summaryrefslogtreecommitdiffstatshomepage
path: root/3rdparty/expat/lib/amigaconfig.h
diff options
context:
space:
mode:
Diffstat (limited to '3rdparty/expat/lib/amigaconfig.h')
-rw-r--r--3rdparty/expat/lib/amigaconfig.h3
1 files changed, 0 insertions, 3 deletions
diff --git a/3rdparty/expat/lib/amigaconfig.h b/3rdparty/expat/lib/amigaconfig.h
index 86c61150402..49c92c70149 100644
--- a/3rdparty/expat/lib/amigaconfig.h
+++ b/3rdparty/expat/lib/amigaconfig.h
@@ -7,9 +7,6 @@
/* Define to 1 if you have the `bcopy' function. */
#define HAVE_BCOPY 1
-/* Define to 1 if you have the <check.h> header file. */
-#undef HAVE_CHECK_H
-
/* Define to 1 if you have the `memmove' function. */
#define HAVE_MEMMOVE 1
='n125' href='#n125'>125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
/***************************************************************************

    memory.c

    Functions which handle device memory access.

****************************************************************************

    Copyright Aaron Giles
    All rights reserved.

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions are
    met:

        * Redistributions of source code must retain the above copyright
          notice, this list of conditions and the following disclaimer.
        * Redistributions in binary form must reproduce the above copyright
          notice, this list of conditions and the following disclaimer in
          the documentation and/or other materials provided with the
          distribution.
        * Neither the name 'MAME' nor the names of its contributors may be
          used to endorse or promote products derived from this software
          without specific prior written permission.

    THIS SOFTWARE IS PROVIDED BY AARON GILES ''AS IS'' AND ANY EXPRESS OR
    IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
    WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
    DISCLAIMED. IN NO EVENT SHALL AARON GILES BE LIABLE FOR ANY DIRECT,
    INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
    STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
    IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    POSSIBILITY OF SUCH DAMAGE.

****************************************************************************

    Basic theory of memory handling:

    An address with up to 32 bits is passed to a memory handler. First,
    an address mask is applied to the address, removing unused bits.

    Next, the address is broken into two halves, an upper half and a
    lower half. The number of bits in each half can be controlled via
    the macros in LEVEL1_BITS and LEVEL2_BITS, but they default to the
    upper 18 bits and the lower 14 bits.

    The upper half is then used as an index into a lookup table of bytes.
    If the value pulled from the table is between SUBTABLE_BASE and 255,
    then the lower half of the address is needed to resolve the final
    handler. In this case, the value from the table is combined with the
    lower address bits to form an index into a subtable.

    The final result of the lookup is a value from 0 to SUBTABLE_BASE - 1.
    These values correspond to memory handlers. The lower numbered
    handlers (from 0 through STATIC_COUNT - 1) are fixed handlers and refer
    to either memory banks or other special cases. The remaining handlers
    (from STATIC_COUNT through SUBTABLE_BASE - 1) are dynamically
    allocated to driver-specified handlers.

    Thus, table entries fall into these categories:

        0 .. STATIC_COUNT - 1 = fixed handlers
        STATIC_COUNT .. SUBTABLE_BASE - 1 = driver-specific handlers
        SUBTABLE_BASE .. 255 = need to look up lower bits in subtable

    Caveats:

    * If your driver executes an opcode which crosses a bank-switched
    boundary, it will pull the wrong data out of memory. Although not
    a common case, you may need to revert to memcpy to work around this.
    See machine/tnzs.c for an example.

    To do:

    - Add local banks for RAM/ROM to reduce pressure on banking
    - Always mirror everything out to 32 bits so we don't have to mask the address?
    - Add the ability to start with another memory map and modify it
    - Add fourth memory space for encrypted opcodes
    - Automatically mirror program space into data space if no data space
    - Get rid of opcode/data separation by using address spaces?
    - Add support for internal addressing (maybe just accessors - see TMS3202x)

****************************************************************************

    Address map fields and restrictions:

    AM_RANGE(start, end)
        Specifies a range of consecutive addresses beginning with 'start' and
        ending with 'end' inclusive. An address hits in this bucket if the
        'address' >= 'start' and 'address' <= 'end'.

    AM_MASK(mask)
        Specifies a mask for the addresses in the current bucket. This mask
        is applied after a positive hit in the bucket specified by AM_RANGE
        or AM_SPACE, and is computed before accessing the RAM or calling
        through to the read/write handler. If you use AM_MIRROR, below, the
        mask is ANDed implicitly with the logical NOT of the mirror. The
        mask specified by this macro is ANDed against any implicit masks.

    AM_MIRROR(mirror)
        Specifies mirror addresses for the given bucket. The current bucket
        is mapped repeatedly according to the mirror mask, once where each
        mirror bit is 0, and once where it is 1. For example, a 'mirror'
        value of 0x14000 would map the bucket at 0x00000, 0x04000, 0x10000,
        and 0x14000.

    AM_ROM
        Specifies that this bucket contains ROM data by attaching an
        internal read handler. If this address space describes the first
        address space for a device, and if there is a region whose name
        matches the device's name, and if the bucket start/end range is
        within the bounds of that region, then this bucket will automatically
        map to the memory contained in that region.

    AM_RAM
    AM_READONLY
    AM_WRITEONLY
        Specifies that this bucket contains RAM data by attaching internal
        read and/or write handlers. Memory is automatically allocated to back
        this area. AM_RAM maps both reads and writes, while AM_READONLY only
        maps reads and AM_WRITEONLY only maps writes.

    AM_NOP
    AM_READNOP
    AM_WRITENOP
        Specifies that reads and/or writes in this bucket are unmapped, but
        that accesses to them should not be logged. AM_NOP unmaps both reads
        and writes, while AM_READNOP only unmaps reads, and AM_WRITENOP only
        unmaps writes.

    AM_UNMAP
        Specifies that both reads and writes in thus bucket are unmapeed,
        and that accesses to them should be logged. There is rarely a need
        for this, as the entire address space is initialized to behave this
        way by default.

    AM_READ_BANK(tag)
    AM_WRITE_BANK(tag)
    AM_READWRITE_BANK(tag)
        Specifies that reads and/or writes in this bucket map to a memory
        bank with the provided 'tag'. The actual memory this bank points to
        can be later controlled via the same tag.

    AM_READ(read)
    AM_WRITE(write)
    AM_READWRITE(read, write)
        Specifies read and/or write handler callbacks for this bucket. All
        reads and writes in this bucket will trigger a call to the provided
        functions.

    AM_DEVREAD(tag, read)
    AM_DEVWRITE(tag, read)
    AM_DEVREADWRITE(tag, read)
        Specifies a device-specific read and/or write handler for this
        bucket, automatically bound to the device specified by the provided
        'tag'.

    AM_READ_PORT(tag)
    AM_WRITE_PORT(tag)
    AM_READWRITE_PORT(tag)
        Specifies that read and/or write accesses in this bucket will map
        to the I/O port with the provided 'tag'. An internal read/write
        handler is set up to handle this mapping.

    AM_REGION(class, tag, offs)
        Only useful if used in conjunction with AM_ROM, AM_RAM, or
        AM_READ/WRITE_BANK. By default, memory is allocated to back each
        bucket. By specifying AM_REGION, you can tell the memory system to
        point the base of the memory backing this bucket to a given memory
        'region' at the specified 'offs' instead of allocating it.

    AM_SHARE(tag)
        Similar to AM_REGION, this specifies that the memory backing the
        current bucket is shared with other buckets. The first bucket to
        specify the share 'tag' will use its memory as backing for all
        future buckets that specify AM_SHARE with the same 'tag'.

    AM_BASE(base)
        Specifies a pointer to a pointer to the base of the memory backing
        the current bucket.

    AM_SIZE(size)
        Specifies a pointer to a size_t variable which will be filled in
        with the size, in bytes, of the current bucket.

    AM_BASE_MEMBER(struct, basefield)
    AM_SIZE_MEMBER(struct, sizefield)
        Specifies a field within a given struct as where to store the base
        or size of the current bucket. The struct is assumed to be hanging
        off of the machine->driver_data pointer.

    AM_BASE_GENERIC(basefield)
    AM_SIZE_GENERIC(sizefield)
        Specifies a field within the global generic_pointers struct as
        where to store the base or size of the current bucket. The global
        generic_pointer struct lives in machine->generic.

***************************************************************************/

#include "emu.h"
#include "profiler.h"
#include "debug/debugcpu.h"


//**************************************************************************
//  DEBUGGING
//**************************************************************************

#define MEM_DUMP		(0)
#define VERBOSE			(0)
#define TEST_HANDLER	(0)

#define VPRINTF(x)	do { if (VERBOSE) printf x; } while (0)



//**************************************************************************
//  CONSTANTS
//**************************************************************************

// banking constants
const int BANK_ENTRY_UNSPECIFIED = -1;

// shares are initially mapped to this invalid pointer
static void *UNMAPPED_SHARE_PTR = ((void *)-1);

// other address map constants
const int MEMORY_BLOCK_CHUNK = 65536;					// minimum chunk size of allocated memory blocks

// static data access handler constants
enum
{
	STATIC_INVALID = 0,									// invalid - should never be used
	STATIC_BANK1 = 1,									// first memory bank
	STATIC_BANKMAX = 122,								// last memory bank
	STATIC_RAM,											// RAM - reads/writes map to dynamic banks
	STATIC_ROM,											// ROM - reads = RAM; writes = UNMAP
	STATIC_NOP,											// NOP - reads = unmapped value; writes = no-op
	STATIC_UNMAP,										// unmapped - same as NOP except we log errors
	STATIC_WATCHPOINT,									// watchpoint - used internally
	STATIC_COUNT										// total number of static handlers
};



//**************************************************************************
//  TYPE DEFINITIONS
//**************************************************************************


// ======================> memory_block

// a memory block is a chunk of RAM associated with a range of memory in a device's address space
class memory_block
{
	DISABLE_COPYING(memory_block);

	friend class simple_list<memory_block>;
	friend resource_pool_object<memory_block>::~resource_pool_object();

public:
	// construction/destruction
	memory_block(address_space &space, offs_t bytestart, offs_t byteend, void *memory = NULL);
	~memory_block();

