No sense in having two names for the
same object type.
|
|
|
|
|
|
|
|
|
|
|
| |
The purpose of making it const before was to discourage direct tampering,
but private/protected does a better job of that now anyhow, and it is
annoying now.
s/const[ \t]+address_space\b/address_space/g;
Is basically what I did.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
performance as a result of this change. Do not panic; report issues to the
list in the short term and I will look into them. There are probably also
some details I forgot to mention. Please ask questions if anything is not
clear.
NOTE: This is a major internal change to the way devices are handled in
MAME. There is a small impact on drivers, but the bulk of the changes are
to the devices themselves. Full documentation on the new device handling
is in progress at http://mamedev.org/devwiki/index.php/MAME_Device_Basics
Defined two new casting helpers: [Aaron Giles]
downcast<type>(value) should be used for safe and efficient downcasting
from a base class to a derived class. It wraps static_cast<> by adding
an assert that a matching dynamic_cast<> returns the same result in
debug builds.
crosscast<type>(value) should be used for safe casting from one type to
another in multiple inheritance scenarios. It compiles to a
dynamic_cast<> plus an assert on the result. Since it does not optimize
down to static_cast<>, you should prefer downcast<> over crosscast<>
when you can.
Redefined running_device to be a proper C++ class (now called device_t).
Same for device_config (still called device_config). All devices and
device_configs must now be derived from these base classes. This means
each device type now has a pair of its own unique classes that describe
the device. Drivers are encouraged to use the specific device types
instead of the generic running_device or device_t classes. Drivers that
have a state class defined in their header file are encouraged to use
initializers off the constructor to locate devices. [Aaron Giles]
Removed the following fields from the device and device configuration
classes as they never were necessary or provided any use: device class,
device family, source file, version, credits. [Aaron Giles]
Added templatized variant of machine->device() which performs a downcast
as part of the device fetch. Thus machine->device<timer_device>("timer")
will locate a device named "timer", downcast it to a timer_device, and
assert if the downcast fails. [Aaron Giles]
Removed most publically accessible members of running_device/device_t in
favor of inline accessor functions. The only remaining public member is
machine. Thus all references to device->type are now device->type(), etc.
[Aaron Giles]
Created a number of device interface classes which are designed to be mix-
ins for the device classes, providing specific extended functionality and
information. There are standard interface classes for sound, execution,
state, nvram, memory, and disassembly. Devices can opt into 0 or more of
these classes. [Aaron Giles]
Converted the classic CPU device to a standard device that uses the
execution, state, memory, and disassembly interfaces. Used this new class
(cpu_device) to implement the existing CPU device interface. In the future
it will be possible to convert each CPU core to its own device type, but
for now they are still all CPU devices with a cpu_type() that specifies
exactly which kind of CPU. [Aaron Giles]
Created a new header devlegcy.h which wraps the old device interface using
some special template classes. To use these with an existing device,
simply remove from the device header the DEVICE_GET_INFO() declaration and
the #define mapping the ALL_CAPS name to the DEVICE_GET_INFO. In their
place #include "devlegcy.h" and use the DECLARE_LEGACY_DEVICE() macro.
