diff options
Diffstat (limited to '3rdparty/ymfm/src/ymfm_opl.cpp')
-rw-r--r-- | 3rdparty/ymfm/src/ymfm_opl.cpp | 2207 |
1 files changed, 2207 insertions, 0 deletions
diff --git a/3rdparty/ymfm/src/ymfm_opl.cpp b/3rdparty/ymfm/src/ymfm_opl.cpp new file mode 100644 index 00000000000..5819a411620 --- /dev/null +++ b/3rdparty/ymfm/src/ymfm_opl.cpp @@ -0,0 +1,2207 @@ +// BSD 3-Clause License +// +// Copyright (c) 2021, Aaron Giles +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// 1. Redistributions of source code must retain the above copyright notice, this +// list of conditions and the following disclaimer. +// +// 2. Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// 3. Neither the name of the copyright holder nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "ymfm_opl.h" +#include "ymfm_fm.ipp" + +namespace ymfm +{ + +//------------------------------------------------- +// opl_key_scale_atten - converts an +// OPL concatenated block (3 bits) and fnum +// (10 bits) into an attenuation offset; values +// here are for 6dB/octave, in 0.75dB units +// (matching total level LSB) +//------------------------------------------------- + +inline uint32_t opl_key_scale_atten(uint32_t block, uint32_t fnum_4msb) +{ + // this table uses the top 4 bits of FNUM and are the maximal values + // (for when block == 7). Values for other blocks can be computed by + // subtracting 8 for each block below 7. + static uint8_t const fnum_to_atten[16] = { 0,24,32,37,40,43,45,47,48,50,51,52,53,54,55,56 }; + int32_t result = fnum_to_atten[fnum_4msb] - 8 * (block ^ 7); + return std::max<int32_t>(0, result); +} + + +//********************************************************* +// OPL REGISTERS +//********************************************************* + +//------------------------------------------------- +// opl_registers_base - constructor +//------------------------------------------------- + +template<int Revision> +opl_registers_base<Revision>::opl_registers_base() : + m_lfo_am_counter(0), + m_lfo_pm_counter(0), + m_noise_lfsr(1), + m_lfo_am(0) +{ + // create these pointers to appease overzealous compilers checking array + // bounds in unreachable code (looking at you, clang) + uint16_t *wf0 = &m_waveform[0][0]; + uint16_t *wf1 = &m_waveform[1 % WAVEFORMS][0]; + uint16_t *wf2 = &m_waveform[2 % WAVEFORMS][0]; + uint16_t *wf3 = &m_waveform[3 % WAVEFORMS][0]; + uint16_t *wf4 = &m_waveform[4 % WAVEFORMS][0]; + uint16_t *wf5 = &m_waveform[5 % WAVEFORMS][0]; + uint16_t *wf6 = &m_waveform[6 % WAVEFORMS][0]; + uint16_t *wf7 = &m_waveform[7 % WAVEFORMS][0]; + + // create the waveforms + for (uint32_t index = 0; index < WAVEFORM_LENGTH; index++) + wf0[index] = abs_sin_attenuation(index) | (bitfield(index, 9) << 15); + + if (WAVEFORMS >= 4) + { + uint16_t zeroval = wf0[0]; + for (uint32_t index = 0; index < WAVEFORM_LENGTH; index++) + { + wf1[index] = bitfield(index, 9) ? zeroval : wf0[index]; + wf2[index] = wf0[index] & 0x7fff; + wf3[index] = bitfield(index, 8) ? zeroval : (wf0[index] & 0x7fff); + if (WAVEFORMS >= 8) + { + wf4[index] = bitfield(index, 9) ? zeroval : wf0[index * 2]; + wf5[index] = bitfield(index, 9) ? zeroval : wf0[(index * 2) & 0x1ff]; + wf6[index] = bitfield(index, 9) << 15; + wf7[index] = (bitfield(index, 9) ? (index ^ 0x13ff) : index) << 3; + } + } + } +} + + +//------------------------------------------------- +// reset - reset to initial state +//------------------------------------------------- + +template<int Revision> +void opl_registers_base<Revision>::reset() +{ + std::fill_n(&m_regdata[0], REGISTERS, 0); +} + + +//------------------------------------------------- +// save_restore - save or restore the data +//------------------------------------------------- + +template<int Revision> +void opl_registers_base<Revision>::save_restore(ymfm_saved_state &state) +{ + state.save_restore(m_lfo_am_counter); + state.save_restore(m_lfo_pm_counter); + state.save_restore(m_lfo_am); + state.save_restore(m_noise_lfsr); + state.save_restore(m_regdata); +} + + +//------------------------------------------------- +// operator_map - return an array of operator +// indices for each channel; for OPL this is fixed +//------------------------------------------------- + +template<int Revision> +void opl_registers_base<Revision>::operator_map(operator_mapping &dest) const +{ + if (Revision <= 2) + { + // OPL/OPL2 has a fixed map, all 2 operators + static const operator_mapping s_fixed_map = + { { + operator_list( 0, 3 ), // Channel 0 operators + operator_list( 1, 4 ), // Channel 1 operators + operator_list( 2, 5 ), // Channel 2 operators + operator_list( 6, 9 ), // Channel 3 operators + operator_list( 7, 10 ), // Channel 4 operators + operator_list( 8, 11 ), // Channel 5 operators + operator_list( 12, 15 ), // Channel 6 operators + operator_list( 13, 16 ), // Channel 7 operators + operator_list( 14, 17 ), // Channel 8 operators + } }; + dest = s_fixed_map; + } + else + { + // OPL3/OPL4 can be configured for 2 or 4 operators + uint32_t fourop = fourop_enable(); + + dest.chan[ 0] = bitfield(fourop, 0) ? operator_list( 0, 3, 6, 9 ) : operator_list( 0, 3 ); + dest.chan[ 1] = bitfield(fourop, 1) ? operator_list( 1, 4, 7, 10 ) : operator_list( 1, 4 ); + dest.chan[ 2] = bitfield(fourop, 2) ? operator_list( 2, 5, 8, 11 ) : operator_list( 2, 5 ); + dest.chan[ 3] = bitfield(fourop, 0) ? operator_list() : operator_list( 6, 9 ); + dest.chan[ 4] = bitfield(fourop, 1) ? operator_list() : operator_list( 7, 10 ); + dest.chan[ 5] = bitfield(fourop, 2) ? operator_list() : operator_list( 8, 11 ); + dest.chan[ 6] = operator_list( 12, 15 ); + dest.chan[ 7] = operator_list( 13, 16 ); + dest.chan[ 8] = operator_list( 14, 17 ); + + dest.chan[ 9] = bitfield(fourop, 3) ? operator_list( 18, 21, 24, 27 ) : operator_list( 18, 21 ); + dest.chan[10] = bitfield(fourop, 4) ? operator_list( 19, 22, 25, 28 ) : operator_list( 19, 22 ); + dest.chan[11] = bitfield(fourop, 5) ? operator_list( 20, 23, 26, 29 ) : operator_list( 20, 23 ); + dest.chan[12] = bitfield(fourop, 3) ? operator_list() : operator_list( 24, 27 ); + dest.chan[13] = bitfield(fourop, 4) ? operator_list() : operator_list( 25, 28 ); + dest.chan[14] = bitfield(fourop, 5) ? operator_list() : operator_list( 26, 29 ); + dest.chan[15] = operator_list( 30, 33 ); + dest.chan[16] = operator_list( 31, 34 ); + dest.chan[17] = operator_list( 32, 35 ); + } +} + + +//------------------------------------------------- +// write - handle writes to the register array +//------------------------------------------------- + +template<int Revision> +bool opl_registers_base<Revision>::write(uint16_t index, uint8_t data, uint32_t &channel, uint32_t &opmask) +{ + assert(index < REGISTERS); + + // writes to the mode register with high bit set ignore the low bits + if (index == REG_MODE && bitfield(data, 7) != 0) + m_regdata[index] |= 0x80; + else + m_regdata[index] = data; + + // handle writes to the rhythm keyons + if (index == 0xbd) + { + channel = RHYTHM_CHANNEL; + opmask = bitfield(data, 5) ? bitfield(data, 0, 5) : 0; + return true; + } + + // handle writes to the channel keyons + if ((index & 0xf0) == 0xb0) + { + channel = index & 0x0f; + if (channel < 9) + { + if (IsOpl3Plus) + channel += 9 * bitfield(index, 8); + opmask = bitfield(data, 5) ? 