	// getters
	memory_block *next() const { return m_next; }
	offs_t bytestart() const { return m_bytestart; }
	offs_t byteend() const { return m_byteend; }
	UINT8 *data() const { return m_data; }

	// is the given range contained by this memory block?
	bool contains(address_space &space, offs_t bytestart, offs_t byteend) const
	{
		return (&space == &m_space && m_bytestart <= bytestart && m_byteend >= byteend);
	}

private:
	// internal state
	memory_block *			m_next;					// next memory block in the list
	running_machine &		m_machine;				// need the machine to free our memory
	address_space &			m_space;				// which address space are we associated with?
	bool					m_isallocated;			// did we allocate this ourselves?
	offs_t					m_bytestart, m_byteend;	// byte-normalized start/end for verifying a match
	UINT8 *					m_data;					// pointer to the data for this block
};


// ======================> memory_bank

// a memory bank is a global pointer to memory that can be shared across devices and changed dynamically
class memory_bank
{
	friend class simple_list<memory_bank>;
	friend resource_pool_object<memory_bank>::~resource_pool_object();

	// a bank reference is an entry in a list of address spaces that reference a given bank
	class bank_reference
	{
		friend class simple_list<bank_reference>;
		friend resource_pool_object<bank_reference>::~resource_pool_object();

	public:
		// construction/destruction
		bank_reference(address_space &space, read_or_write readorwrite)
			: m_next(NULL),
			  m_space(space),
			  m_readorwrite(readorwrite) { }

		// getters
		bank_reference *next() const { return m_next; }
		address_space &space() const { return m_space; }

		// does this reference match the space+read/write combination?
		bool matches(address_space &space, read_or_write readorwrite) const
		{
			return (&space == &m_space && (readorwrite == ROW_READWRITE || readorwrite == m_readorwrite));
		}

	private:
		// internal state
		bank_reference *		m_next;				// link to the next reference
		address_space &			m_space;			// address space that references us
		read_or_write			m_readorwrite;		// used for read or write?
	};

	// a bank_entry contains a raw and decrypted pointer
	struct bank_entry
	{
		UINT8 *			m_raw;
		UINT8 *			m_decrypted;
	};

public:
	// construction/destruction
	memory_bank(address_space &space, int index, offs_t bytestart, offs_t byteend, const char *tag = NULL);
	~memory_bank();

	// getters
	memory_bank *next() const { return m_next; }
	int index() const { return m_index; }
	int entry() const { return m_curentry; }
	bool anonymous() const { return m_anonymous; }
	offs_t bytestart() const { return m_bytestart; }
	void *base() const { return *m_baseptr; }
	void *base_decrypted() const { return *m_basedptr; }
	const char *tag() const { return m_tag; }
	const char *name() const { return m_name; }

	// compare a range against our range
	bool matches_exactly(offs_t bytestart, offs_t byteend) const { return (m_bytestart == bytestart && m_byteend == byteend); }
	bool fully_covers(offs_t bytestart, offs_t byteend) const { return (m_bytestart <= bytestart && m_byteend >= byteend); }
	bool is_covered_by(offs_t bytestart, offs_t byteend) const { return (m_bytestart >= bytestart && m_byteend <= byteend); }
	bool straddles(offs_t bytestart, offs_t byteend) const { return (m_bytestart < byteend && m_byteend > bytestart); }

	// track and verify address space references to this bank
	bool references_space(address_space &space, read_or_write readorwrite) const;
	void add_reference(address_space &space, read_or_write readorwrite);

	// set the base explicitly
	void set_base(void *base);
	void set_base_decrypted(void *base);

	// configure and set entries
	void configure(int entrynum, void *base);
	void configure_decrypted(int entrynum, void *base);
	void set_entry(int entrynum);

private:
	// internal helpers
	void invalidate_references();
	void expand_entries(int entrynum);

	// internal state
	memory_bank *			m_next;					// next bank in sequence
	running_machine &		m_machine;				// need the machine to free our memory
	UINT8 **				m_baseptr;				// pointer to our base pointer in the global array
	UINT8 **				m_basedptr;				// same for the decrypted base pointer
	UINT8					m_index;				// array index for this handler
	bool					m_anonymous;			// are we anonymous or explicit?
	offs_t					m_bytestart;			// byte-adjusted start offset
	offs_t					m_byteend;				// byte-adjusted end offset
	int						m_curentry;				// current entry
	bank_entry *			m_entry;				// array of entries (dynamically allocated)
	int						m_entry_count;			// number of allocated entries
	astring					m_name;					// friendly name for this bank
	astring					m_tag;					// tag for this bank
	simple_list<bank_reference> m_reflist;			// linked list of address spaces referencing this bank
};


// ======================> handler_entry

// a handler entry contains information about a memory handler
class handler_entry : public bindable_object
{
	DISABLE_COPYING(handler_entry);

protected:
	// construction/destruction
	handler_entry(UINT8 width, endianness_t endianness, UINT8 **rambaseptr);
	virtual ~handler_entry();

public:
	// getters
	bool populated() const { return m_populated; }
	offs_t bytestart() const { return m_bytestart; }
	offs_t byteend() const { return m_byteend; }
	offs_t bytemask() const { return m_bytemask; }
	virtual const char *name() const = 0;

	// return offset within the range referenced by this handler
	offs_t byteoffset(offs_t byteaddress) const { return (byteaddress - m_bytestart) & m_bytemask; }

	// return a pointer to the backing RAM at the given offset
	UINT8 *ramptr(offs_t offset = 0) const { return *m_rambaseptr + offset; }

	// see if we are an exact match to the given parameters
	bool matches_exactly(offs_t bytestart, offs_t byteend, offs_t bytemask) const
	{
		return (m_populated && m_bytestart == bytestart && m_byteend == byteend && m_bytemask == bytemask);
	}

	// get the start/end address with the given mirror
	void mirrored_start_end(offs_t byteaddress, offs_t &start, offs_t &end) const
	{
		offs_t mirrorbits = (byteaddress - m_bytestart) & ~m_bytemask;
		start = m_bytestart | mirrorbits;
		end = m_byteend | mirrorbits;
	}

	// configure the handler addresses, and mark as populated
	void configure(offs_t bytestart, offs_t byteend, offs_t bytemask)
	{
		m_populated = true;
		m_bytestart = bytestart;
		m_byteend = byteend;
		m_bytemask = bytemask;
	}

	// apply a global mask
	void apply_mask(offs_t bytemask) { m_bytemask &= bytemask; }

protected:
	// internal helpers
	void configure_subunits(UINT64 handlermask, int handlerbits);

	// internal state
	bool					m_populated;			// populated?
	UINT8					m_datawidth;
	endianness_t			m_endianness;
	offs_t					m_bytestart;			// byte-adjusted start address for handler
	offs_t					m_byteend;				// byte-adjusted end address for handler
	offs_t					m_bytemask;				// byte-adjusted mask against the final address
	UINT8 **				m_rambaseptr;			// pointer to the bank base
	UINT8					m_subunits;				// for width stubs, the number of subunits
	UINT8					m_subshift[8];			// for width stubs, the shift of each subunit
};


// ======================> handler_entry_read

// a read-access-specific extension of handler_entry
class handler_entry_read : public handler_entry
{
public:
	// construction/destruction
	handler_entry_read(UINT8 width, endianness_t endianness, UINT8 **rambaseptr)
		: handler_entry(width, endianness, rambaseptr)
	{
		m_legacy_object.space = NULL;
		m_legacy_handler.space8 = NULL;
	}

	// getters
	virtual const char *name() const;

	// configure delegate callbacks
	void set_delegate(read8_delegate delegate, UINT64 mask = 0);
	void set_delegate(read16_delegate delegate, UINT64 mask = 0);
	void set_delegate(read32_delegate delegate, UINT64 mask = 0);
	void set_delegate(read64_delegate delegate, UINT64 mask = 0);

	// configure legacy address space functions
	void set_legacy_func(address_space &space, read8_space_func func, const char *name, UINT64 mask = 0);
	void set_legacy_func(address_space &space, read16_space_func func, const char *name, UINT64 mask = 0);
	void set_legacy_func(address_space &space, read32_space_func func, const char *name, UINT64 mask = 0);
	void set_legacy_func(address_space &space, read64_space_func func, const char *name, UINT64 mask = 0);

	// configure legacy device functions
	void set_legacy_func(device_t &device, read8_device_func func, const char *name, UINT64 mask = 0);
	void set_legacy_func(device_t &device, read16_device_func func, const char *name, UINT64 mask = 0);
	void set_legacy_func(device_t &device, read32_device_func func, const char *name, UINT64 mask = 0);
	void set_legacy_func(device_t &device, read64_device_func func, const char *name, UINT64 mask = 0);

	// configure I/O port access
	void set_ioport(const input_port_config &ioport);

	// read via the underlying delegates
	UINT8 read8(address_space &space, offs_t offset, UINT8 mask) const { return m_read8(space, offset, mask); }
	UINT16 read16(address_space &space, offs_t offset, UINT16 mask) const { return m_read16(space, offset, mask); }
	UINT32 read32(address_space &space, offs_t offset, UINT32 mask) const { return m_read32(space, offset, mask); }
	UINT64 read64(address_space &space, offs_t offset, UINT64 mask) const { return m_read64(space, offset, mask); }

private:
	// stubs for converting between address sizes
	UINT16 read_stub_16_from_8(address_space &space, offs_t offset, UINT16 mask);
	UINT32 read_stub_32_from_8(address_space &space, offs_t offset, UINT32 mask);
	UINT64 read_stub_64_from_8(address_space &space, offs_t offset, UINT64 mask);
	UINT32 read_stub_32_from_16(address_space &space, offs_t offset, UINT32 mask);
	UINT64 read_stub_64_from_16(address_space &space, offs_t offset, UINT64 mask);
	UINT64 read_stub_64_from_32(address_space &space, offs_t offset, UINT64 mask);

	// stubs for calling legacy read handlers
	UINT8 read_stub_legacy(address_space &space, offs_t offset, UINT8 mask);
	UINT16 read_stub_legacy(address_space &space, offs_t offset, UINT16 mask);
	UINT32 read_stub_legacy(address_space &space, offs_t offset, UINT32 mask);
	UINT64 read_stub_legacy(address_space &space, offs_t offset, UINT64 mask);