In addition, there is a DECLARE_LEGACY_SOUND_DEVICE() macro for wrapping
existing sound devices into new-style devices, and a
DECLARE_LEGACY_NVRAM_DEVICE() for wrapping NVRAM devices. Also moved the
token and inline_config members to the legacy device class, as these are
not used in modern devices. [Aaron Giles]
Converted the standard base devices (VIDEO_SCREEN, SPEAKER, and TIMER)
from legacy devices to the new C++ style. Also renamed VIDEO_SCREEN to
simply SCREEN. The various global functions that were previously used to
access information or modify the state of these devices are now replaced
by methods on the device classes. Specifically:
video_screen_configure() == screen->configure()
video_screen_set_visarea() == screen->set_visible_area()
video_screen_update_partial() == screen->update_partial()
video_screen_update_now() == screen->update_now()
video_screen_get_vpos() == screen->vpos()
video_screen_get_hpos() == screen->hpos()
video_screen_get_vblank() == screen->vblank()
video_screen_get_hblank() == screen->hblank()
video_screen_get_width() == screen->width()
video_screen_get_height() == screen->height()
video_screen_get_visible_area() == screen->visible_area()
video_screen_get_time_until_pos() == screen->time_until_pos()
video_screen_get_time_until_vblank_start() ==
screen->time_until_vblank_start()
video_screen_get_time_until_vblank_end() ==
screen->time_until_vblank_end()
video_screen_get_time_until_update() == screen->time_until_update()
video_screen_get_scan_period() == screen->scan_period()
video_screen_get_frame_period() == screen->frame_period()
video_screen_get_frame_number() == screen->frame_number()
timer_device_adjust_oneshot() == timer->adjust()
timer_device_adjust_periodic() == timer->adjust()
timer_device_reset() == timer->reset()
timer_device_enable() == timer->enable()
timer_device_enabled() == timer->enabled()
timer_device_get_param() == timer->param()
timer_device_set_param() == timer->set_param()
timer_device_get_ptr() == timer->get_ptr()
timer_device_set_ptr() == timer->set_ptr()
timer_device_timeelapsed() == timer->time_elapsed()
timer_device_timeleft() == timer->time_left()
timer_device_starttime() == timer->start_time()
timer_device_firetime() == timer->fire_time()
Updated all drivers that use the above functions to fetch the specific
device type (timer_device or screen_device) and call the appropriate
method. [Aaron Giles]
Changed machine->primary_screen and the 'screen' parameter to VIDEO_UPDATE
to specifically pass in a screen_device object. [Aaron Giles]
Defined a new custom interface for the Z80 daisy chain. This interface
behaves like the standard interfaces, and can be added to any device that
implements the Z80 daisy chain behavior. Converted all existing Z80 daisy
chain devices to new-style devices that inherit this interface.
[Aaron Giles]
Changed the way CPU state tables are built up. Previously, these were data
structures defined by a CPU core which described all the registers and how
to output them. This functionality is now part of the state interface and
is implemented via the device_state_entry class. Updated all CPU cores
which were using the old data structure to use the new form. The syntax is
currently awkward, but will be cleaner for CPUs that are native new
devices. [Aaron Giles]
Converted the okim6295 and eeprom devices to the new model. These were
necessary because they both require multiple interfaces to operate and it
didn't make sense to create legacy device templates for these single cases.
(okim6295 needs the sound interface and the memory interface, while eeprom
requires both the nvram and memory interfaces). [Aaron Giles]
Changed parameters in a few callback functions from pointers to references
in situations where they are guaranteed to never be NULL. [Aaron Giles]
Removed MDRV_CPU_FLAGS() which was only used for disabling a CPU. Changed
it to MDRV_DEVICE_DISABLE() instead. Updated drivers. [Aaron Giles]
Reorganized the token parsing for machine configurations. The core parsing
code knows how to create/replace/remove devices, but all device token
parsing is now handled in the device_config class, which in turn will make
use of any interface classes or device-specific token handling for custom
token processing. [Aaron Giles]
Moved many validity checks out of validity.c and into the device interface
classes. For example, address space validation is now part of the memory
interface class. [Aaron Giles]
Consolidated address space parameters (bus width, endianness, etc.) into
a single address_space_config class. Updated all code that queried for
address space parameters to use the new mechanism. [Aaron Giles]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
is now separate from runtime device state. I have larger plans
for devices, so there is some temporary scaffolding to hold
everything together, but this first step does separate things
out.
There is a new class 'running_device' which represents the
state of a live device. A list of these running_devices sits
in machine->devicelist and is created when a running_machine
is instantiated.
To access the configuration state, use device->baseconfig()
which returns a reference to the configuration.
The list of running_devices in machine->devicelist has a 1:1
correspondance with the list of device configurations in
machine->config->devicelist, and most navigation options work
equally on either (scanning by class, type, etc.)
For the most part, drivers will now deal with running_device
objects instead of const device_config objects. In fact, in
order to do this patch, I did the following global search &
replace:
const device_config -> running_device
device->static_config -> device->baseconfig().static_config
device->inline_config -> device->baseconfig().inline_config
and then fixed up the compiler errors that fell out.