15 : 0; + return true; + } + } + return false; +} + + +//------------------------------------------------- +// clock_noise_and_lfo - clock the noise and LFO, +// handling clock division, depth, and waveform +// computations +//------------------------------------------------- + +static int32_t opl_clock_noise_and_lfo(uint32_t &noise_lfsr, uint16_t &lfo_am_counter, uint16_t &lfo_pm_counter, uint8_t &lfo_am, uint32_t am_depth, uint32_t pm_depth) +{ + // OPL has a 23-bit noise generator for the rhythm section, running at + // a constant rate, used only for percussion input + noise_lfsr <<= 1; + noise_lfsr |= bitfield(noise_lfsr, 23) ^ bitfield(noise_lfsr, 9) ^ bitfield(noise_lfsr, 8) ^ bitfield(noise_lfsr, 1); + + // OPL has two fixed-frequency LFOs, one for AM, one for PM + + // the AM LFO has 210*64 steps; at a nominal 50kHz output, + // this equates to a period of 50000/(210*64) = 3.72Hz + uint32_t am_counter = lfo_am_counter++; + if (am_counter >= 210*64 - 1) + lfo_am_counter = 0; + + // low 8 bits are fractional; depth 0 is divided by 2, while depth 1 is times 2 + int shift = 9 - 2 * am_depth; + + // AM value is the upper bits of the value, inverted across the midpoint + // to produce a triangle + lfo_am = ((am_counter < 105*64) ? am_counter : (210*64+63 - am_counter)) >> shift; + + // the PM LFO has 8192 steps, or a nominal period of 6.1Hz + uint32_t pm_counter = lfo_pm_counter++; + + // PM LFO is broken into 8 chunks, each lasting 1024 steps; the PM value + // depends on the upper bits of FNUM, so this value is a fraction and + // sign to apply to that value, as a 1.3 value + static int8_t const pm_scale[8] = { 8, 4, 0, -4, -8, -4, 0, 4 }; + return pm_scale[bitfield(pm_counter, 10, 3)] >> (pm_depth ^ 1); +} + +template<int Revision> +int32_t opl_registers_base<Revision>::clock_noise_and_lfo() +{ + return opl_clock_noise_and_lfo(m_noise_lfsr, m_lfo_am_counter, m_lfo_pm_counter, m_lfo_am, lfo_am_depth(), lfo_pm_depth()); +} + + +//------------------------------------------------- +// cache_operator_data - fill the operator cache +// with prefetched data; note that this code is +// also used by ymopna_registers, so it must +// handle upper channels cleanly +//------------------------------------------------- + +template<int Revision> +void opl_registers_base<Revision>::cache_operator_data(uint32_t choffs, uint32_t opoffs, opdata_cache &cache) +{ + // set up the easy stuff + cache.waveform = &m_waveform[op_waveform(opoffs) % WAVEFORMS][0]; + + // get frequency from the channel + uint32_t block_freq = cache.block_freq = ch_block_freq(choffs); + + // compute the keycode: block_freq is: + // + // 111 | + // 21098|76543210 + // BBBFF|FFFFFFFF + // ^^^?? + // + // the 4-bit keycode uses the top 3 bits plus one of the next two bits + uint32_t keycode = bitfield(block_freq, 10, 3) << 1; + + // lowest bit is determined by note_select(); note that it is + // actually reversed from what the manual says, however + keycode |= bitfield(block_freq, 9 - note_select(), 1); + + // no detune adjustment on OPL + cache.detune = 0; + + // multiple value, as an x.1 value (0 means 0.5) + // replace the low bit with a table lookup to give 0,1,2,3,4,5,6,7,8,9,10,10,12,12,15,15 + uint32_t multiple = op_multiple(opoffs); + cache.multiple = ((multiple & 0xe) | bitfield(0xc2aa, multiple)) * 2; + if (cache.multiple == 0) + cache.multiple = 1; + + // phase step, or PHASE_STEP_DYNAMIC if PM is active; this depends on block_freq, detune, + // and multiple, so compute it after we've done those + if (op_lfo_pm_enable(opoffs) == 0) + cache.phase_step = compute_phase_step(choffs, opoffs, cache, 0); + else + cache.phase_step = opdata_cache::PHASE_STEP_DYNAMIC; + + // total level, scaled by 8 + cache.total_level = op_total_level(opoffs) << 3; + + // pre-add key scale level + uint32_t ksl = op_ksl(opoffs); + if (ksl != 0) + cache.total_level += opl_key_scale_atten(bitfield(block_freq, 10, 3), bitfield(block_freq, 6, 4)) << ksl; + + // 4-bit sustain level, but 15 means 31 so effectively 5 bits + cache.eg_sustain = op_sustain_level(opoffs); + cache.eg_sustain |= (cache.eg_sustain + 1) & 0x10; + cache.eg_sustain <<= 5; + + // determine KSR adjustment for enevlope rates + uint32_t ksrval = keycode >> (2 * (op_ksr(opoffs) ^ 1)); + cache.eg_rate[EG_ATTACK] = effective_rate(op_attack_rate(opoffs) * 4, ksrval); + cache.eg_rate[EG_DECAY] = effective_rate(op_decay_rate(opoffs) * 4, ksrval); + cache.eg_rate[EG_SUSTAIN] = op_eg_sustain(opoffs) ? 0 : effective_rate(op_release_rate(opoffs) * 4, ksrval); + cache.eg_rate[EG_RELEASE] = effective_rate(op_release_rate(opoffs) * 4, ksrval); + cache.eg_rate[EG_DEPRESS] = 0x3f; +} + + +//------------------------------------------------- +// compute_phase_step - compute the phase step +//------------------------------------------------- + +static uint32_t opl_compute_phase_step(uint32_t block_freq, uint32_t multiple, int32_t lfo_raw_pm) +{ + // OPL phase calculation has no detuning, but uses FNUMs like + // the OPN version, and computes PM a bit differently + + // extract frequency number as a 12-bit fraction + uint32_t fnum = bitfield(block_freq, 0, 10) << 2; + + // apply the phase adjustment based on the upper 3 bits + // of FNUM and the PM depth parameters + fnum += (lfo_raw_pm * bitfield(block_freq, 7, 3)) >> 1; + + // keep fnum to 12 bits + fnum &= 0xfff; + + // apply block shift to compute phase step + uint32_t block = bitfield(block_freq, 10, 3); + uint32_t phase_step = (fnum << block) >> 2; + + // apply frequency multiplier (which is cached as an x.1 value) + return (phase_step * multiple) >> 1; +} + +template<int Revision> +uint32_t opl_registers_base<Revision>::compute_phase_step(uint32_t choffs, uint32_t opoffs, opdata_cache const &cache, int32_t lfo_raw_pm) +{ + return opl_compute_phase_step(cache.block_freq, cache.multiple, op_lfo_pm_enable(opoffs) ? lfo_raw_pm : 0); +} + + +//------------------------------------------------- +// log_keyon - log a key-on event +//------------------------------------------------- + +template<int Revision> +std::string opl_registers_base<Revision>::log_keyon(uint32_t choffs, uint32_t opoffs) +{ + uint32_t chnum = (choffs & 15) + 9 * bitfield(choffs, 8); + uint32_t opnum = (opoffs & 31) - 2 * ((opoffs & 31) / 8) + 18 * bitfield(opoffs, 8); + + char buffer[256]; + char *end = &buffer[0]; + + end += sprintf(end, "%2d.%02d freq=%04X fb=%d alg=%X mul=%X tl=%02X ksr=%d ns=%d ksl=%d adr=%X/%X/%X sl=%X sus=%d", + chnum, opnum, + ch_block_freq(choffs), + ch_feedback(choffs), + ch_algorithm(choffs), + op_multiple(opoffs), + op_total_level(opoffs), + op_ksr(opoffs), + note_select(), + op_ksl(opoffs), + op_attack_rate(opoffs), + op_decay_rate(opoffs), + op_release_rate(opoffs), + op_sustain_level(opoffs), + op_eg_sustain(opoffs)); + + if (OUTPUTS > 1) + end += sprintf(end, " out=%c%c%c%c", + ch_output_0(choffs) ? 'L' : '-', + ch_output_1(choffs) ? 'R' : '-', + ch_output_2(choffs) ? '0' : '-', + ch_output_3(choffs) ? '1' : '-'); + if (op_lfo_am_enable(opoffs) != 0) + end += sprintf(end, " am=%d", lfo_am_depth()); + if (op_lfo_pm_enable(opoffs) != 0) + end += sprintf(end, " pm=%d", lfo_pm_depth()); + if (waveform_enable() && op_waveform(opoffs) != 0) + end += sprintf(end, " wf=%d", op_waveform(opoffs)); + if (is_rhythm(choffs)) + end += sprintf(end, " rhy=1"); + if (DYNAMIC_OPS) + { + operator_mapping map; + operator_map(map); + if (bitfield(map.chan[chnum], 16, 8) != 0xff) + end += sprintf(end, " 4op"); + } + + return buffer; +} + + +//********************************************************* +// OPLL SPECIFICS +//********************************************************* + +//------------------------------------------------- +// opll_registers - constructor +//------------------------------------------------- + +opll_registers::opll_registers() : + m_lfo_am_counter(0), + m_lfo_pm_counter(0), + m_noise_lfsr(1), + m_lfo_am(0) +{ + // create the waveforms + for (uint32_t index = 0; index < WAVEFORM_LENGTH; index++) + m_waveform[0][index] = abs_sin_attenuation(index) | (bitfield(index, 9) << 15); + + uint16_t zeroval = m_waveform[0][0]; + for (uint32_t index = 0; index < WAVEFORM_LENGTH; index++) + m_waveform[1][index] = bitfield(index, 9) ? zeroval : m_waveform[0][index]; + + // initialize the instruments to something sane + for (uint32_t choffs = 0; choffs < CHANNELS; choffs++) + m_chinst[choffs] = &m_regdata[0]; + for (uint32_t opoffs = 0; opoffs < OPERATORS; opoffs++) + m_opinst[opoffs] = &m_regdata[bitfield(opoffs, 0)]; +} + + +//------------------------------------------------- +// reset - reset to initial state +//------------------------------------------------- + +void opll_registers::reset() +{ + std::fill_n(&m_regdata[0], REGISTERS, 0); +} + + +//------------------------------------------------- +// save_restore - save or restore the data +//------------------------------------------------- + +void opll_registers::save_restore(ymfm_saved_state &state) +{ + state.save_restore(m_lfo_am_counter); + state.save_restore(m_lfo_pm_counter); + state.save_restore(m_lfo_am); + state.save_restore(m_noise_lfsr); + state.save_restore(m_regdata); +} + + +//------------------------------------------------- +// operator_map - return an array of operator +// indices for each channel; for OPLL this is fixed +//------------------------------------------------- + +void opll_registers::operator_map(operator_mapping &dest) const +{ + static const operator_mapping s_fixed_map = + { { + operator_list( 0, 1 ), // Channel 0 operators + operator_list( 2, 3 ), // Channel 1 operators + operator_list( 4, 5 ), // Channel 2 operators + operator_list( 6, 7 ), // Channel 3 operators + operator_list( 8, 9 ), // Channel 4 operators + operator_list( 10, 11 ), // Channel 5 operators + operator_list( 12, 13 ), // Channel 6 operators + operator_list( 14, 15 ), // Channel 7 operators + operator_list( 16, 17 ), // Channel 8 operators + } }; + dest = s_fixed_map; +} + + +//------------------------------------------------- +// write - handle writes to the register array; +// note that this code is also used by +// ymopl3_registers, so it must handle upper +// channels cleanly +//------------------------------------------------- + +bool opll_registers::write(uint16_t index, uint8_t data, uint32_t &channel, uint32_t &opmask) +{ + // unclear the address is masked down to 6 bits or if writes above + // the register top are ignored; assuming the latter for now + if (index >= REGISTERS) + return false; + + // write the new data + m_regdata[index] = data; + + // handle writes to the rhythm keyons + if (index == 0x0e) + { + channel = RHYTHM_CHANNEL; + opmask = bitfield(data, 5) ? bitfield(data, 0, 5) : 0; + return true; + } + + // handle writes to the channel keyons + if ((index & 0xf0) == 0x20) + { + channel = index & 0x0f; + if (channel < CHANNELS) + { + opmask = bitfield(data, 4) ? 3 : 0; + return true; + } + } + return false; +} + + +//------------------------------------------------- +// clock_noise_and_lfo - clock the noise and LFO, +// handling clock division, depth, and waveform +// computations +//------------------------------------------------- + +int32_t opll_registers::clock_noise_and_lfo() +{ + // implementation is the same as OPL with fixed depths + return opl_clock_noise_and_lfo(m_noise_lfsr, m_lfo_am_counter, m_lfo_pm_counter, m_lfo_am, 1, 1); +} + + +//------------------------------------------------- +// cache_operator_data - fill the operator cache +// with prefetched data; note that this code is +// also used by ymopna_registers, so it must +// handle upper channels cleanly +//------------------------------------------------- + +void opll_registers::cache_operator_data(uint32_t choffs, uint32_t opoffs, opdata_cache &cache) +{ + // first set up the instrument data + uint32_t instrument = ch_instrument(choffs); + if (rhythm_enable() && choffs >= 6) + m_chinst[choffs] = &m_instdata[8 * (15 + (choffs - 6))]; + else + m_chinst[choffs] = (instrument == 0) ? &m_regdata[0] : &m_instdata[8 * (instrument - 1)]; + m_opinst[opoffs] = m_chinst[choffs] + bitfield(opoffs, 0); + + // set up the easy stuff + cache.waveform = &m_waveform[op_waveform(opoffs) % WAVEFORMS][0]; + + // get frequency from the channel + uint32_t block_freq = cache.block_freq = ch_block_freq(choffs); + + // compute the keycode: block_freq is: + // + // 11 | + // 1098|76543210 + // BBBF|FFFFFFFF + // ^^^^ + // + // the 4-bit keycode uses the top 4 bits + uint32_t keycode = bitfield(block_freq, 8, 4); + + // no detune adjustment on OPLL + cache.detune = 0; + + // multiple value, as an x.1 value (0 means 0.5) + // replace the low bit with a table lookup to give 0,1,2,3,4,5,6,7,8,9,10,10,12,12,15,15 + uint32_t multiple = op_multiple(opoffs); + cache.multiple = ((multiple & 0xe) | bitfield(0xc2aa, multiple)) * 2; + if (cache.multiple == 0) + cache.multiple = 1; + + // phase step, or PHASE_STEP_DYNAMIC if PM is active; this depends on + // block_freq, detune, and multiple, so compute it after we've done those + if (op_lfo_pm_enable(opoffs) == 0) + cache.phase_step = compute_phase_step(choffs, opoffs, cache, 0); + else + cache.phase_step = opdata_cache::PHASE_STEP_DYNAMIC; + + // total level, scaled by 8; for non-rhythm operator 0, this is the total + // level from the instrument data; for other operators it is 4*volume + if (bitfield(opoffs, 0) == 1 || (rhythm_enable() && choffs >= 7)) + cache.total_level = op_volume(opoffs) * 4; + else + cache.total_level = ch_total_level(choffs); + cache.total_level <<= 3; + + // pre-add key scale level + uint32_t ksl = op_ksl(opoffs); + if (ksl != 0) + cache.total_level += opl_key_scale_atten(bitfield(block_freq, 9, 3), bitfield(block_freq, 5, 4)) << ksl; + + // 4-bit sustain level, but 15 means 31 so effectively 5 bits + cache.eg_sustain = op_sustain_level(opoffs); + cache.eg_sustain |= (cache.eg_sustain + 1) & 0x10; + cache.eg_sustain <<= 5; + + // The envelope diagram in the YM2413 datasheet gives values for these + // in ms from 0->48dB. The attack/decay tables give values in ms from + // 0->96dB, so to pick an equivalent decay rate, we want to find the + // closest match that is 2x the 0->48dB value: + // + // DP = 10ms (0->48db) -> 20ms (0->96db); decay of 12 gives 19.20ms + // RR = 310ms (0->48db) -> 620ms (0->96db); decay of 7 gives 613.76ms + // RS = 1200ms (0->48db) -> 2400ms (0->96db); decay of 5 gives 2455.04ms + // + // The envelope diagram for percussive sounds (eg_sustain() == 0) also uses + // "RR" to mean both the constant RR above and the Release Rate specified in + // the instrument data. In this case, Relief Pitcher's credit sound bears out + // that the Release Rate is used during sustain, and that the constant RR + // (or RS) is used during the release phase. + constexpr uint8_t DP = 12 * 4; + constexpr uint8_t RR = 7 * 4; + constexpr uint8_t RS = 5 * 4; + + // determine KSR adjustment for envelope rates + uint32_t ksrval = keycode >> (2 * (op_ksr(opoffs) ^ 1)); + cache.eg_rate[EG_DEPRESS] = DP; + cache.eg_rate[EG_ATTACK] = effective_rate(op_attack_rate(opoffs) * 4, ksrval); + cache.eg_rate[EG_DECAY] = effective_rate(op_decay_rate(opoffs) * 4, ksrval); + if (op_eg_sustain(opoffs)) + { + cache.eg_rate[EG_SUSTAIN] = 0; + cache.eg_rate[EG_RELEASE] = ch_sustain(choffs) ? RS : effective_rate(op_release_rate(opoffs) * 4, ksrval); + } + else + { + cache.eg_rate[EG_SUSTAIN] = effective_rate(op_release_rate(opoffs) * 4, ksrval); + cache.eg_rate[EG_RELEASE] = ch_sustain(choffs) ? RS : RR; + } +} + + +//------------------------------------------------- +// compute_phase_step - compute the phase step +//------------------------------------------------- + +uint32_t opll_registers::compute_phase_step(uint32_t choffs, uint32_t opoffs, opdata_cache const &cache, int32_t lfo_raw_pm) +{ + // phase step computation is the same as OPL but the block_freq has one + // more bit, which we shift in + return opl_compute_phase_step(cache.block_freq << 1, cache.multiple, op_lfo_pm_enable(opoffs) ? lfo_raw_pm : 0); +} + + +//------------------------------------------------- +// log_keyon - log a key-on event +//------------------------------------------------- + +std::string opll_registers::log_keyon(uint32_t choffs, uint32_t opoffs) +{ + uint32_t chnum = choffs; + uint32_t opnum = opoffs; + + char buffer[256]; + char *end = &buffer[0]; + + end += sprintf(end, "%d.