	// stubs for reading I/O ports
	template<typename _UintType>
	_UintType read_stub_ioport(address_space &space, offs_t offset, _UintType mask) { return input_port_read_direct(m_ioport); }

	// internal state
	read8_delegate				m_read8;
	read16_delegate				m_read16;
	read32_delegate				m_read32;
	read64_delegate				m_read64;
	const input_port_config *	m_ioport;

	// unions to hold legacy objects and callbacks
	union
	{
		address_space *	space;
		device_t *				device;
	} m_legacy_object;

	union
	{
		read8_space_func		space8;
		read16_space_func		space16;
		read32_space_func		space32;
		read64_space_func		space64;
		read8_device_func		device8;
		read16_device_func		device16;
		read32_device_func		device32;
		read64_device_func		device64;
	} m_legacy_handler;
};


// ======================> handler_entry_write

// a write-access-specific extension of handler_entry
class handler_entry_write : public handler_entry
{
public:
	// construction/destruction
	handler_entry_write(UINT8 width, endianness_t endianness, UINT8 **rambaseptr)
		: handler_entry(width, endianness, rambaseptr)
	{
		m_legacy_object.space = NULL;
		m_legacy_handler.space8 = NULL;
	}

	// getters
	virtual const char *name() const;

	// configure delegate callbacks
	void set_delegate(write8_delegate delegate, UINT64 mask = 0);
	void set_delegate(write16_delegate delegate, UINT64 mask = 0);
	void set_delegate(write32_delegate delegate, UINT64 mask = 0);
	void set_delegate(write64_delegate delegate, UINT64 mask = 0);

	// configure legacy address space functions
	void set_legacy_func(address_space &space, write8_space_func func, const char *name, UINT64 mask = 0);
	void set_legacy_func(address_space &space, write16_space_func func, const char *name, UINT64 mask = 0);
	void set_legacy_func(address_space &space, write32_space_func func, const char *name, UINT64 mask = 0);
	void set_legacy_func(address_space &space, write64_space_func func, const char *name, UINT64 mask = 0);

	// configure legacy device functions
	void set_legacy_func(device_t &device, write8_device_func func, const char *name, UINT64 mask = 0);
	void set_legacy_func(device_t &device, write16_device_func func, const char *name, UINT64 mask = 0);
	void set_legacy_func(device_t &device, write32_device_func func, const char *name, UINT64 mask = 0);
	void set_legacy_func(device_t &device, write64_device_func func, const char *name, UINT64 mask = 0);

	// configure I/O port access
	void set_ioport(const input_port_config &ioport);

	// write via the underlying delegates
	void write8(address_space &space, offs_t offset, UINT8 data, UINT8 mask) const { m_write8(space, offset, data, mask); }
	void write16(address_space &space, offs_t offset, UINT16 data, UINT16 mask) const { m_write16(space, offset, data, mask); }
	void write32(address_space &space, offs_t offset, UINT32 data, UINT32 mask) const { m_write32(space, offset, data, mask); }
	void write64(address_space &space, offs_t offset, UINT64 data, UINT64 mask) const { m_write64(space, offset, data, mask); }

private:
	// stubs for converting between address sizes
	void write_stub_16_from_8(address_space &space, offs_t offset, UINT16 data, UINT16 mask);
	void write_stub_32_from_8(address_space &space, offs_t offset, UINT32 data, UINT32 mask);
	void write_stub_64_from_8(address_space &space, offs_t offset, UINT64 data, UINT64 mask);
	void write_stub_32_from_16(address_space &space, offs_t offset, UINT32 data, UINT32 mask);
	void write_stub_64_from_16(address_space &space, offs_t offset, UINT64 data, UINT64 mask);
	void write_stub_64_from_32(address_space &space, offs_t offset, UINT64 data, UINT64 mask);

	// stubs for calling legacy write handlers
	void write_stub_legacy(address_space &space, offs_t offset, UINT8 data, UINT8 mask);
	void write_stub_legacy(address_space &space, offs_t offset, UINT16 data, UINT16 mask);
	void write_stub_legacy(address_space &space, offs_t offset, UINT32 data, UINT32 mask);
	void write_stub_legacy(address_space &space, offs_t offset, UINT64 data, UINT64 mask);

	// stubs for writing I/O ports
	template<typename _UintType>
	void write_stub_ioport(address_space &space, offs_t offset, _UintType data, _UintType mask) { input_port_write_direct(m_ioport, data, mask); }

	// internal state
	write8_delegate				m_write8;
	write16_delegate			m_write16;
	write32_delegate			m_write32;
	write64_delegate			m_write64;
	const input_port_config *	m_ioport;

	// unions to hold legacy objects and callbacks
	union
	{
		address_space *	space;
		device_t *				device;
	} m_legacy_object;

	union
	{
		write8_space_func		space8;
		write16_space_func		space16;
		write32_space_func		space32;
		write64_space_func		space64;
		write8_device_func		device8;
		write16_device_func		device16;
		write32_device_func		device32;
		write64_device_func		device64;
	} m_legacy_handler;
};


// ======================> address_table

// address_table contains information about read/write accesses within an address space
class address_table : public bindable_object
{
	// address map lookup table definitions
	static const int LEVEL1_BITS	= 18;						// number of address bits in the level 1 table
	static const int LEVEL2_BITS	= 32 - LEVEL1_BITS;			// number of address bits in the level 2 table
	static const int SUBTABLE_COUNT	= 64;						// number of slots reserved for subtables
	static const int SUBTABLE_BASE	= 256 - SUBTABLE_COUNT;		// first index of a subtable
	static const int ENTRY_COUNT	= SUBTABLE_BASE;			// number of legitimate (non-subtable) entries
	static const int SUBTABLE_ALLOC	= 8;						// number of subtables to allocate at a time

	inline int level2_bits() const { return m_large ? LEVEL2_BITS : 0; }

public:
	// construction/destruction
	address_table(address_space &space, bool large);
	~address_table();

	// getters
	virtual handler_entry &handler(UINT32 index) const = 0;
	bool watchpoints_enabled() const { return (m_live_lookup == s_watchpoint_table); }

	// address lookups
	UINT32 lookup_live(offs_t byteaddress) const { return m_large ? lookup_live_large(byteaddress) : lookup_live_small(byteaddress); }
	UINT32 lookup_live_small(offs_t byteaddress) const { return m_live_lookup[byteaddress]; }

	UINT32 lookup_live_large(offs_t byteaddress) const
	{
		UINT32 entry = m_live_lookup[level1_index_large(byteaddress)];
		if (entry >= SUBTABLE_BASE)
			entry = m_live_lookup[level2_index_large(entry, byteaddress)];
		return entry;
	}

	UINT32 lookup(offs_t byteaddress) const
	{
		UINT32 entry = m_live_lookup[level1_index(byteaddress)];
		if (entry >= SUBTABLE_BASE)
			entry = m_live_lookup[level2_index(entry, byteaddress)];
		return entry;
	}

	// enable watchpoints by swapping in the watchpoint table
	void enable_watchpoints(bool enable = true) { m_live_lookup = enable ? s_watchpoint_table : m_table; }

	// table mapping helpers
	UINT8 map_range(offs_t bytestart, offs_t byteend, offs_t bytemask, offs_t bytemirror, UINT8 staticentry = 0);
	UINT8 derive_range(offs_t byteaddress, offs_t &bytestart, offs_t &byteend) const;

	// misc helpers
	void mask_all_handlers(offs_t mask);
	const char *handler_name(UINT8 entry) const;

protected:
	// determine table indexes based on the address
	UINT32 level1_index_large(offs_t address) const { return address >> LEVEL2_BITS; }
	UINT32 level2_index_large(UINT8 l1entry, offs_t address) const { return (1 << LEVEL1_BITS) + ((l1entry - SUBTABLE_BASE) << LEVEL2_BITS) + (address & ((1 << LEVEL2_BITS) - 1)); }
	UINT32 level1_index(offs_t address) const { return m_large ? level1_index_large(address) : address; }
	UINT32 level2_index(UINT8 l1entry, offs_t address) const { return m_large ? level2_index_large(l1entry, address) : 0; }

	// table population/depopulation
	void populate_range_mirrored(offs_t bytestart, offs_t byteend, offs_t bytemirror, UINT8 handler);
	void populate_range(offs_t bytestart, offs_t byteend, UINT8 handler);
	void depopulate_unused();

	// subtable management
	UINT8 subtable_alloc();
	void subtable_realloc(UINT8 subentry);
	int subtable_merge();
	void subtable_release(UINT8 subentry);
	UINT8 *subtable_open(offs_t l1index);
	void subtable_close(offs_t l1index);
	UINT8 *subtable_ptr(UINT8 entry) { return &m_table[level2_index(entry, 0)]; }

	// internal state
	UINT8 *					m_table;					// pointer to base of table
	UINT8 *					m_live_lookup;				// current lookup
	address_space &			m_space;					// pointer back to the space
	bool					m_large;					// large memory model?