Some specifics:
Removed device_get_info_* functions and replaced them with
methods called get_config_*.
Added methods for get_runtime_* to access runtime state from
the running_device.
DEVICE_GET_INFO callbacks are only passed a device_config *.
This means they have no access to the token or runtime state
at all. For most cases this is fine.
Added new DEVICE_GET_RUNTIME_INFO callback that is passed
the running_device for accessing data that is live at runtime.
In the future this will go away to make room for a cleaner
mechanism.
Cleaned up the handoff of memory regions from the memory
subsystem to the devices.
|
|
|
|
|
|
| |
devtag_get_device ... machine->device()
memory_find_address_space ... device->space()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Created new central header "emu.h"; this should be included
by pretty much any driver or device as the first include. This
file in turn includes pretty much everything a driver or device
will need, minus any other devices it references. Note that
emu.h should *never* be included by another header file.
- Updated all files in the core (src/emu) to use emu.h.
- Removed a ton of redundant and poorly-tracked header includes
from within other header files.
- Temporarily changed driver.h to map to emu.h until we update
files outside of the core.
Added class wrapper around tagmap so it can be directly included
and accessed within objects that need it. Updated all users to
embed tagmap objects and changed them to call through the class.
Added nicer functions for finding devices, ports, and regions in
a machine:
machine->device("tag") -- return the named device, or NULL
machine->port("tag") -- return the named port, or NULL
machine->region("tag"[, &length[, &flags]]) -- return the
named region and optionally its length and flags
Made the device tag an astring. This required touching a lot of
code that printed the device to explicitly fetch the C-string
from it. (Thank you gcc for flagging that issue!)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
osd_free(). They take the same parameters as malloc() and free().
Renamed mamecore.h -> emucore.h.
New C++-aware memory manager, implemented in emualloc.*. This is a
simple manager that allows you to add any type of object to a
resource pool. Most commonly, allocated objects are added, and so
a set of allocation macros is provided to allow you to manage
objects in a particular pool:
pool_alloc(p, t) = allocate object of type 't' and add to pool 'p'
pool_alloc_clear(p, t) = same as above, but clear the memory first
pool_alloc_array(p, t, c) = allocate an array of 'c' objects of type
't' and add to pool 'p'
pool_alloc_array_clear(p, t, c) = same, but with clearing
pool_free(p, v) = free object 'v' and remove it from the pool
Note that pool_alloc[_clear] is roughly equivalent to "new t" and
pool_alloc_array[_clear] is roughly equivalent to "new t[c]". Also
note that pool_free works for single objects and arrays.
There is a single global_resource_pool defined which should be used
for any global allocations. It has equivalent macros to the pool_*
macros above that automatically target the global pool.
In addition, the memory module defines global new/delete overrides
that access file and line number parameters so that allocations can
be tracked. Currently this tracking is only done if MAME_DEBUG is
enabled. In debug builds, any unfreed memory will be printed at
the end of the session.
emualloc.h also has #defines to disable malloc/free/realloc/calloc.
Since emualloc.h is included by emucore.h, this means pretty much
all code within the emulator is forced to use the new allocators.
Although straight new/delete do work, their use is discouraged, as
any allocations made with them will not be tracked.
Changed the familar auto_alloc_* macros to map to the resource pool
model described above. The running_machine is now a class and contains
a resource pool which is automatically destructed upon deletion. If
you are a driver writer, all your allocations should be done with
auto_alloc_*.
Changed all drivers and files in the core using malloc/realloc or the
old alloc_*_or_die macros to use (preferably) the auto_alloc_* macros
instead, or the global_alloc_* macros if necessary.
Added simple C++ wrappers for astring and bitmap_t, as these need
proper constructors/destructors to be used for auto_alloc_astring and
auto_alloc_bitmap.