%02d freq=%04X inst=%X fb=%d mul=%X", + chnum, opnum, + ch_block_freq(choffs), + ch_instrument(choffs), + ch_feedback(choffs), + op_multiple(opoffs)); + + if (bitfield(opoffs, 0) == 1 || (is_rhythm(choffs) && choffs >= 6)) + end += sprintf(end, " vol=%X", op_volume(opoffs)); + else + end += sprintf(end, " tl=%02X", ch_total_level(choffs)); + + end += sprintf(end, " ksr=%d ksl=%d adr=%X/%X/%X sl=%X sus=%d/%d", + op_ksr(opoffs), + op_ksl(opoffs), + op_attack_rate(opoffs), + op_decay_rate(opoffs), + op_release_rate(opoffs), + op_sustain_level(opoffs), + op_eg_sustain(opoffs), + ch_sustain(choffs)); + + if (op_lfo_am_enable(opoffs)) + end += sprintf(end, " am=1"); + if (op_lfo_pm_enable(opoffs)) + end += sprintf(end, " pm=1"); + if (op_waveform(opoffs) != 0) + end += sprintf(end, " wf=1"); + if (is_rhythm(choffs)) + end += sprintf(end, " rhy=1"); + + return buffer; +} + + + +//********************************************************* +// YM3526 +//********************************************************* + +//------------------------------------------------- +// ym3526 - constructor +//------------------------------------------------- + +ym3526::ym3526(ymfm_interface &intf) : + m_address(0), + m_fm(intf) +{ +} + + +//------------------------------------------------- +// reset - reset the system +//------------------------------------------------- + +void ym3526::reset() +{ + // reset the engines + m_fm.reset(); +} + + +//------------------------------------------------- +// save_restore - save or restore the data +//------------------------------------------------- + +void ym3526::save_restore(ymfm_saved_state &state) +{ + state.save_restore(m_address); + m_fm.save_restore(state); +} + + +//------------------------------------------------- +// read_status - read the status register +//------------------------------------------------- + +uint8_t ym3526::read_status() +{ + return m_fm.status() | 0x06; +} + + +//------------------------------------------------- +// read - handle a read from the device +//------------------------------------------------- + +uint8_t ym3526::read(uint32_t offset) +{ + uint8_t result = 0xff; + switch (offset & 1) + { + case 0: // status port + result = read_status(); + break; + + case 1: // when A0=1 datasheet says "the data on the bus are not guaranteed" + break; + } + return result; +} + + +//------------------------------------------------- +// write_address - handle a write to the address +// register +//------------------------------------------------- + +void ym3526::write_address(uint8_t data) +{ + // YM3526 doesn't expose a busy signal, and the datasheets don't indicate + // delays, but all other OPL chips need 12 cycles for address writes + m_fm.intf().ymfm_set_busy_end(12 * m_fm.clock_prescale()); + + // just set the address + m_address = data; +} + + +//------------------------------------------------- +// write - handle a write to the register +// interface +//------------------------------------------------- + +void ym3526::write_data(uint8_t data) +{ + // YM3526 doesn't expose a busy signal, and the datasheets don't indicate + // delays, but all other OPL chips need 84 cycles for data writes + m_fm.intf().ymfm_set_busy_end(84 * m_fm.clock_prescale()); + + // write to FM + m_fm.write(m_address, data); +} + + +//------------------------------------------------- +// write - handle a write to the register +// interface +//------------------------------------------------- + +void ym3526::write(uint32_t offset, uint8_t data) +{ + switch (offset & 1) + { + case 0: // address port + write_address(data); + break; + + case 1: // data port + write_data(data); + break; + } +} + + +//------------------------------------------------- +// generate - generate samples of sound +//------------------------------------------------- + +void ym3526::generate(output_data *output, uint32_t numsamples) +{ + for (uint32_t samp = 0; samp < numsamples; samp++, output++) + { + // clock the system + m_fm.clock(fm_engine::ALL_CHANNELS); + + // update the FM content; mixing details for YM3526 need verification + m_fm.output(output->clear(), 1, 32767, fm_engine::ALL_CHANNELS); + + // YM3526 uses an external DAC (YM3014) with mantissa/exponent format + // convert to 10.3 floating point value and back to simulate truncation + output->roundtrip_fp(); + } +} + + + +//********************************************************* +// Y8950 +//********************************************************* + +//------------------------------------------------- +// y8950 - constructor +//------------------------------------------------- + +y8950::y8950(ymfm_interface &intf) : + m_address(0), + m_io_ddr(0), + m_fm(intf), + m_adpcm_b(intf) +{ +} + + +//------------------------------------------------- +// reset - reset the system +//------------------------------------------------- + +void y8950::reset() +{ + // reset the engines + m_fm.reset(); + m_adpcm_b.reset(); +} + + +//------------------------------------------------- +// save_restore - save or restore the data +//------------------------------------------------- + +void y8950::save_restore(ymfm_saved_state &state) +{ + state.save_restore(m_address); + state.save_restore(m_io_ddr); + m_fm.save_restore(state); +} + + +//------------------------------------------------- +// read_status - read the status register +//------------------------------------------------- + +uint8_t y8950::read_status() +{ + // start with current FM status, masking out bits we might set + uint8_t status = m_fm.status() & ~(STATUS_ADPCM_B_EOS | STATUS_ADPCM_B_BRDY | STATUS_ADPCM_B_PLAYING); + + // insert the live ADPCM status bits + uint8_t adpcm_status = m_adpcm_b.status(); + if ((adpcm_status & adpcm_b_channel::STATUS_EOS) != 0) + status |= STATUS_ADPCM_B_EOS; + if ((adpcm_status & adpcm_b_channel::STATUS_BRDY) != 0) + status |= STATUS_ADPCM_B_BRDY; + if ((adpcm_status & adpcm_b_channel::STATUS_PLAYING) != 0) + status |= STATUS_ADPCM_B_PLAYING; + + // run it through the FM engine to handle interrupts for us + return m_fm.set_reset_status(status, ~status); +} + + +//------------------------------------------------- +// read_data - read the data port +//------------------------------------------------- + +uint8_t y8950::read_data() +{ + uint8_t result = 0xff; + switch (m_address) + { + case 0x05: // keyboard in + result = m_fm.intf().ymfm_external_read(ACCESS_IO, 1); + break; + + case 0x09: // ADPCM data + case 0x1a: + result = m_adpcm_b.read(m_address - 0x07); + break; + + case 0x19: // I/O data + result = m_fm.intf().ymfm_external_read(ACCESS_IO, 0); + break; + + default: + debug::log_unexpected_read_write("Unexpected read from Y8950 data port %02X\n", m_address); + break; + } + return result; +} + + +//------------------------------------------------- +// read - handle a read from the device +//------------------------------------------------- + +uint8_t y8950::read(uint32_t offset) +{ + uint8_t result = 0xff; + switch (offset & 1) + { + case 0: // status port + result = read_status(); + break; + + case 1: // when A0=1 datasheet says "the data on the bus are not guaranteed" + result = read_data(); + break; + } + return result; +} + + +//------------------------------------------------- +// write_address - handle a write to the address +// register +//------------------------------------------------- + +void y8950::write_address(uint8_t data) +{ + // Y8950 doesn't expose a busy signal, but it does indicate that + // address writes should be no faster than every 12 clocks + m_fm.intf().ymfm_set_busy_end(12 * m_fm.clock_prescale()); + + // just set the address + m_address = data; +} + + +//------------------------------------------------- +// write - handle a write to the register +// interface +//------------------------------------------------- + +void y8950::write_data(uint8_t data) +{ + // Y8950 doesn't expose a busy signal, but it does indicate that + // data writes should be no faster than every 12 clocks for + // registers 00-1A, or every 84 clocks for other registers + m_fm.intf().ymfm_set_busy_end(((m_address <= 0x1a) ? 