	// subtable_data is an internal class with information about each subtable
	class subtable_data
	{
	public:
		subtable_data()
			: m_checksum_valid(false),
			  m_checksum(0),
			  m_usecount(0) { }

		bool				m_checksum_valid;			// is the checksum valid
		UINT32				m_checksum;					// checksum over all the bytes
		UINT32				m_usecount;					// number of times this has been used
	};
	subtable_data *			m_subtable;					// info about each subtable
	UINT8					m_subtable_alloc;			// number of subtables allocated

	// static global read-only watchpoint table
	static UINT8			s_watchpoint_table[1 << LEVEL1_BITS];
};


// ======================> address_table_read

// read access-specific version of an address table
class address_table_read : public address_table
{
public:
	// construction/destruction
	address_table_read(address_space &space, bool large);
	~address_table_read();

	// getters
	virtual handler_entry &handler(UINT32 index) const;
	handler_entry_read &handler_read(UINT32 index) const { assert(index < ARRAY_LENGTH(m_handlers)); return *m_handlers[index]; }

private:
	// internal unmapped handler
	template<typename _UintType>
	_UintType unmap_r(address_space &space, offs_t offset, _UintType mask)
	{
		if (m_space.log_unmap() && !m_space.debugger_access())
			logerror("%s: unmapped %s memory read from %s & %s\n",
						cpuexec_describe_context(&m_space.m_machine), m_space.name(),
						core_i64_hex_format(m_space.byte_to_address(offset * sizeof(_UintType)), m_space.addrchars()),
						core_i64_hex_format(mask, 2 * sizeof(_UintType)));
		return m_space.unmap();
	}

	// internal no-op handler
	template<typename _UintType>
	_UintType nop_r(address_space &space, offs_t offset, _UintType mask)
	{
		return m_space.unmap();
	}

	// internal watchpoint handler
	template<typename _UintType>
	_UintType watchpoint_r(address_space &space, offs_t offset, _UintType mask)
	{
		m_space.device().debug()->memory_read_hook(m_space, offset * sizeof(_UintType), mask);

		UINT8 *oldtable = m_live_lookup;
		m_live_lookup = m_table;
		_UintType result;
		if (sizeof(_UintType) == 1) result = m_space.read_byte(offset);
		if (sizeof(_UintType) == 2) result = m_space.read_word(offset << 1, mask);
		if (sizeof(_UintType) == 4) result = m_space.read_dword(offset << 2, mask);
		if (sizeof(_UintType) == 8) result = m_space.read_qword(offset << 3, mask);
		m_live_lookup = oldtable;
		return result;
	}

	// internal state
	handler_entry_read *		m_handlers[256];		// array of user-installed handlers
};


// ======================> address_table_write

// write access-specific version of an address table
class address_table_write : public address_table
{
public:
	// construction/destruction
	address_table_write(address_space &space, bool large);
	~address_table_write();

	// getters
	virtual handler_entry &handler(UINT32 index) const;
	handler_entry_write &handler_write(UINT32 index) const { assert(index < ARRAY_LENGTH(m_handlers)); return *m_handlers[index]; }

private:
	// internal handlers
	template<typename _UintType>
	void unmap_w(address_space &space, offs_t offset, _UintType data, _UintType mask)
	{
		if (m_space.log_unmap() && !m_space.debugger_access())
			logerror("%s: unmapped %s memory write to %s = %s & %s\n",
					cpuexec_describe_context(&m_space.m_machine), m_space.name(),
					core_i64_hex_format(m_space.byte_to_address(offset * sizeof(_UintType)), m_space.addrchars()),
					core_i64_hex_format(data, 2 * sizeof(_UintType)),
					core_i64_hex_format(mask, 2 * sizeof(_UintType)));
	}

	template<typename _UintType>
	void nop_w(address_space &space, offs_t offset, _UintType data, _UintType mask)
	{
	}

	template<typename _UintType>
	void watchpoint_w(address_space &space, offs_t offset, _UintType data, _UintType mask)
	{
		m_space.device().debug()->memory_write_hook(m_space, offset * sizeof(_UintType), data, mask);

		UINT8 *oldtable = m_live_lookup;
		m_live_lookup = m_table;
		if (sizeof(_UintType) == 1) m_space.write_byte(offset, data);
		if (sizeof(_UintType) == 2) m_space.write_word(offset << 1, data, mask);
		if (sizeof(_UintType) == 4) m_space.write_dword(offset << 2, data, mask);
		if (sizeof(_UintType) == 8) m_space.write_qword(offset << 3, data, mask);
		m_live_lookup = oldtable;
	}

	// internal state
	handler_entry_write *		m_handlers[256];		// array of user-installed handlers
};


// ======================> address_space_specific

// this is a derived class of address_space with specific width, endianness, and table size
template<typename _NativeType, endianness_t _Endian, bool _Large>
class address_space_specific : public address_space
{
	typedef address_space_specific<_NativeType, _Endian, _Large> this_type;

	// constants describing the native size
	static const UINT32 NATIVE_BYTES = sizeof(_NativeType);
	static const UINT32 NATIVE_MASK = NATIVE_BYTES - 1;
	static const UINT32 NATIVE_BITS = 8 * NATIVE_BYTES;

	// helpers to simplify core code
	UINT32 read_lookup(offs_t byteaddress) const { return _Large ? m_read.lookup_live_large(byteaddress) : m_read.lookup_live_small(byteaddress); }
	UINT32 write_lookup(offs_t byteaddress) const { return _Large ? m_write.lookup_live_large(byteaddress) : m_write.lookup_live_small(byteaddress); }

public:
	// construction/destruction
	address_space_specific(device_memory_interface &memory, int spacenum)
		: address_space(memory, spacenum, _Large),
		  m_read(*this, _Large),
		  m_write(*this, _Large)
	{
#if (TEST_HANDLER)
		// test code to verify the read/write handlers are touching the correct bits
		// and returning the correct results

		// install some dummy RAM for the first 16 bytes with well-known values
		UINT8 buffer[16];
		for (int index = 0; index < 16; index++)
			buffer[index ^ ((_Endian == ENDIANNESS_NATIVE) ? 0 : (data_width()/8 - 1))] = index * 0x11;
		install_ram(0x00, 0x0f, 0x0f, 0, ROW_READWRITE, buffer);
		printf("\n\naddress_space(%d, %s, %s)\n", NATIVE_BITS, (_Endian == ENDIANNESS_LITTLE) ? "little" : "big", _Large ? "large" : "small");

		// walk through the first 8 addresses
		for (int address = 0; address < 8; address++)
		{
			// determine expected values
			UINT64 expected64 = ((UINT64)((address + ((_Endian == ENDIANNESS_LITTLE) ? 7 : 0)) * 0x11) << 56) |
							    ((UINT64)((address + ((_Endian == ENDIANNESS_LITTLE) ? 6 : 1)) * 0x11) << 48) |
							    ((UINT64)((address + ((_Endian == ENDIANNESS_LITTLE) ? 5 : 2)) * 0x11) << 40) |
							    ((UINT64)((address + ((_Endian == ENDIANNESS_LITTLE) ? 4 : 3)) * 0x11) << 32) |
							    ((UINT64)((address + ((_Endian == ENDIANNESS_LITTLE) ? 3 : 4)) * 0x11) << 24) |
							    ((UINT64)((address + ((_Endian == ENDIANNESS_LITTLE) ? 2 : 5)) * 0x11) << 16) |
							    ((UINT64)((address + ((_Endian == ENDIANNESS_LITTLE) ? 1 : 6)) * 0x11) <<  8) |
							    ((UINT64)((address + ((_Endian == ENDIANNESS_LITTLE) ? 0 : 7)) * 0x11) <<  0);
			UINT32 expected32 = (_Endian == ENDIANNESS_LITTLE) ? expected64 : (expected64 >> 32);
			UINT16 expected16 = (_Endian == ENDIANNESS_LITTLE) ? expected32 : (expected32 >> 16);
			UINT8 expected8 = (_Endian == ENDIANNESS_LITTLE) ? expected16 : (expected16 >> 8);

			UINT64 result64;
			UINT32 result32;
			UINT16 result16;
			UINT8 result8;

			// validate byte accesses
			printf("\nAddress %d\n", address);
			printf("   read_byte = "); printf("%02X\n", result8 = read_byte(address)); assert(result8 == expected8);

			// validate word accesses (if aligned)
			if (address % 2 == 0) { printf("   read_word = "); printf("%04X\n", result16 = read_word(address)); assert(result16 == expected16); }
			if (address % 2 == 0) { printf("   read_word (0xff00) = "); printf("%04X\n", result16 = read_word(address, 0xff00)); assert((result16 & 0xff00) == (expected16 & 0xff00)); }
			if (address % 2 == 0) { printf("             (0x00ff) = "); printf("%04X\n", result16 = read_word(address, 0x00ff)); assert((result16 & 0x00ff) == (expected16 & 0x00ff)); }

			// validate unaligned word accesses
			printf("   read_word_unaligned = "); printf("%04X\n", result16 = read_word_unaligned(address)); assert(result16 == expected16);
			printf("   read_word_unaligned (0xff00) = "); printf("%04X\n", result16 = read_word_unaligned(address, 0xff00)); assert((result16 & 0xff00) == (expected16 & 0xff00));
			printf("                       (0x00ff) = "); printf("%04X\n", result16 = read_word_unaligned(address, 0x00ff)); assert((result16 & 0x00ff) == (expected16 & 0x00ff));

			// validate dword acceses (if aligned)
			if (address % 4 == 0) { printf("   read_dword = "); printf("%08X\n", result32 = read_dword(address)); assert(result32 == expected32); }
			if (address % 4 == 0) { printf("   read_dword (0xff000000) = "); printf("%08X\n", result32 = read_dword(address, 0xff000000)); assert((result32 & 0xff000000) == (expected32 & 0xff000000)); }
			if (address % 4 == 0) { printf("              (0x00ff0000) = "); printf("%08X\n", result32 = read_dword(address, 0x00ff0000)); assert((result32 & 0x00ff0000) == (expected32 & 0x00ff0000)); }
			if (address % 4 == 0) { printf("              (0x0000ff00) = "); printf("%08X\n", result32 = read_dword(address, 0x0000ff00)); assert((result32 & 0x0000ff00) == (expected32 & 0x0000ff00)); }
			if (address % 4 == 0) { printf("              (0x000000ff) = "); printf("%08X\n", result32 = read_dword(address, 0x000000ff)); assert((result32 & 0x000000ff) == (expected32 & 0x000000ff)); }
			if (address % 4 == 0) { printf("              (0xffff0000) = "); printf("%08X\n", result32 = read_dword(address, 0xffff0000)); assert((result32 & 0xffff0000) == (expected32 & 0xffff0000)); }
			if (address % 4 == 0) { printf("              (0x0000ffff) = "); printf("%08X\n", result32 = read_dword(address, 0x0000ffff)); assert((result32 & 0x0000ffff) == (expected32 & 0x0000ffff)); }
			if (address % 4 == 0) { printf("              (0xffffff00) = "); printf("%08X\n", result32 = read_dword(address, 0xffffff00)); assert((result32 & 0xffffff00) == (expected32 & 0xffffff00)); }
			if (address % 4 == 0) { printf("              (0x00ffffff) = "); printf("%08X\n", result32 = read_dword(address, 0x00ffffff)); assert((result32 & 0x00ffffff) == (expected32 & 0x00ffffff)); }