Removed references to the winalloc prefix file. Most of its
functionality has moved into the core, save for the guard page
allocations, which are now implemented in osd_alloc and osd_free.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This update changes the way we handle memory allocation. Rather
than allocating in terms of bytes, allocations are now done in
terms of objects. This is done via new set of macros that replace
the malloc_or_die() macro:
alloc_or_die(t) - allocate memory for an object of type 't'
alloc_array_or_die(t,c) - allocate memory for an array of 'c' objects of type 't'
alloc_clear_or_die(t) - same as alloc_or_die but memset's the memory to 0
alloc_array_clear_or_die(t,c) - same as alloc_array_or_die but memset's the memory to 0
All original callers of malloc_or_die have been updated to call these
new macros. If you just need an array of bytes, you can use
alloc_array_or_die(UINT8, numbytes).
Made a similar change to the auto_* allocation macros. In addition,
added 'machine' as a required parameter to the auto-allocation macros,
as the resource pools will eventually be owned by the machine object.
The new macros are:
auto_alloc(m,t) - allocate memory for an object of type 't'
auto_alloc_array(m,t,c) - allocate memory for an array of 'c' objects of type 't'
auto_alloc_clear(m,t) - allocate and memset
auto_alloc_array_clear(m,t,c) - allocate and memset
All original calls or auto_malloc have been updated to use the new
macros. In addition, auto_realloc(), auto_strdup(), auto_astring_alloc(),
and auto_bitmap_alloc() have been updated to take a machine parameter.
Changed validity check allocations to not rely on auto_alloc* anymore
because they are not done in the context of a machine.
One final change that is included is the removal of SMH_BANKn macros.
Just use SMH_BANK(n) instead, which is what the previous macros mapped
to anyhow.
|
|
|
|
| |
Also cleaned them so they compile.
|
|
|
|
| |
order.
|
|
|
|
| |
DRC cores to do this. Also tweaked a few oddities in the SH2 DRC.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
or ENDIANNESS_BIG based on the LSB_FIRST definition. Unlink LSB_FIRST,
ENDIANNESS_NATIVE always exists and can be used in expressions without
invoking the preprocessor.
Added macro ENDIAN_VALUE_LE_BE() which selects one of two values based
on the endianness passed in. Also added NATIVE_ENDIAN_VALUE_LE_BE()
which calls ENDIAN_VALUE_LE_BE with ENDIANNESS_NATIVE.
Updated a number of drivers and call sites to use these macros in favor
of #ifdef LSB_FIRST.
|
|
|
|
| |
Changed Z80 over to the new cpu_state_table mechanism.
|
|
|
|
|
|
|
|
|
|
| |
cpu_get_info_* -> device_get_info_*
cpu_set_info_* -> device_set_info_*
cpu_reset -> device_reset
Removed the cputype_get_* macros as they are not necessary.
Removed cpuintrf_init() which is no longer necessary.
|
|
|
|
|
|
| |
CPU_IS_BE -> ENDIANNESS_BIG
Also fixed help for step over/in to specify correct keys.
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
return a boolean indicating whether the given address was successfully
located in a bank. Change raw/decrypted access to look at this result, and
if the given address is not in a bank, calls through to the standard read
handlers.
In theory, this should prevent crashes when accessing opcodes. It does in
fact prevent mp_col3 from crashing.
Fixed address space mapping handlers to invalidate direct access regions
if a change is made to the mapping. This is needed to prevent the Sega
dynamic memory mapping chips from falling over.
|
|
|
|
|
|
|
|
| |
Removed opbase globals to the address_space structure.
Cleaned up names of pointers (decrypted and raw versus rom and ram).
Added inline functions to read/write data via any address space.
Added macros for existing functions to point them to the new functions.
Other related cleanups.
|
|
|
|
|
|
|
|
| |
context ones (which are going away), the disassembler (which should
have no dependencies on the live CPU), and the validity check.