12 : 84) * m_fm.clock_prescale()); + + // handle special addresses + switch (m_address) + { + case 0x04: // IRQ control + m_fm.write(m_address, data); + read_status(); + break; + + case 0x06: // keyboard out + m_fm.intf().ymfm_external_write(ACCESS_IO, 1, data); + break; + + case 0x08: // split FM/ADPCM-B + m_adpcm_b.write(m_address - 0x07, (data & 0x0f) | 0x80); + m_fm.write(m_address, data & 0xc0); + break; + + case 0x07: // ADPCM-B registers + case 0x09: + case 0x0a: + case 0x0b: + case 0x0c: + case 0x0d: + case 0x0e: + case 0x0f: + case 0x10: + case 0x11: + case 0x12: + case 0x15: + case 0x16: + case 0x17: + m_adpcm_b.write(m_address - 0x07, data); + break; + + case 0x18: // I/O direction + m_io_ddr = data & 0x0f; + break; + + case 0x19: // I/O data + m_fm.intf().ymfm_external_write(ACCESS_IO, 0, data & m_io_ddr); + break; + + default: // everything else to FM + m_fm.write(m_address, data); + break; + } +} + + +//------------------------------------------------- +// write - handle a write to the register +// interface +//------------------------------------------------- + +void y8950::write(uint32_t offset, uint8_t data) +{ + switch (offset & 1) + { + case 0: // address port + write_address(data); + break; + + case 1: // data port + write_data(data); + break; + } +} + + +//------------------------------------------------- +// generate - generate samples of sound +//------------------------------------------------- + +void y8950::generate(output_data *output, uint32_t numsamples) +{ + for (uint32_t samp = 0; samp < numsamples; samp++, output++) + { + // clock the system + m_fm.clock(fm_engine::ALL_CHANNELS); + m_adpcm_b.clock(); + + // update the FM content; clipping need verification + m_fm.output(output->clear(), 1, 32767, fm_engine::ALL_CHANNELS); + + // mix in the ADPCM; ADPCM-B is stereo, but only one channel + // not sure how it's wired up internally + m_adpcm_b.output(*output, 3); + + // Y8950 uses an external DAC (YM3014) with mantissa/exponent format + // convert to 10.3 floating point value and back to simulate truncation + output->roundtrip_fp(); + } +} + + + +//********************************************************* +// YM3812 +//********************************************************* + +//------------------------------------------------- +// ym3812 - constructor +//------------------------------------------------- + +ym3812::ym3812(ymfm_interface &intf) : + m_address(0), + m_fm(intf) +{ +} + + +//------------------------------------------------- +// reset - reset the system +//------------------------------------------------- + +void ym3812::reset() +{ + // reset the engines + m_fm.reset(); +} + + +//------------------------------------------------- +// save_restore - save or restore the data +//------------------------------------------------- + +void ym3812::save_restore(ymfm_saved_state &state) +{ + state.save_restore(m_address); + m_fm.save_restore(state); +} + + +//------------------------------------------------- +// read_status - read the status register +//------------------------------------------------- + +uint8_t ym3812::read_status() +{ + return m_fm.status() | 0x06; +} + + +//------------------------------------------------- +// read - handle a read from the device +//------------------------------------------------- + +uint8_t ym3812::read(uint32_t offset) +{ + uint8_t result = 0xff; + switch (offset & 1) + { + case 0: // status port + result = read_status(); + break; + + case 1: // "inhibit" according to datasheet + break; + } + return result; +} + + +//------------------------------------------------- +// write_address - handle a write to the address +// register +//------------------------------------------------- + +void ym3812::write_address(uint8_t data) +{ + // YM3812 doesn't expose a busy signal, but it does indicate that + // address writes should be no faster than every 12 clocks + m_fm.intf().ymfm_set_busy_end(12 * m_fm.clock_prescale()); + + // just set the address + m_address = data; +} + + +//------------------------------------------------- +// write - handle a write to the register +// interface +//------------------------------------------------- + +void ym3812::write_data(uint8_t data) +{ + // YM3812 doesn't expose a busy signal, but it does indicate that + // data writes should be no faster than every 84 clocks + m_fm.intf().ymfm_set_busy_end(84 * m_fm.clock_prescale()); + + // write to FM + m_fm.write(m_address, data); +} + + +//------------------------------------------------- +// write - handle a write to the register +// interface +//------------------------------------------------- + +void ym3812::write(uint32_t offset, uint8_t data) +{ + switch (offset & 1) + { + case 0: // address port + write_address(data); + break; + + case 1: // data port + write_data(data); + break; + } +} + + +//------------------------------------------------- +// generate - generate samples of sound +//------------------------------------------------- + +void ym3812::generate(output_data *output, uint32_t numsamples) +{ + for (uint32_t samp = 0; samp < numsamples; samp++, output++) + { + // clock the system + m_fm.clock(fm_engine::ALL_CHANNELS); + + // update the FM content; mixing details for YM3812 need verification + m_fm.output(output->clear(), 1, 32767, fm_engine::ALL_CHANNELS); + + // YM3812 uses an external DAC (YM3014) with mantissa/exponent format + // convert to 10.3 floating point value and back to simulate truncation + output->roundtrip_fp(); + } +} + + + +//********************************************************* +// YMF262 +//********************************************************* + +//------------------------------------------------- +// ymf262 - constructor +//------------------------------------------------- + +ymf262::ymf262(ymfm_interface &intf) : + m_address(0), + m_fm(intf) +{ +} + + +//------------------------------------------------- +// reset - reset the system +//------------------------------------------------- + +void ymf262::reset() +{ + // reset the engines + m_fm.reset(); +} + + +//------------------------------------------------- +// save_restore - save or restore the data +//------------------------------------------------- + +void ymf262::save_restore(ymfm_saved_state &state) +{ + state.save_restore(m_address); + m_fm.save_restore(state); +} + + +//------------------------------------------------- +// read_status - read the status register +//------------------------------------------------- + +uint8_t ymf262::read_status() +{ + return m_fm.status(); +} + + +//------------------------------------------------- +// read - handle a read from the device +//------------------------------------------------- + +uint8_t ymf262::read(uint32_t offset) +{ + uint8_t result = 0xff; + switch (offset & 3) + { + case 0: // status port + result = read_status(); + break; + + case 1: + case 2: + case 3: + debug::log_unexpected_read_write("Unexpected read from YMF262 offset %d\n", offset & 3); + break; + } + return result; +} + + +//------------------------------------------------- +// write_address - handle a write to the address +// register +//------------------------------------------------- + +void ymf262::write_address(uint8_t data) +{ + // YMF262 doesn't expose a busy signal, but it does indicate that + // address writes should be no faster than every 32 clocks + m_fm.intf().ymfm_set_busy_end(32 * m_fm.clock_prescale()); + + // just set the address + m_address = data; +} + + +//------------------------------------------------- +// write_data - handle a write to the data +// register +//------------------------------------------------- + +void ymf262::write_data(uint8_t data) +{ + // YMF262 doesn't expose a busy signal, but it does indicate that + // data writes should be no faster than every 32 clocks + m_fm.intf().ymfm_set_busy_end(32 * m_fm.clock_prescale()); + + // write to FM + m_fm.write(m_address, data); +} + + +//------------------------------------------------- +// write_address_hi - handle a write to the upper +// address register +//------------------------------------------------- + +void ymf262::write_address_hi(uint8_t data) +{ + // YMF262 doesn't expose a busy signal, but it does indicate that + // address writes should be no faster than every 32 clocks + m_fm.intf().ymfm_set_busy_end(32 * m_fm.clock_prescale()); + + // just set the address + m_address = data | 0x100; + + // tests reveal that in compatibility mode, upper bit is masked + // except for register 0x105 + if (m_fm.regs().newflag() == 0 && m_address != 0x105) + m_address &= 0xff; +} + + +//------------------------------------------------- +// write - handle a write to the register +// interface +//------------------------------------------------- + +void ymf262::write(uint32_t offset, uint8_t data) +{ + switch (offset & 3) + { + case 0: // address port + write_address(data); + break; + + case 1: // data port + write_data(data); + break; + + case 2: // address port + write_address_hi(data); + break; + + case 3: // data port + write_data(data); + break; + } +} + + +//------------------------------------------------- +// generate - generate samples of sound +//------------------------------------------------- + +void ymf262::generate(output_data *output, uint32_t numsamples) +{ + for (uint32_t samp = 0; samp < numsamples; samp++, output++) + { + // clock the system + m_fm.clock(fm_engine::ALL_CHANNELS); + + // update the FM content; mixing details for YMF262 need verification + m_fm.output(output->clear(), 0, 32767, fm_engine::ALL_CHANNELS); + + // YMF262 output is 16-bit offset serial via YAC512 DAC + output->clamp16(); + } +} + + + +//********************************************************* +// YMF289B +//********************************************************* + +// YMF289B is a YMF262 with the following changes: +// * "Power down" mode added +// * Bulk register clear added +// * Busy flag added to the status register +// * Shorter busy times +// * All registers can be read +// * Only 2 outputs exposed + +//------------------------------------------------- +// ymf289b - constructor +//------------------------------------------------- + +ymf289b::ymf289b(ymfm_interface &intf) : + m_address(0), + m_fm(intf) +{ +} + + +//------------------------------------------------- +// reset - reset the system +//------------------------------------------------- + +void ymf289b::reset() +{ + // reset the engines + m_fm.reset(); +} + + +//------------------------------------------------- +// save_restore - save or restore the data +//------------------------------------------------- + +void ymf289b::save_restore(ymfm_saved_state &state) +{ + state.save_restore(m_address); + m_fm.save_restore(state); +} + + +//------------------------------------------------- +// read_status - read the status register +//------------------------------------------------- + +uint8_t ymf289b::read_status() +{ + uint8_t result = m_fm.status(); + + // YMF289B adds a busy flag + if (ymf289b_mode() && m_fm.intf().ymfm_is_busy()) + result |= STATUS_BUSY_FLAGS; + return result; +} + + +//------------------------------------------------- +// read_data - read the data register +//------------------------------------------------- + +uint8_t ymf289b::read_data() +{ + uint8_t result = 0xff; + + // YMF289B can read register data back + if (ymf289b_mode()) + result = m_fm.regs().read(m_address); + return result; +} + + +//------------------------------------------------- +// read - handle a read from the device +//------------------------------------------------- + +uint8_t ymf289b::read(uint32_t offset) +{ + uint8_t result = 0xff; + switch (offset & 3) + { + case 0: // status port + result = read_status(); + break; + + case 1: // data port + result = read_data(); + break; + + case 2: + case 3: + debug::log_unexpected_read_write("Unexpected read from YMF289B offset %d\n", offset & 3); + break; + } + return result; +} + + +//------------------------------------------------- +// write_address - handle a write to the address +// register +//------------------------------------------------- + +void ymf289b::write_address(uint8_t data) +{ + m_address = data; + + // count busy time + m_fm.intf().ymfm_set_busy_end(56); +} + + +//------------------------------------------------- +// write_data - handle a write to the data +// register +//------------------------------------------------- + +void ymf289b::write_data(uint8_t data) +{ + // write to FM + m_fm.write(m_address, data); + + // writes to 0x108 with the CLR flag set clear the registers + if (m_address == 0x108 && bitfield(data, 2) != 0) + m_fm.regs().reset(); + + // count busy time + m_fm.intf().ymfm_set_busy_end(56); +} + + +//------------------------------------------------- +// write_address_hi - handle a write to the upper +// address register +//------------------------------------------------- + +void ymf289b::write_address_hi(uint8_t data) +{ + // just set the address + m_address = data | 0x100; + + // tests reveal that in compatibility mode, upper bit is masked + // except for register 0x105 + if (m_fm.regs().newflag() == 0 && m_address != 0x105) + m_address &= 0xff; + + // count busy time + m_fm.intf().ymfm_set_busy_end(56); +} + + +//------------------------------------------------- +// write - handle a write to the register +// interface +//------------------------------------------------- + +void ymf289b::write(uint32_t offset, uint8_t data) +{ + switch (offset & 3) + { + case 0: // address port + write_address(data); + break; + + case 1: // data port + write_data(data); + break; + + case 2: // address port + write_address_hi(data); + break; + + case 3: // data port + write_data(data); + break; + } +} + + +//------------------------------------------------- +// generate - generate samples of sound +//------------------------------------------------- + +void ymf289b::generate(output_data *output, uint32_t numsamples) +{ + for (uint32_t samp = 0; samp < numsamples; samp++, output++) + { + // clock the system + m_fm.clock(fm_engine::ALL_CHANNELS); + + // update the FM content; mixing details for YMF262 need verification + fm_engine::output_data full; + m_fm.output(full.clear(), 0, 32767, fm_engine::ALL_CHANNELS); + + // YMF278B output is 16-bit offset serial via YAC512 DAC, but + // only 2 of the 4 outputs are exposed + output->data[0] = full.data[0]; + output->data[1] = full.data[1]; + output->clamp16(); + } +} + + + +//********************************************************* +// YMF278B +//********************************************************* + +//------------------------------------------------- +// ymf278b - constructor +//------------------------------------------------- + +ymf278b::ymf278b(ymfm_interface &intf) : + m_address(0), + m_fm_pos(0), + m_load_remaining(0), + m_next_status_id(false), + m_fm(intf), + m_pcm(intf) +{ +} + + +//------------------------------------------------- +// reset - reset the system +//------------------------------------------------- + +void ymf278b::reset() +{ + // reset the engines + m_fm.reset(); + m_pcm.reset(); + + // next status read will return ID + m_next_status_id = true; +} + + +//------------------------------------------------- +// save_restore - save or restore the data +//------------------------------------------------- + +void ymf278b::save_restore(ymfm_saved_state &state) +{ + state.save_restore(m_address); + state.save_restore(m_fm_pos); + state.save_restore(m_load_remaining); + state.save_restore(m_next_status_id); + m_fm.save_restore(state); + m_pcm.save_restore(state); +} + + +//------------------------------------------------- +// read_status - read the status register +//------------------------------------------------- + +uint8_t ymf278b::read_status() +{ + uint8_t result; + + // first status read after initialization returns a chip ID, which + // varies based on the "new" flags, indicating the mode + if (m_next_status_id) + { + if (m_fm.regs().new2flag()) + result = 0x02; + else if (m_fm.regs().newflag()) + result = 0x00; + else + result = 0x06; + m_next_status_id = false; + } + else + { + result = m_fm.status(); + if (m_fm.intf().ymfm_is_busy()) + result |= STATUS_BUSY; + if (m_load_remaining != 0) + result |= STATUS_LD; + + // if new2 flag is not set, we're in OPL2 or OPL3 mode + if (!m_fm.regs().new2flag()) + result &= ~(STATUS_BUSY | STATUS_LD); + } + return result; +} + + +//------------------------------------------------- +// write_data_pcm - handle a write to the PCM data +// register +//------------------------------------------------- + +uint8_t ymf278b::read_data_pcm() +{ + // write to FM + if (bitfield(m_address, 9) != 0) + return m_pcm.read(m_address & 0xff); + return 0; +} + + +//------------------------------------------------- +// read - handle a read from the device +//------------------------------------------------- + +uint8_t ymf278b::read(uint32_t offset) +{ + uint8_t result = 0xff; + switch (offset & 7) + { + case 0: // status port + result = read_status(); + break; + + case 5: // PCM data port + result = read_data_pcm(); + break; + + default: + debug::log_unexpected_read_write("Unexpected read from ymf278b offset %d\n", offset & 