			// validate unaligned dword accesses
			printf("   read_dword_unaligned = "); printf("%08X\n", result32 = read_dword_unaligned(address)); assert(result32 == expected32);
			printf("   read_dword_unaligned (0xff000000) = "); printf("%08X\n", result32 = read_dword_unaligned(address, 0xff000000)); assert((result32 & 0xff000000) == (expected32 & 0xff000000));
			printf("                        (0x00ff0000) = "); printf("%08X\n", result32 = read_dword_unaligned(address, 0x00ff0000)); assert((result32 & 0x00ff0000) == (expected32 & 0x00ff0000));
			printf("                        (0x0000ff00) = "); printf("%08X\n", result32 = read_dword_unaligned(address, 0x0000ff00)); assert((result32 & 0x0000ff00) == (expected32 & 0x0000ff00));
			printf("                        (0x000000ff) = "); printf("%08X\n", result32 = read_dword_unaligned(address, 0x000000ff)); assert((result32 & 0x000000ff) == (expected32 & 0x000000ff));
			printf("                        (0xffff0000) = "); printf("%08X\n", result32 = read_dword_unaligned(address, 0xffff0000)); assert((result32 & 0xffff0000) == (expected32 & 0xffff0000));
			printf("                        (0x0000ffff) = "); printf("%08X\n", result32 = read_dword_unaligned(address, 0x0000ffff)); assert((result32 & 0x0000ffff) == (expected32 & 0x0000ffff));
			printf("                        (0xffffff00) = "); printf("%08X\n", result32 = read_dword_unaligned(address, 0xffffff00)); assert((result32 & 0xffffff00) == (expected32 & 0xffffff00));
			printf("                        (0x00ffffff) = "); printf("%08X\n", result32 = read_dword_unaligned(address, 0x00ffffff)); assert((result32 & 0x00ffffff) == (expected32 & 0x00ffffff));

			// validate qword acceses (if aligned)
			if (address % 8 == 0) { printf("   read_qword = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address), 16)); assert(result64 == expected64); }
			if (address % 8 == 0) { printf("   read_qword (0xff00000000000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0xff00000000000000)), 16)); assert((result64 & U64(0xff00000000000000)) == (expected64 & U64(0xff00000000000000))); }
			if (address % 8 == 0) { printf("              (0x00ff000000000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0x00ff000000000000)), 16)); assert((result64 & U64(0x00ff000000000000)) == (expected64 & U64(0x00ff000000000000))); }
			if (address % 8 == 0) { printf("              (0x0000ff0000000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0x0000ff0000000000)), 16)); assert((result64 & U64(0x0000ff0000000000)) == (expected64 & U64(0x0000ff0000000000))); }
			if (address % 8 == 0) { printf("              (0x000000ff00000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0x000000ff00000000)), 16)); assert((result64 & U64(0x000000ff00000000)) == (expected64 & U64(0x000000ff00000000))); }
			if (address % 8 == 0) { printf("              (0x00000000ff000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0x00000000ff000000)), 16)); assert((result64 & U64(0x00000000ff000000)) == (expected64 & U64(0x00000000ff000000))); }
			if (address % 8 == 0) { printf("              (0x0000000000ff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0x0000000000ff0000)), 16)); assert((result64 & U64(0x0000000000ff0000)) == (expected64 & U64(0x0000000000ff0000))); }
			if (address % 8 == 0) { printf("              (0x000000000000ff00) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0x000000000000ff00)), 16)); assert((result64 & U64(0x000000000000ff00)) == (expected64 & U64(0x000000000000ff00))); }
			if (address % 8 == 0) { printf("              (0x00000000000000ff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0x00000000000000ff)), 16)); assert((result64 & U64(0x00000000000000ff)) == (expected64 & U64(0x00000000000000ff))); }
			if (address % 8 == 0) { printf("              (0xffff000000000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0xffff000000000000)), 16)); assert((result64 & U64(0xffff000000000000)) == (expected64 & U64(0xffff000000000000))); }
			if (address % 8 == 0) { printf("              (0x0000ffff00000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0x0000ffff00000000)), 16)); assert((result64 & U64(0x0000ffff00000000)) == (expected64 & U64(0x0000ffff00000000))); }
			if (address % 8 == 0) { printf("              (0x00000000ffff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0x00000000ffff0000)), 16)); assert((result64 & U64(0x00000000ffff0000)) == (expected64 & U64(0x00000000ffff0000))); }
			if (address % 8 == 0) { printf("              (0x000000000000ffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0x000000000000ffff)), 16)); assert((result64 & U64(0x000000000000ffff)) == (expected64 & U64(0x000000000000ffff))); }
			if (address % 8 == 0) { printf("              (0xffffff0000000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0xffffff0000000000)), 16)); assert((result64 & U64(0xffffff0000000000)) == (expected64 & U64(0xffffff0000000000))); }
			if (address % 8 == 0) { printf("              (0x0000ffffff000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0x0000ffffff000000)), 16)); assert((result64 & U64(0x0000ffffff000000)) == (expected64 & U64(0x0000ffffff000000))); }
			if (address % 8 == 0) { printf("              (0x000000ffffff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0x000000ffffff0000)), 16)); assert((result64 & U64(0x000000ffffff0000)) == (expected64 & U64(0x000000ffffff0000))); }
			if (address % 8 == 0) { printf("              (0x0000000000ffffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0x0000000000ffffff)), 16)); assert((result64 & U64(0x0000000000ffffff)) == (expected64 & U64(0x0000000000ffffff))); }
			if (address % 8 == 0) { printf("              (0xffffffff00000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0xffffffff00000000)), 16)); assert((result64 & U64(0xffffffff00000000)) == (expected64 & U64(0xffffffff00000000))); }
			if (address % 8 == 0) { printf("              (0x00ffffffff000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0x00ffffffff000000)), 16)); assert((result64 & U64(0x00ffffffff000000)) == (expected64 & U64(0x00ffffffff000000))); }
			if (address % 8 == 0) { printf("              (0x0000ffffffff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0x0000ffffffff0000)), 16)); assert((result64 & U64(0x0000ffffffff0000)) == (expected64 & U64(0x0000ffffffff0000))); }
			if (address % 8 == 0) { printf("              (0x000000ffffffff00) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0x000000ffffffff00)), 16)); assert((result64 & U64(0x000000ffffffff00)) == (expected64 & U64(0x000000ffffffff00))); }
			if (address % 8 == 0) { printf("              (0x00000000ffffffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0x00000000ffffffff)), 16)); assert((result64 & U64(0x00000000ffffffff)) == (expected64 & U64(0x00000000ffffffff))); }
			if (address % 8 == 0) { printf("              (0xffffffffff000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0xffffffffff000000)), 16)); assert((result64 & U64(0xffffffffff000000)) == (expected64 & U64(0xffffffffff000000))); }
			if (address % 8 == 0) { printf("              (0x00ffffffffff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0x00ffffffffff0000)), 16)); assert((result64 & U64(0x00ffffffffff0000)) == (expected64 & U64(0x00ffffffffff0000))); }
			if (address % 8 == 0) { printf("              (0x0000ffffffffff00) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0x0000ffffffffff00)), 16)); assert((result64 & U64(0x0000ffffffffff00)) == (expected64 & U64(0x0000ffffffffff00))); }
			if (address % 8 == 0) { printf("              (0x000000ffffffffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0x000000ffffffffff)), 16)); assert((result64 & U64(0x000000ffffffffff)) == (expected64 & U64(0x000000ffffffffff))); }
			if (address % 8 == 0) { printf("              (0xffffffffffff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0xffffffffffff0000)), 16)); assert((result64 & U64(0xffffffffffff0000)) == (expected64 & U64(0xffffffffffff0000))); }
			if (address % 8 == 0) { printf("              (0x00ffffffffffff00) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0x00ffffffffffff00)), 16)); assert((result64 & U64(0x00ffffffffffff00)) == (expected64 & U64(0x00ffffffffffff00))); }
			if (address % 8 == 0) { printf("              (0x0000ffffffffffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0x0000ffffffffffff)), 16)); assert((result64 & U64(0x0000ffffffffffff)) == (expected64 & U64(0x0000ffffffffffff))); }
			if (address % 8 == 0) { printf("              (0xffffffffffffff00) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0xffffffffffffff00)), 16)); assert((result64 & U64(0xffffffffffffff00)) == (expected64 & U64(0xffffffffffffff00))); }
			if (address % 8 == 0) { printf("              (0x00ffffffffffffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, U64(0x00ffffffffffffff)), 16)); assert((result64 & U64(0x00ffffffffffffff)) == (expected64 & U64(0x00ffffffffffffff))); }