Removed global token from all pointer-ified CPU cores that don't
have internal read/write callbacks (which still need to reference it).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* added a set of cpu_* calls which accept a CPU device object;
these are now the preferred means of manipulating a CPU
* removed the cpunum_* calls; added an array of cpu[] to the
running_machine object; converted all existing cpunum_* calls
to cpu_* calls, pulling the CPU device object from the new
array in the running_machine
* removed the activecpu_* calls; added an activecpu member to
the running_machine object; converted all existing activecpu_*
calls to cpu_* calls, pulling the active CPU device object
from the running_machine
* changed cpuintrf_push_context() to cpu_push_context(), taking
a CPU object pointer; changed cpuintrf_pop_context() to
cpu_pop_context(); eventually these will go away
* many other similar changes moving toward a model where all CPU
references are done by the CPU object and not by index
|
|
|
|
|
| |
parameter from CPU_INIT. Modified CPU cores to pull config from the device
static_config.
|
|
|
|
|
| |
end of a sequence as "return to start" even if the last instruction
did not abet the starting instruction.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- connected EEPROM (doesn't seem to affect much)
- cleaned up system register access
GTI Club driver:
- altered network IRQ clear to fix several problems
- added Guru readme
- fixed crashes due to missing inputs
- gticlub "works" again
ZR107 driver:
- added Guru readme
- cleaned up system register access
- these games work again with altered network IRQ timing
NWK-TR driver:
- added Guru readme
DRC frontend:
- now passes pointer to previous instruction when describing
PPC frontend:
- attempts to roughly take into account branch and CR logical
folding in timing computations
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* fixed adc/sbb so that they don't optimize out ever
* fixed detection of special and/or/xor cases
* fixed GETFLGS opcode so that it doesn't return anything other than requested flags
* changed LZCNT/BSWAP to be more flexible in register selection
C back-end:
* implemented flag variants of SEXT/ROLAND/ROLINS/LZCNT/BSWAP
PPC DRC:
* added more symbols for debugging
* fixed lmw/stmw if rA is one of the loaded/stored registers
* removed unnecessary variables & structure members
* optimized for the XER and CR0 case where XER doesn't need an overflow calculation
*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* changed from tracking "live" registers to tracking "necessary" registers
* genericized register tracking to be more flexible
* added previous instruction pointer to opcode descriptions
PowerPC frontend/DRC:
* cleaned up register tracking implementation
* fixed numerous errors and shortcomings in the tracking
* added support for removing unnecessary XER CA and CR0 computations
* updated UML logging to output new frontend statistics
MIPS3 frontend/DRC:
* tweaked register tracking to match new DRC frontend system
* updated UML logging to output new frontend statistics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- rewrote PowerPC implementation as a dynamic recompiler on top
of the universal recompiler engine
- wrote a front-end to analyze PowerPC code paths and register usage
- wrote a common shared module with C implementations of tricky
CPU behaviors
- added separate CPU types for the variants supported, instead of
relying on a hidden model enum
- rewrote the serial port emulation for the 4xx series to be more
accurate and not rely on separate DMA handlers
- rewrote the MMU handling to implement a software TLB that faults
in pages and handles changed bits appropriately
- implemented emulation of the PowerPC 603's software TLB, which
allows the model 3 games to run without a hack to disable the MMU
Updated the PowerPC disassembler to share constants with the rest of
the core, and to more aggressively use simplified mnemonics, especially
for branches. [Aaron Giles]
Universal recompiler:
- fixed frontend to handle opcode widths different from bus width
- added several new opcodes:
* (D)GETFLGS - copies the UML flags to a destination operand
* FDRNDS - rounds a double precision value to single precision
- renamed several opcodes:
* SETC -> CARRY
* XTRACT -> ROLAND
* INSERT -> ROLINS
- consolidated the following opcodes:
* LOAD?U -> LOAD
* LOAD?S -> LOADS
* STORE? -> STORE
* READ?U -> READ
* READ?M -> READM
* WRITE? -> WRITE
* WRITM? -> WRITEM
* SEXT? -> SEXT
* FTOI?? -> FTOINT
* FFRI? -> FFRINT
* FFRF? -> FFRFLT
- removed some opcodes:
* FLAGS - can be done with GETFLGS/LOAD4/ROLINS
* ZEXT - can be achieved with AND
* READ?S - can be achieved with READ/SEXT
- updated C, x86, and x64 back-ends to support these opcode changes