3); + break; + } + return result; +} + + +//------------------------------------------------- +// write_address - handle a write to the address +// register +//------------------------------------------------- + +void ymf278b::write_address(uint8_t data) +{ + // just set the address + m_address = data; +} + + +//------------------------------------------------- +// write_data - handle a write to the data +// register +//------------------------------------------------- + +void ymf278b::write_data(uint8_t data) +{ + // write to FM + if (bitfield(m_address, 9) == 0) + { + uint8_t old = m_fm.regs().new2flag(); + m_fm.write(m_address, data); + + // changing NEW2 from 0->1 causes the next status read to + // return the chip ID + if (old == 0 && m_fm.regs().new2flag() != 0) + m_next_status_id = true; + } + + // BUSY goes for 56 clocks on FM writes + m_fm.intf().ymfm_set_busy_end(56); +} + + +//------------------------------------------------- +// write_address_hi - handle a write to the upper +// address register +//------------------------------------------------- + +void ymf278b::write_address_hi(uint8_t data) +{ + // just set the address + m_address = data | 0x100; + + // YMF262, in compatibility mode, treats the upper bit as masked + // except for register 0x105; assuming YMF278B works the same way? + if (m_fm.regs().newflag() == 0 && m_address != 0x105) + m_address &= 0xff; +} + + +//------------------------------------------------- +// write_address_pcm - handle a write to the upper +// address register +//------------------------------------------------- + +void ymf278b::write_address_pcm(uint8_t data) +{ + // just set the address + m_address = data | 0x200; + + // YMF262, in compatibility mode, treats the upper bit as masked + // except for register 0x105; assuming YMF278B works the same way? + if (m_fm.regs().newflag() == 0 && m_address != 0x105) + m_address &= 0xff; +} + + +//------------------------------------------------- +// write_data_pcm - handle a write to the PCM data +// register +//------------------------------------------------- + +void ymf278b::write_data_pcm(uint8_t data) +{ + // write to FM + if (bitfield(m_address, 9) != 0) + m_pcm.write(m_address & 0xff, data); + + // writes to the waveform number cause loads to happen for "about 300usec" + // which is ~13 samples at the nominal output frequency of 44.1kHz + if (m_address >= 0x08 && m_address <= 0x1f) + m_load_remaining = 13; + + // BUSY goes for 88 clocks on PCM writes + m_fm.intf().ymfm_set_busy_end(88); +} + + +//------------------------------------------------- +// write - handle a write to the register +// interface +//------------------------------------------------- + +void ymf278b::write(uint32_t offset, uint8_t data) +{ + switch (offset & 7) + { + case 0: // address port + write_address(data); + break; + + case 1: // data port + write_data(data); + break; + + case 2: // address port + write_address_hi(data); + break; + + case 3: // data port + write_data(data); + break; + + case 4: // PCM address port + write_address_pcm(data); + break; + + case 5: // PCM address port + write_data_pcm(data); + break; + + default: + debug::log_unexpected_read_write("Unexpected write to ymf278b offset %d\n", offset & 7); + break; + } +} + + +//------------------------------------------------- +// generate - generate one sample of sound +//------------------------------------------------- + +void ymf278b::generate(output_data *output, uint32_t numsamples) +{ + static const int16_t s_mix_scale[8] = { 0x7fa, 0x5a4, 0x3fd, 0x2d2, 0x1fe, 0x169, 0xff, 0 }; + int32_t const pcm_l = s_mix_scale[m_pcm.regs().mix_pcm_l()]; + int32_t const pcm_r = s_mix_scale[m_pcm.regs().mix_pcm_r()]; + int32_t const fm_l = s_mix_scale[m_pcm.regs().mix_fm_l()]; + int32_t const fm_r = s_mix_scale[m_pcm.regs().mix_fm_r()]; + for (uint32_t samp = 0; samp < numsamples; samp++, output++) + { + // clock the system + m_fm_pos += FM_EXTRA_SAMPLE_STEP; + if (m_fm_pos >= FM_EXTRA_SAMPLE_THRESH) + { + m_fm.clock(fm_engine::ALL_CHANNELS); + m_fm_pos -= FM_EXTRA_SAMPLE_THRESH; + } + m_fm.clock(fm_engine::ALL_CHANNELS); + m_pcm.clock(pcm_engine::ALL_CHANNELS); + + // update the FM content; mixing details for YMF278B need verification + fm_engine::output_data fmout; + m_fm.output(fmout.clear(), 0, 32767, fm_engine::ALL_CHANNELS); + + // update the PCM content + pcm_engine::output_data pcmout; + m_pcm.output(pcmout.clear(), pcm_engine::ALL_CHANNELS); + + // DO0 output: FM channels 2+3 only + output->data[0] = fmout.data[2]; + output->data[1] = fmout.data[3]; + + // DO1 output: wavetable channels 2+3 only + output->data[2] = pcmout.data[2]; + output->data[3] = pcmout.data[3]; + + // DO2 output: mixed FM channels 0+1 and wavetable channels 0+1 + output->data[4] = (fmout.data[0] * fm_l + pcmout.data[0] * pcm_l) >> 11; + output->data[5] = (fmout.data[1] * fm_r + pcmout.data[1] * pcm_r) >> 11; + + // YMF278B output is 16-bit 2s complement serial + output->clamp16(); + } + + // decrement the load waiting count + if (m_load_remaining > 0) + m_load_remaining -= std::min(m_load_remaining, numsamples); +} + + + +//********************************************************* +// OPLL BASE +//********************************************************* + +//------------------------------------------------- +// opll_base - constructor +//------------------------------------------------- + +opll_base::opll_base(ymfm_interface &intf, uint8_t const *instrument_data) : + m_address(0), + m_fm(intf) +{ + m_fm.regs().set_instrument_data(instrument_data); +} + + +//------------------------------------------------- +// reset - reset the system +//------------------------------------------------- + +void opll_base::reset() +{ + // reset the engines + m_fm.reset(); +} + + +//------------------------------------------------- +// save_restore - save or restore the data +//------------------------------------------------- + +void opll_base::save_restore(ymfm_saved_state &state) +{ + state.save_restore(m_address); + m_fm.save_restore(state); +} + + +//------------------------------------------------- +// write_address - handle a write to the address +// register +//------------------------------------------------- + +void opll_base::write_address(uint8_t data) +{ + // OPLL doesn't expose a busy signal, but datasheets are pretty consistent + // in indicating that address writes should be no faster than every 12 clocks + m_fm.intf().ymfm_set_busy_end(12); + + // just set the address + m_address = data; +} + + +//------------------------------------------------- +// write - handle a write to the register +// interface +//------------------------------------------------- + +void opll_base::write_data(uint8_t data) +{ + // OPLL doesn't expose a busy signal, but datasheets are pretty consistent + // in indicating that address writes should be no faster than every 84 clocks + m_fm.intf().ymfm_set_busy_end(84); + + // write to FM + m_fm.write(m_address, data); +} + + +//------------------------------------------------- +// write - handle a write to the register +// interface +//------------------------------------------------- + +void opll_base::write(uint32_t offset, uint8_t data) +{ + switch (offset & 1) + { + case 0: // address port + write_address(data); + break; + + case 1: // data port + write_data(data); + break; + } +} + + +//------------------------------------------------- +// generate - generate one sample of sound +//------------------------------------------------- + +void opll_base::generate(output_data *output, uint32_t numsamples) +{ + for (uint32_t samp = 0; samp < numsamples; samp++, output++) + { + // clock the system + m_fm.clock(fm_engine::ALL_CHANNELS); + + // update the FM content; OPLL has a built-in 9-bit DAC + m_fm.output(output->clear(), 5, 256, fm_engine::ALL_CHANNELS); + + // final output is multiplexed; we don't simulate that here except + // to average over everything + output->data[0] = (output->data[0] << 7) / 9; + output->data[1] = (output->data[1] << 7) / 9; + } +} + + + +//********************************************************* +// YM2413 +//********************************************************* + +//------------------------------------------------- +// ym2413 - constructor +//------------------------------------------------- + +ym2413::ym2413(ymfm_interface &intf, uint8_t const *instrument_data) : + opll_base(intf, (instrument_data != nullptr) ? instrument_data : s_default_instruments) +{ +}; + +// table below taken from https://github.com/plgDavid/misc/wiki/Copyright-free-OPLL(x)-ROM-patches +uint8_t const ym2413::s_default_instruments[] = +{ + //April 2015 David Viens, tweaked May 19-21th 2015 Hubert Lamontagne + 0x71, 0x61, 0x1E, 0x17, 0xEF, 0x7F, 0x00, 0x17, //Violin + 0x13, 0x41, 0x1A, 0x0D, 0xF8, 0xF7, 0x23, 0x13, //Guitar + 0x13, 0x01, 0x99, 0x00, 0xF2, 0xC4, 0x11, 0x23, //Piano + 0x31, 0x61, 0x0E, 0x07, 0x98, 0x64, 0x70, 0x27, //Flute + 0x22, 0x21, 0x1E, 0x06, 0xBF, 0x76, 0x00, 0x28, //Clarinet + 0x31, 0x22, 0x16, 0x05, 0xE0, 0x71, 0x0F, 0x18, //Oboe + 0x21, 0x61, 0x1D, 0x07, 0x82, 0x8F, 0x10, 0x07, //Trumpet + 0x23, 0x21, 0x2D, 0x14, 0xFF, 0x7F, 0x00, 0x07, //Organ + 0x41, 0x61, 0x1B, 0x06, 0x64, 0x65, 0x10, 0x17, //Horn + 0x61, 0x61, 0x0B, 0x18, 0x85, 0xFF, 0x81, 0x07, //Synthesizer + 0x13, 0x01, 0x83, 0x11, 0xFA, 0xE4, 0x10, 0x04, //Harpsichord + 0x17, 0x81, 0x23, 0x07, 0xF8, 0xF8, 0x22, 0x12, //Vibraphone + 0x61, 0x50, 0x0C, 0x05, 0xF2, 0xF5, 0x29, 0x42, //Synthesizer Bass + 0x01, 0x01, 0x54, 0x03, 0xC3, 0x92, 0x03, 0x02, //Acoustic Bass + 0x41, 0x41, 0x89, 0x03, 0xF1, 0xE5, 0x11, 0x13, //Electric Guitar + 0x01, 0x01, 0x18, 0x0F, 0xDF, 0xF8, 0x6A, 0x6D, //rhythm 1 + 0x01, 0x01, 0x00, 0x00, 0xC8, 0xD8, 0xA7, 0x48, //rhythm 2 + 0x05, 0x01, 0x00, 0x00, 0xF8, 0xAA, 0x59, 0x55 //rhythm 3 +}; + + + +//********************************************************* +// YM2423 +//********************************************************* + +//------------------------------------------------- +// ym2423 - constructor +//------------------------------------------------- + +ym2423::ym2423(ymfm_interface &intf, uint8_t const *instrument_data) : + opll_base(intf, (instrument_data != nullptr) ? instrument_data : s_default_instruments) +{ +}; + +// table below taken from https://github.com/plgDavid/misc/wiki/Copyright-free-OPLL(x)-ROM-patches +uint8_t const ym2423::s_default_instruments[] = +{ + // May 4-6 2016 Hubert Lamontagne + // Doesn't seem to have any diff between opllx-x and opllx-y + // Drums seem identical to regular opll + 0x61, 0x61, 0x1B, 0x07, 0x94, 0x5F, 0x10, 0x06, //1 Strings Saw wave with vibrato Violin + 0x93, 0xB1, 0x51, 0x04, 0xF3, 0xF2, 0x70, 0xFB, //2 Guitar Jazz GuitarPiano + 0x41, 0x21, 0x11, 0x85, 0xF2, 0xF2, 0x70, 0x75, //3 Electric Guitar Same as OPLL No.15 Synth + 0x93, 0xB2, 0x28, 0x07, 0xF3, 0xF2, 0x70, 0xB4, //4 Electric Piano 2 Slow attack, tremoloDing-a-ling + 0x72, 0x31, 0x97, 0x05, 0x51, 0x6F, 0x60, 0x09, //5 Flute Same as OPLL No.4Clarinet + 0x13, 0x30, 0x18, 0x06, 0xF7, 0xF4, 0x50, 0x85, //6 Marimba Also be used as steel drumXyophone + 0x51, 0x31, 0x1C, 0x07, 0x51, 0x71, 0x20, 0x26, //7 Trumpet Same as OPLL No.7Trumpet + 0x41, 0xF4, 0x1B, 0x07, 0x74, 0x34, 0x00, 0x06, //8 Harmonica Harmonica synth + 0x50, 0x30, 0x4D, 0x03, 0x42, 0x65, 0x20, 0x06, //9 Tuba Tuba + 0x40, 0x20, 0x10, 0x85, 0xF3, 0xF5, 0x20, 0x04, //10 Synth Brass 2 Synth sweep + 0x61, 0x61, 0x1B, 0x07, 0xC5, 0x96, 0xF3, 0xF6, //11 Short Saw Saw wave with short envelopeSynth hit + 0xF9, 0xF1, 0xDC, 0x00, 0xF5, 0xF3, 0x77, 0xF2, //12 Vibraphone Bright vibraphoneVibes + 0x60, 0xA2, 0x91, 0x03, 0x94, 0xC1, 0xF7, 0xF7, //13 Electric Guitar 2 Clean guitar with feedbackHarmonic bass + 0x30, 0x30, 0x17, 0x06, 0xF3, 0xF1, 0xB7, 0xFC, //14 Synth Bass 2Snappy bass + 0x31, 0x36, 0x0D, 0x05, 0xF2, 0xF4, 0x27, 0x9C, //15 Sitar Also be used as ShamisenBanjo + 0x01, 0x01, 0x18, 0x0F, 0xDF, 0xF8, 0x6A, 0x6D, //rhythm 1 + 0x01, 0x01, 0x00, 0x00, 0xC8, 0xD8, 0xA7, 0x48, //rhythm 2 + 0x05, 0x01, 0x00, 0x00, 0xF8, 0xAA, 0x59, 0x55 //rhythm 3 +}; + + + +//********************************************************* +// YMF281 +//********************************************************* + +//------------------------------------------------- +// ymf281 - constructor +//------------------------------------------------- + +ymf281::ymf281(ymfm_interface &intf, uint8_t const *instrument_data) : + opll_base(intf, (instrument_data != nullptr) ? instrument_data : s_default_instruments) +{ +}; + +// table below taken from https://github.com/plgDavid/misc/wiki/Copyright-free-OPLL(x)-ROM-patches +uint8_t const ymf281::s_default_instruments[] = +{ + // May 14th 2015 Hubert Lamontagne + 0x72, 0x21, 0x1A, 0x07, 0xF6, 0x64, 0x01, 0x16, // Clarinet ~~ Electric String Square wave with vibrato + 0x00, 0x10, 0x45, 0x00, 0xF6, 0x83, 0x73, 0x63, // Synth Bass ~~ Bow wow Triangular wave + 0x13, 0x01, 0x96, 0x00, 0xF1, 0xF4, 0x31, 0x23, // Piano ~~ Electric Guitar Despite of its name, same as Piano of YM2413. + 0x71, 0x21, 0x0B, 0x0F, 0xF9, 0x64, 0x70, 0x17, // Flute ~~ Organ Sine wave + 0x02, 0x21, 0x1E, 0x06, 0xF9, 0x76, 0x00, 0x28, // Square Wave ~~ Clarinet Same as ones of YM2413. + 0x00, 0x61, 0x82, 0x0E, 0xF9, 0x61, 0x20, 0x27, // Space Oboe ~~ Saxophone Saw wave with vibrato + 0x21, 0x61, 0x1B, 0x07, 0x84, 0x8F, 0x10, 0x07, // Trumpet ~~ Trumpet Same as ones of YM2413. + 0x37, 0x32, 0xCA, 0x02, 0x66, 0x64, 0x47, 0x29, // Wow Bell ~~ Street Organ Calliope + 0x41, 0x41, 0x07, 0x03, 0xF5, 0x70, 0x51, 0xF5, // Electric Guitar ~~ Synth Brass Same as Synthesizer of YM2413. + 0x36, 0x01, 0x5E, 0x07, 0xF2, 0xF3, 0xF7, 0xF7, // Vibes ~~ Electric Piano Simulate of Rhodes Piano + 0x00, 0x00, 0x18, 0x06, 0xC5, 0xF3, 0x20, 0xF2, // Bass ~~ Bass Electric bass + 0x17, 0x81, 0x25, 0x07, 0xF7, 0xF3, 0x21, 0xF7, // Vibraphone ~~ Vibraphone Same as ones of YM2413. + 0x35, 0x64, 0x00, 0x00, 0xFF, 0xF3, 0x77, 0xF5, // Vibrato Bell ~~ Chime Bell + 0x11, 0x31, 0x00, 0x07, 0xDD, 0xF3, 0xFF, 0xFB, // Click Sine ~~ Tom Tom II Tom + 0x3A, 0x21, 0x00, 0x07, 0x95, 0x84, 0x0F, 0xF5, // Noise and Tone ~~ Noise for S.E. + 0x01, 0x01, 0x18, 0x0F, 0xDF, 0xF8, 0x6A, 0x6D, //rhythm 1 + 0x01, 0x01, 0x00, 0x00, 0xC8, 0xD8, 0xA7, 0x48, //rhythm 2 + 0x05, 0x01, 0x00, 0x00, 0xF8, 0xAA, 0x59, 0x55 //rhythm 3 +}; + + + +//********************************************************* +// DS1001 +//********************************************************* + +//------------------------------------------------- +// ds1001 - constructor +//------------------------------------------------- + +ds1001::ds1001(ymfm_interface &intf, uint8_t const *instrument_data) : + opll_base(intf, (instrument_data != nullptr) ? instrument_data : s_default_instruments) +{ +}; + +// table below taken from https://github.com/plgDavid/misc/wiki/Copyright-free-OPLL(x)-ROM-patches +uint8_t const ds1001::s_default_instruments[] = +{ + // May 15th 2015 Hubert Lamontagne & David Viens + 0x03, 0x21, 0x05, 0x06, 0xC8, 0x81, 0x42, 0x27, // Buzzy Bell + 0x13, 0x41, 0x14, 0x0D, 0xF8, 0xF7, 0x23, 0x12, // Guitar + 0x31, 0x11, 0x08, 0x08, 0xFA, 0xC2, 0x28, 0x22, // Wurly + 0x31, 0x61, 0x0C, 0x07, 0xF8, 0x64, 0x60, 0x27, // Flute + 0x22, 0x21, 0x1E, 0x06, 0xFF, 0x76, 0x00, 0x28, // Clarinet + 0x02, 0x01, 0x05, 0x00, 0xAC, 0xF2, 0x03, 0x02, // Synth + 0x21, 0x61, 0x1D, 0x07, 0x82, 0x8F, 0x10, 0x07, // Trumpet + 0x23, 0x21, 0x22, 0x17, 0xFF, 0x73, 0x00, 0x17, // Organ + 0x15, 0x11, 0x25, 0x00, 0x41, 0x71, 0x00, 0xF1, // Bells + 0x95, 0x01, 0x10, 0x0F, 0xB8, 0xAA, 0x50, 0x02, // Vibes + 0x17, 0xC1, 0x5E, 0x07, 0xFA, 0xF8, 0x22, 0x12, // Vibraphone + 0x71, 0x23, 0x11, 0x06, 0x65, 0x74, 0x10, 0x16, // Tutti + 0x01, 0x02, 0xD3, 0x05, 0xF3, 0x92, 0x83, 0xF2, // Fretless + 0x61, 0x63, 0x0C, 0x00, 0xA4, 0xFF, 0x30, 0x06, // Synth Bass + 0x21, 0x62, 0x0D, 0x00, 0xA1, 0xFF, 0x50, 0x08, // Sweep + 0x01, 0x01, 0x18, 0x0F, 0xDF, 0xF8, 0x6A, 0x6D, //rhythm 1 + 0x01, 0x01, 0x00, 0x00, 0xC8, 0xD8, 0xA7, 0x48, //rhythm 2 + 0x05, 0x01, 0x00, 0x00, 0xF8, 0xAA, 0x59, 0x55 //rhythm 3 +}; + + +//********************************************************* +// EXPLICIT INSTANTIATION +//********************************************************* + +template class opl_registers_base<4>; +template class fm_engine_base<opl_registers_base<4>>; + +} |