			// validate unaligned qword accesses
			printf("   read_qword_unaligned = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address), 16)); assert(result64 == expected64);
			printf("   read_qword_unaligned (0xff00000000000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0xff00000000000000)), 16)); assert((result64 & U64(0xff00000000000000)) == (expected64 & U64(0xff00000000000000)));
			printf("                        (0x00ff000000000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0x00ff000000000000)), 16)); assert((result64 & U64(0x00ff000000000000)) == (expected64 & U64(0x00ff000000000000)));
			printf("                        (0x0000ff0000000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0x0000ff0000000000)), 16)); assert((result64 & U64(0x0000ff0000000000)) == (expected64 & U64(0x0000ff0000000000)));
			printf("                        (0x000000ff00000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0x000000ff00000000)), 16)); assert((result64 & U64(0x000000ff00000000)) == (expected64 & U64(0x000000ff00000000)));
			printf("                        (0x00000000ff000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0x00000000ff000000)), 16)); assert((result64 & U64(0x00000000ff000000)) == (expected64 & U64(0x00000000ff000000)));
			printf("                        (0x0000000000ff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0x0000000000ff0000)), 16)); assert((result64 & U64(0x0000000000ff0000)) == (expected64 & U64(0x0000000000ff0000)));
			printf("                        (0x000000000000ff00) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0x000000000000ff00)), 16)); assert((result64 & U64(0x000000000000ff00)) == (expected64 & U64(0x000000000000ff00)));
			printf("                        (0x00000000000000ff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0x00000000000000ff)), 16)); assert((result64 & U64(0x00000000000000ff)) == (expected64 & U64(0x00000000000000ff)));
			printf("                        (0xffff000000000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0xffff000000000000)), 16)); assert((result64 & U64(0xffff000000000000)) == (expected64 & U64(0xffff000000000000)));
			printf("                        (0x0000ffff00000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0x0000ffff00000000)), 16)); assert((result64 & U64(0x0000ffff00000000)) == (expected64 & U64(0x0000ffff00000000)));
			printf("                        (0x00000000ffff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0x00000000ffff0000)), 16)); assert((result64 & U64(0x00000000ffff0000)) == (expected64 & U64(0x00000000ffff0000)));
			printf("                        (0x000000000000ffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0x000000000000ffff)), 16)); assert((result64 & U64(0x000000000000ffff)) == (expected64 & U64(0x000000000000ffff)));
			printf("                        (0xffffff0000000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0xffffff0000000000)), 16)); assert((result64 & U64(0xffffff0000000000)) == (expected64 & U64(0xffffff0000000000)));
			printf("                        (0x0000ffffff000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0x0000ffffff000000)), 16)); assert((result64 & U64(0x0000ffffff000000)) == (expected64 & U64(0x0000ffffff000000)));
			printf("                        (0x000000ffffff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0x000000ffffff0000)), 16)); assert((result64 & U64(0x000000ffffff0000)) == (expected64 & U64(0x000000ffffff0000)));
			printf("                        (0x0000000000ffffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0x0000000000ffffff)), 16)); assert((result64 & U64(0x0000000000ffffff)) == (expected64 & U64(0x0000000000ffffff)));
			printf("                        (0xffffffff00000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0xffffffff00000000)), 16)); assert((result64 & U64(0xffffffff00000000)) == (expected64 & U64(0xffffffff00000000)));
			printf("                        (0x00ffffffff000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0x00ffffffff000000)), 16)); assert((result64 & U64(0x00ffffffff000000)) == (expected64 & U64(0x00ffffffff000000)));
			printf("                        (0x0000ffffffff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0x0000ffffffff0000)), 16)); assert((result64 & U64(0x0000ffffffff0000)) == (expected64 & U64(0x0000ffffffff0000)));
			printf("                        (0x000000ffffffff00) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0x000000ffffffff00)), 16)); assert((result64 & U64(0x000000ffffffff00)) == (expected64 & U64(0x000000ffffffff00)));
			printf("                        (0x00000000ffffffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0x00000000ffffffff)), 16)); assert((result64 & U64(0x00000000ffffffff)) == (expected64 & U64(0x00000000ffffffff)));
			printf("                        (0xffffffffff000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0xffffffffff000000)), 16)); assert((result64 & U64(0xffffffffff000000)) == (expected64 & U64(0xffffffffff000000)));
			printf("                        (0x00ffffffffff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0x00ffffffffff0000)), 16)); assert((result64 & U64(0x00ffffffffff0000)) == (expected64 & U64(0x00ffffffffff0000)));
			printf("                        (0x0000ffffffffff00) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0x0000ffffffffff00)), 16)); assert((result64 & U64(0x0000ffffffffff00)) == (expected64 & U64(0x0000ffffffffff00)));
			printf("                        (0x000000ffffffffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0x000000ffffffffff)), 16)); assert((result64 & U64(0x000000ffffffffff)) == (expected64 & U64(0x000000ffffffffff)));
			printf("                        (0xffffffffffff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0xffffffffffff0000)), 16)); assert((result64 & U64(0xffffffffffff0000)) == (expected64 & U64(0xffffffffffff0000)));
			printf("                        (0x00ffffffffffff00) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0x00ffffffffffff00)), 16)); assert((result64 & U64(0x00ffffffffffff00)) == (expected64 & U64(0x00ffffffffffff00)));
			printf("                        (0x0000ffffffffffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0x0000ffffffffffff)), 16)); assert((result64 & U64(0x0000ffffffffffff)) == (expected64 & U64(0x0000ffffffffffff)));
			printf("                        (0xffffffffffffff00) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0xffffffffffffff00)), 16)); assert((result64 & U64(0xffffffffffffff00)) == (expected64 & U64(0xffffffffffffff00)));
			printf("                        (0x00ffffffffffffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, U64(0x00ffffffffffffff)), 16)); assert((result64 & U64(0x00ffffffffffffff)) == (expected64 & U64(0x00ffffffffffffff)));
		}
#endif
	}

	// accessors
	virtual address_table_read &read() { return m_read; }
	virtual address_table_write &write() { return m_write; }

	// watchpoint control
	virtual void enable_read_watchpoints(bool enable = true) { m_read.enable_watchpoints(enable); }
	virtual void enable_write_watchpoints(bool enable = true) { m_write.enable_watchpoints(enable); }

	// generate accessor table
	virtual void accessors(data_accessors &accessors) const
	{
		accessors.read_byte = reinterpret_cast<UINT8 (*)(address_space *, offs_t)>(&read_byte_static);
		accessors.read_word = reinterpret_cast<UINT16 (*)(address_space *, offs_t)>(&read_word_static);
		accessors.read_word_masked = reinterpret_cast<UINT16 (*)(address_space *, offs_t, UINT16)>(&read_word_masked_static);
		accessors.read_dword = reinterpret_cast<UINT32 (*)(address_space *, offs_t)>(&read_dword_static);
		accessors.read_dword_masked = reinterpret_cast<UINT32 (*)(address_space *, offs_t, UINT32)>(&read_dword_masked_static);
		accessors.read_qword = reinterpret_cast<UINT64 (*)(address_space *, offs_t)>(&read_qword_static);
		accessors.read_qword_masked = reinterpret_cast<UINT64 (*)(address_space *, offs_t, UINT64)>(&read_qword_masked_static);
		accessors.write_byte = reinterpret_cast<void (*)(address_space *, offs_t, UINT8)>(&write_byte_static);
		accessors.write_word = reinterpret_cast<void (*)(address_space *, offs_t, UINT16)>(&write_word_static);
		accessors.write_word_masked = reinterpret_cast<void (*)(address_space *, offs_t, UINT16, UINT16)>(&write_word_masked_static);
		accessors.write_dword = reinterpret_cast<void (*)(address_space *, offs_t, UINT32)>(&write_dword_static);
		accessors.write_dword_masked = reinterpret_cast<void (*)(address_space *, offs_t, UINT32, UINT32)>(&write_dword_masked_static);
		accessors.write_qword = reinterpret_cast<void (*)(address_space *, offs_t, UINT64)>(&write_qword_static);
		accessors.write_qword_masked = reinterpret_cast<void (*)(address_space *, offs_t, UINT64, UINT64)>(&write_qword_masked_static);
	}

	// return a pointer to the read bank, or NULL if none
	virtual void *get_read_ptr(offs_t byteaddress)
	{
		// perform the lookup
		byteaddress &= m_bytemask;
		UINT32 entry = read_lookup(byteaddress);
		const handler_entry_read &handler = m_read.handler_read(entry);

		// 8-bit case: RAM/ROM
		if (entry >= STATIC_RAM)
			return NULL;
		return handler.ramptr(handler.byteoffset(byteaddress));
	}

	// return a pointer to the write bank, or NULL if none
	virtual void *get_write_ptr(offs_t byteaddress)
	{
		// perform the lookup
		byteaddress &= m_bytemask;
		UINT32 entry = read_lookup(byteaddress);
		const handler_entry_write &handler = m_write.handler_write(entry);

		// 8-bit case: RAM/ROM
		if (entry >= STATIC_RAM)
			return NULL;
		return handler.ramptr(handler.byteoffset(byteaddress));
	}

	// native read
	_NativeType read_native(offs_t offset, _NativeType mask)
	{
		g_profiler.start(PROFILER_MEMREAD);

		if (TEST_HANDLER) printf("[r%X,%s]", offset, core_i64_hex_format(mask, sizeof(_NativeType) * 2));

		// look up the handler
		offs_t byteaddress = offset & m_bytemask;
		UINT32 entry = read_lookup(byteaddress);
		const handler_entry_read &handler = m_read.handler_read(entry);

		// either read directly from RAM, or call the delegate
		offset = handler.byteoffset(byteaddress);
		_NativeType result;
		if (entry < STATIC_RAM) result = *reinterpret_cast<_NativeType *>(handler.ramptr(offset));
		else if (sizeof(_NativeType) == 1) result = handler.read8(*this, offset, mask);
		else if (sizeof(_NativeType) == 2) result = handler.read16(*this, offset >> 1, mask);
		else if (sizeof(_NativeType) == 4) result = handler.read32(*this, offset >> 2, mask);
		else if (sizeof(_NativeType) == 8) result = handler.read64(*this, offset >> 3, mask);

		g_profiler.stop();
		return result;
	}

	// mask-less native read
	_NativeType read_native(offs_t offset)
	{
		g_profiler.start(PROFILER_MEMREAD);

		if (TEST_HANDLER) printf("[r%X]", offset);

		// look up the handler
		offs_t byteaddress = offset & m_bytemask;
		UINT32 entry = read_lookup(byteaddress);
		const handler_entry_read &handler = m_read.handler_read(entry);

		// either read directly from RAM, or call the delegate
		offset = handler.byteoffset(byteaddress);
		_NativeType result;
		if (entry < STATIC_RAM) result = *reinterpret_cast<_NativeType *>(handler.ramptr(offset));
		else if (sizeof(_NativeType) == 1) result = handler.read8(*this, offset, 0xff);
		else if (sizeof(_NativeType) == 2) result = handler.read16(*this, offset >> 1, 0xffff);
		else if (sizeof(_NativeType) == 4) result = handler.read32(*this, offset >> 2, 0xffffffff);
		else if (sizeof(_NativeType) == 8) result = handler.read64(*this, offset >> 3, U64(0xffffffffffffffff));

		g_profiler.stop();
		return result;
	}

	// native write
	void write_native(offs_t offset, _NativeType data, _NativeType mask)
	{
		g_profiler.start(PROFILER_MEMWRITE);

		// look up the handler
		offs_t byteaddress = offset & m_bytemask;
		UINT32 entry = write_lookup(byteaddress);
		const handler_entry_write &handler = m_write.handler_write(entry);