- updated disassembler to support these opcode changes
MIPS3 dynamic recompiler:
- updated to use new/changed opcode forms
- changed context switch so that it only swaps a single pointer
Konami Hornet changes: [Aaron Giles]
- updated to new PowerPC configurations
- updated some memory handlers to be native 8-bit handlers
- cleaned up JVS implementation to work with new serial code
- added fast RAM for the work RAM to give a small speed boost
Konami GTI Club changes: [Aaron Giles]
- updated to new PowerPC configurations
- updated some memory handlers to be native 8-bit handlers
Konami Viper/ZR107 changes: [Aaron Giles]
- updated to new PowerPC configurations
Sega Model 3 changes: [Aaron Giles]
- updated to new PowerPC configurations
- reimplemented/centralized interrupt handling
- these games are broken for the moment
Fixed crasher due to some Konami games using 8 layers in
the K056832 implementation, even though it was only written
for 4. [Aaron Giles]
Added fisttp opcode to i386 disassembler. [Aaron Giles]
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
1. In the MIPS core:
- renamed struct mips3_config -> mips3_config
- updated all drivers to the new names
- removed MIPS3DRC_STRICT_COP0 flag, which is no longer used
- a few minor cleanups
2. In the CPU interface:
- added new 'intention' parameter to the translate callback to
indicate read/write/fetch access, user/supervisor mode, and
a flag for debugging
- updated all call sites to pass an appropriate value
- updated all CPU cores to the new prototype
3. In the UML:
- added new opcode SETC to set the carry flag from a source bit
- added new opcode BSWAP to swap bytes within a value
- updated C, x86, x64 back-ends to support the new opcodes
- updated disassembler to support the new opcodes
4. In the DRC frontend:
- fixed bug in handling edge case with the PC near the 0 or ~0
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Fixed front-end so that virtual no-op instructions are still targeted
as branch targets.
* Fixed front-end to mark the beginning of each sequence as needing TLB
validation, since any sequence can be jumped to from anywhere.
* Redid the MIPS3 TLB implementation. Fixed the exception vector and
type handling. Changed the bitfields to directly map from the MIPS TLB
format. Added distinction between TLB fill and TLB valid/modified
exceptions.
* Added separate modes for user, supervisor, and kernel modes. Each mode
does proper verification of addresses now and generates address errors
for invalid accesses.
* Fixed several bugs in the TLB implementation; not everything works
yet but it's a lot closer.
* Made COP0 access checking mandatory in non-kernel modes.
* Fixed several crashes when recompiling virtual no-ops.
* Fixed TLB bug where entries for virtual address 0 were present by
default.
* Fixed bug in the map variable implementation that would sometimes
result in incorrectly recovered values.
|
|
|
|
|
| |
but it's better than nothing. Also added an assertion if you jump to unmapped
code and added handling for compile-time page faults.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
is drcuml.c, which defines a universal machine language
syntax that can be generated by a frontend recompiler and
then retargeted via a generic backend interface to any of
a number of different architectures. A disassembler for the
UML is also included to allow examination of the generated
UML code.
Currently supported backend architectures include 32-bit x86,
64-bit x86, and a platform-neutral interpreted C backend that
can be used as a fallback for platforms without native
support. The C backend also performs additional validation
to ensure assumptions are met.
Along with the new architecture is a new MIPS III/IV
recompiler frontend. This frontend has been rewritten from
the old x64-specific recompiler to generate UML opcodes
instead. This means that the single recompiler can be used
to target multiple backend architectures and should in
theory produce identical results across all of them.
The old 32-bit and 64-bit MIPS recompilers are now officially
retired. The new system provides similar performance (within
5% generally) to the old system and has similar compatibility.
The only currently known issues are some problems with the
two Gauntlet 3D games.
|
|
|
|
|
|
|
|
|
|
| |
suffixed with _func. Did this throughout the core and
drivers I was familiar with.
Fixed gcc compiler error with recent render.c changes.
gcc does not like explicit (int) casts on float or
double functions. This is fracking annoying and stupid,
but there you have it.
|
|
|
|
|
|
| |
- removed years from copyright notices
- removed redundant (c) from copyright notices
- updated "the MAME Team" to be "Nicola Salmoria and the MAME Team"
|
|
|