		// either write directly to RAM, or call the delegate
		offset = handler.byteoffset(byteaddress);
		if (entry < STATIC_RAM)
		{
			_NativeType *dest = reinterpret_cast<_NativeType *>(handler.ramptr(offset));
			*dest = (*dest & ~mask) | (data & mask);
		}
		else if (sizeof(_NativeType) == 1) handler.write8(*this, offset, data, mask);
		else if (sizeof(_NativeType) == 2) handler.write16(*this, offset >> 1, data, mask);
		else if (sizeof(_NativeType) == 4) handler.write32(*this, offset >> 2, data, mask);
		else if (sizeof(_NativeType) == 8) handler.write64(*this, offset >> 3, data, mask);

		g_profiler.stop();
	}

	// mask-less native write
	void write_native(offs_t offset, _NativeType data)
	{
		g_profiler.start(PROFILER_MEMWRITE);

		// look up the handler
		offs_t byteaddress = offset & m_bytemask;
		UINT32 entry = write_lookup(byteaddress);
		const handler_entry_write &handler = m_write.handler_write(entry);

		// either write directly to RAM, or call the delegate
		offset = handler.byteoffset(byteaddress);
		if (entry < STATIC_RAM) *reinterpret_cast<_NativeType *>(handler.ramptr(offset)) = data;
		else if (sizeof(_NativeType) == 1) handler.write8(*this, offset, data, 0xff);
		else if (sizeof(_NativeType) == 2) handler.write16(*this, offset >> 1, data, 0xffff);
		else if (sizeof(_NativeType) == 4) handler.write32(*this, offset >> 2, data, 0xffffffff);
		else if (sizeof(_NativeType) == 8) handler.write64(*this, offset >> 3, data, U64(0xffffffffffffffff));

		g_profiler.stop();
	}

	// generic direct read
	template<typename _TargetType, bool _Aligned>
	_TargetType read_direct(offs_t address, _TargetType mask)
	{
		const UINT32 TARGET_BYTES = sizeof(_TargetType);
		const UINT32 TARGET_BITS = 8 * TARGET_BYTES;

		// equal to native size and aligned; simple pass-through to the native reader
		if (NATIVE_BYTES == TARGET_BYTES && (_Aligned || (address & NATIVE_MASK) == 0))
			return read_native(address & ~NATIVE_MASK, mask);

		// if native size is larger, see if we can do a single masked read (guaranteed if we're aligned)
		if (NATIVE_BYTES > TARGET_BYTES)
		{
			UINT32 offsbits = 8 * (address & (NATIVE_BYTES - (_Aligned ? TARGET_BYTES : 1)));
			if (_Aligned || (offsbits + TARGET_BITS <= NATIVE_BITS))
			{
				if (_Endian != ENDIANNESS_LITTLE) offsbits = NATIVE_BITS - TARGET_BITS - offsbits;
				return read_native(address & ~NATIVE_MASK, (_NativeType)mask << offsbits) >> offsbits;
			}
		}

		// determine our alignment against the native boundaries, and mask the address
		UINT32 offsbits = 8 * (address & (NATIVE_BYTES - 1));
		address &= ~NATIVE_MASK;

		// if we're here, and native size is larger or equal to the target, we need exactly 2 reads
		if (NATIVE_BYTES >= TARGET_BYTES)
		{
			// little-endian case
			if (_Endian == ENDIANNESS_LITTLE)
			{
				// read lower bits from lower address
				_TargetType result = 0;
				_NativeType curmask = (_NativeType)mask << offsbits;
				if (curmask != 0) result = read_native(address, curmask) >> offsbits;

				// read upper bits from upper address
				offsbits = NATIVE_BITS - offsbits;
				curmask = mask >> offsbits;
				if (curmask != 0) result |= read_native(address + NATIVE_BYTES, curmask) << offsbits;
				return result;
			}

			// big-endian case
			else
			{
				// left-justify the mask to the target type
				const UINT32 LEFT_JUSTIFY_TARGET_TO_NATIVE_SHIFT = ((NATIVE_BITS >= TARGET_BITS) ? (NATIVE_BITS - TARGET_BITS) : 0);
				_NativeType result = 0;
				_NativeType ljmask = (_NativeType)mask << LEFT_JUSTIFY_TARGET_TO_NATIVE_SHIFT;
				_NativeType curmask = ljmask >> offsbits;

				// read upper bits from lower address
				if (curmask != 0) result = read_native(address, curmask) << offsbits;
				offsbits = NATIVE_BITS - offsbits;

				// read lower bits from upper address
				curmask = ljmask << offsbits;
				if (curmask != 0) result |= read_native(address + NATIVE_BYTES, curmask) >> offsbits;

				// return the un-justified result
				return result >> LEFT_JUSTIFY_TARGET_TO_NATIVE_SHIFT;
			}
		}

		// if we're here, then we have 2 or more reads needed to get our final result
		else
		{
			// compute the maximum number of loops; we do it this way so that there are
			// a fixed number of loops for the compiler to unroll if it desires
			const UINT32 MAX_SPLITS_MINUS_ONE = TARGET_BYTES / NATIVE_BYTES - 1;
			_TargetType result = 0;

			// little-endian case
			if (_Endian == ENDIANNESS_LITTLE)
			{
				// read lowest bits from first address
				_NativeType curmask = mask << offsbits;
				if (curmask != 0) result = read_native(address, curmask) >> offsbits;

				// read middle bits from subsequent addresses
				offsbits = NATIVE_BITS - offsbits;
				for (UINT32 index = 0; index < MAX_SPLITS_MINUS_ONE; index++)
				{
					address += NATIVE_BYTES;
					curmask = mask >> offsbits;
					if (curmask != 0) result |= (_TargetType)read_native(address, curmask) << offsbits;
					offsbits += NATIVE_BITS;
				}

				// if we're not aligned and we still have bits left, read uppermost bits from last address
				if (!_Aligned && offsbits < TARGET_BITS)
				{
					curmask = mask >> offsbits;
					if (curmask != 0) result |= (_TargetType)read_native(address + NATIVE_BYTES, curmask) << offsbits;
				}
			}

			// big-endian case
			else
			{
				// read highest bits from first address
				offsbits = TARGET_BITS - (NATIVE_BITS - offsbits);
				_NativeType curmask = mask >> offsbits;
				if (curmask != 0) result = (_TargetType)read_native(address, curmask) << offsbits;

				// read middle bits from subsequent addresses
				for (UINT32 index = 0; index < MAX_SPLITS_MINUS_ONE; index++)
				{
					offsbits -= NATIVE_BITS;
					address += NATIVE_BYTES;
					curmask = mask >> offsbits;
					if (curmask != 0) result |= (_TargetType)read_native(address, curmask) << offsbits;
				}

				// if we're not aligned and we still have bits left, read lowermost bits from the last address
				if (!_Aligned && offsbits != 0)
				{
					offsbits = NATIVE_BITS - offsbits;
					curmask = mask << offsbits;
					if (curmask != 0) result |= read_native(address + NATIVE_BYTES, curmask) >> offsbits;
				}
			}
			return result;
		}
	}

	// generic direct write
	template<typename _TargetType, bool _Aligned>
	void write_direct(offs_t address, _TargetType data, _TargetType mask)
	{
		const UINT32 TARGET_BYTES = sizeof(_TargetType);
		const UINT32 TARGET_BITS = 8 * TARGET_BYTES;

		// equal to native size and aligned; simple pass-through to the native writer
		if (NATIVE_BYTES == TARGET_BYTES && (_Aligned || (address & NATIVE_MASK) == 0))
			return write_native(address & ~NATIVE_MASK, data, mask);

		// if native size is larger, see if we can do a single masked write (guaranteed if we're aligned)
		if (NATIVE_BYTES > TARGET_BYTES)
		{
			UINT32 offsbits = 8 * (address & (NATIVE_BYTES - (_Aligned ? TARGET_BYTES : 1)));
			if (_Aligned || (offsbits + TARGET_BITS <= NATIVE_BITS))
			{
				if (_Endian != ENDIANNESS_LITTLE) offsbits = NATIVE_BITS - TARGET_BITS - offsbits;
				return write_native(address & ~NATIVE_MASK, (_NativeType)data << offsbits, (_NativeType)mask << offsbits);
			}
		}

		// determine our alignment against the native boundaries, and mask the address
		UINT32 offsbits = 8 * (address & (NATIVE_BYTES - 1));
		address &= ~NATIVE_MASK;

		// if we're here, and native size is larger or equal to the target, we need exactly 2 writes
		if (NATIVE_BYTES >= TARGET_BYTES)
		{
			// little-endian case
			if (_Endian == ENDIANNESS_LITTLE)
			{
				// write lower bits to lower address
				_NativeType curmask = (_NativeType)mask << offsbits;
				if (curmask != 0) write_native(address, (_NativeType)data << offsbits, curmask);

				// write upper bits to upper address
				offsbits = NATIVE_BITS - offsbits;
				curmask = mask >> offsbits;
				if (curmask != 0) write_native(address + NATIVE_BYTES, data >> offsbits, curmask);
			}

			// big-endian case
			else
			{
				// left-justify the mask and data to the target type
				const UINT32 LEFT_JUSTIFY_TARGET_TO_NATIVE_SHIFT = ((NATIVE_BITS >= TARGET_BITS) ? (NATIVE_BITS - TARGET_BITS) : 0);
				_NativeType ljdata = (_NativeType)data << LEFT_JUSTIFY_TARGET_TO_NATIVE_SHIFT;
				_NativeType ljmask = (_NativeType)mask << LEFT_JUSTIFY_TARGET_TO_NATIVE_SHIFT;

				// write upper bits to lower address
				_NativeType curmask = ljmask >> offsbits;
				if (curmask != 0) write_native(address, ljdata >> offsbits, curmask);

				// write lower bits to upper address
				offsbits = NATIVE_BITS - offsbits;
				curmask = ljmask << offsbits;
				if (curmask != 0) write_native(address + NATIVE_BYTES, ljdata << offsbits, curmask);
			}
		}

		// if we're here, then we have 2 or more writes needed to get our final result
		else
		{
			// compute the maximum number of loops; we do it this way so that there are
			// a fixed number of loops for the compiler to unroll if it desires
			const UINT32 MAX_SPLITS_MINUS_ONE = TARGET_BYTES / NATIVE_BYTES - 1;

			// little-endian case
			if (_Endian == ENDIANNESS_LITTLE)
			{
				// write lowest bits to first address
				_NativeType curmask = mask << offsbits;
				if (curmask != 0) write_native(address, data << offsbits, curmask);

				// write middle bits to subsequent addresses
				offsbits = NATIVE_BITS - offsbits;
				for (UINT32 index = 0; index < MAX_SPLITS_MINUS_ONE; index++)
				{
					address += NATIVE_BYTES;
					curmask = mask >> offsbits;
					if (curmask != 0) write_native(address, data >> offsbits, curmask);
					offsbits += NATIVE_BITS;
				}

				// if we're not aligned and we still have bits left, write uppermost bits to last address
				if (!_Aligned && offsbits < TARGET_BITS)
				{
					curmask = mask >> offsbits;
					if (curmask != 0) write_native(address + NATIVE_BYTES, data >> offsbits, curmask);
				}
			}

			// big-endian case
			else
			{
				// write highest bits to first address
				offsbits = TARGET_BITS - (NATIVE_BITS - offsbits);
				_NativeType curmask = mask >> offsbits;
				if (curmask != 0) write_native(address, data >> offsbits, curmask);

				// write middle bits to subsequent addresses
				for (UINT32 index = 0; index < MAX_SPLITS_MINUS_ONE; index++)
				{
					offsbits -= NATIVE_BITS;
					address += NATIVE_BYTES;
					curmask = mask >> offsbits;
					if (curmask != 0) write_native(address, data >> offsbits, curmask);
				}

				// if we're not aligned and we still have bits left, write lowermost bits to the last address
				if (!_Aligned && offsbits != 0)
				{
					offsbits = NATIVE_BITS - offsbits;
					curmask = mask << offsbits;
					if (curmask != 0) write_native(address + NATIVE_BYTES, data << offsbits, curmask);
				}
			}
		}
	}

	// virtual access to these functions
	UINT8 read_byte(offs_t address) { return (NATIVE_BITS == 8) ? read_native(address & ~NATIVE_MASK) : read_direct<UINT8, true>(address, 0xff); }
	UINT16 read_word(offs_t address) { return (NATIVE_BITS == 16) ? read_native(address & ~NATIVE_MASK) : read_direct<UINT16, true>(address, 0xffff); }
	UINT16 read_word(offs_t address, UINT16 mask) { return read_direct<UINT16, true>(address, mask); }
	UINT16 read_word_unaligned(offs_t address) { return read_direct<UINT16, false>(address, 0xffff); }
	UINT16 read_word_unaligned(offs_t address, UINT16 mask) { return read_direct<UINT16, false>(address, mask); }
	UINT32 read_dword(offs_t address) { return (NATIVE_BITS == 32) ? read_native(address & ~NATIVE_MASK) : read_direct<UINT32, true>(address, 0xffffffff); }
	UINT32 read_dword(offs_t address, UINT32 mask) { return read_direct<UINT32, true>(address, mask); }
	UINT32 read_dword_unaligned(offs_t address) { return read_direct<UINT32, false>(address, 0xffffffff); }
	UINT32 read_dword_unaligned(offs_t address, UINT32 mask) { return read_direct<UINT32, false>(address, mask); }
	UINT64 read_qword(offs_t address) { return (NATIVE_BITS == 64) ? read_native(address & ~NATIVE_MASK) : read_direct<UINT64, true>(address, U64(0xffffffffffffffff)); }
	UINT64 read_qword(offs_t address, UINT64 mask) { return read_direct<UINT64, true>(address, mask); }
	UINT64 read_qword_unaligned(offs_t address) { return read_direct<UINT64, false>(address, U64(0xffffffffffffffff)); }
	UINT64 read_qword_unaligned(offs_t address, UINT64 mask) { return read_direct<UINT64, false>(address, mask); }

	void write_byte(offs_t address, UINT8 data) { if (NATIVE_BITS == 8) write_native(address & ~NATIVE_MASK, data); else write_direct<UINT8, true>(address, data, 0xff); }
	void write_word(offs_t address, UINT16 data) { if (NATIVE_BITS == 16) write_native(address & ~NATIVE_MASK, data); else write_direct<UINT16, true>(address, data, 0xffff); }
	void write_word(offs_t address, UINT16 data, UINT16 mask) { write_direct<UINT16, true>(address, data, mask); }
	void write_word_unaligned(offs_t address, UINT16 data) { write_direct<UINT16, false>(address, data, 0xffff); }
	void write_word_unaligned(offs_t address, UINT16 data, UINT16 mask) { write_direct<UINT16, false>(address, data, mask); }
	void write_dword(offs_t address, UINT32 data) { if (NATIVE_BITS == 32) write_native(address & ~NATIVE_MASK, data); else write_direct<UINT32, true>(address, data, 0xffffffff); }
	void write_dword(offs_t address, UINT32 data, UINT32 mask) { write_direct<UINT32, true>(address, data, mask); }
	void write_dword_unaligned(offs_t address, UINT32 data) { write_direct<UINT32, false>(address, data, 0xffffffff); }
	void write_dword_unaligned(offs_t address, UINT32 data, UINT32 mask) { write_direct<UINT32, false>(address, data, mask); }
	void write_qword(offs_t address, UINT64 data) { if (NATIVE_BITS == 64) write_native(address & ~NATIVE_MASK, data); else write_direct<UINT64, true>(address, data, U64(0xffffffffffffffff)); }
	void write_qword(offs_t address, UINT64 data, UINT64 mask) { write_direct<UINT64, true>(address, data, mask); }
	void write_qword_unaligned(offs_t address, UINT64 data) { write_direct<UINT64, false>(address, data, U64(0xffffffffffffffff)); }
	void write_qword_unaligned(offs_t address, UINT64 data, UINT64 mask) { write_direct<UINT64, false>(address, data, mask); }

	// static access to these functions
	static UINT8 read_byte_static(this_type *space, offs_t address) { return (NATIVE_BITS == 8) ? space->read_native(address & ~NATIVE_MASK) : space->read_direct<UINT8, true>(address, 0xff); }
	static UINT16 read_word_static(this_type *space, offs_t address) { return (NATIVE_BITS == 16) ? space->read_native(address & ~NATIVE_MASK) : space->read_direct<UINT16, true>(address, 0xffff); }
	static UINT16 read_word_masked_static(this_type *space, offs_t address, UINT16 mask) { return space->read_direct<UINT16, true>(address, mask); }
	static UINT32 read_dword_static(this_type *space, offs_t address) { return (NATIVE_BITS == 32) ? space->read_native(address & ~NATIVE_MASK) : space->read_direct<UINT32, true>(address, 0xffffffff); }
	static UINT32 read_dword_masked_static(this_type *space, offs_t address, UINT32 mask) { return space->read_direct<UINT32, true>(address, mask); }
	static UINT64 read_qword_static(this_type *space, offs_t address) { return (NATIVE_BITS == 64) ? space->read_native(address & ~NATIVE_MASK) : space->read_direct<UINT64, true>(address, U64(0xffffffffffffffff)); }
	static UINT64 read_qword_masked_static(this_type *space, offs_t address, UINT64 mask) { return space->read_direct<UINT64, true>(address, mask); }
	static void write_byte_static(this_type *space, offs_t address, UINT8 data) { if (NATIVE_BITS == 8) space->write_native(address & ~NATIVE_MASK, data); else space->write_direct<UINT8, true>(address, data, 0xff); }
	static void write_word_static(this_type *space, offs_t address, UINT16 data) { if (NATIVE_BITS == 16) space->write_native(address & ~NATIVE_MASK, data); else space->write_direct<UINT16, true>(address, data, 0xffff); }
	static void write_word_masked_static(this_type *space, offs_t address, UINT16 data, UINT16 mask) { space->write_direct<UINT16, true>(address, data, mask); }
	static void write_dword_static(this_type *space, offs_t address, UINT32 data) { if (NATIVE_BITS == 32) space->write_native(address & ~NATIVE_MASK, data); else space->write_direct<UINT32, true>(address, data, 0xffffffff); }
	static void write_dword_masked_static(this_type *space, offs_t address, UINT32 data, UINT32 mask) { space->write_direct<UINT32, true>(address, data, mask); }
	static void write_qword_static(this_type *space, offs_t address, UINT64 data) { if (NATIVE_BITS == 64) space->write_native(address & ~NATIVE_MASK, data); else space->write_direct<UINT64, true>(address, data, U64(0xffffffffffffffff)); }
	static void write_qword_masked_static(this_type *space, offs_t address, UINT64 data, UINT64 mask) { space->write_direct<UINT64, true>(address, data, mask); }

	address_table_read		m_read;				// memory read lookup table
	address_table_write		m_write;			// memory write lookup table
};

typedef address_space_specific<UINT8,  ENDIANNESS_LITTLE, false> address_space_8le_small;
typedef address_space_specific<UINT8,  ENDIANNESS_BIG,    false> address_space_8be_small;
typedef address_space_specific<UINT16, ENDIANNESS_LITTLE, false> address_space_16le_small;
typedef address_space_specific<UINT16, ENDIANNESS_BIG,    false> address_space_16be_small;
typedef address_space_specific<UINT32, ENDIANNESS_LITTLE, false> address_space_32le_small;
typedef address_space_specific<UINT32, ENDIANNESS_BIG,    false> address_space_32be_small;
typedef address_space_specific<UINT64, ENDIANNESS_LITTLE, false> address_space_64le_small;
typedef address_space_specific<UINT64, ENDIANNESS_BIG,    false> address_space_64be_small;

typedef address_space_specific<UINT8,  ENDIANNESS_LITTLE, true> address_space_8le_large;
typedef address_space_specific<UINT8,  ENDIANNESS_BIG,    true> address_space_8be_large;
typedef address_space_specific<UINT16, ENDIANNESS_LITTLE, true> address_space_16le_large;
typedef address_space_specific<UINT16, ENDIANNESS_BIG,    true> address_space_16be_large;
typedef address_space_specific<UINT32, ENDIANNESS_LITTLE, true> address_space_32le_large;
typedef address_space_specific<UINT32, ENDIANNESS_BIG,    true> address_space_32be_large;
typedef address_space_specific<UINT64, ENDIANNESS_LITTLE, true> address_space_64le_large;
typedef address_space_specific<UINT64, ENDIANNESS_BIG,    true> address_space_64be_large;


// ======================> _memory_private

// holds internal state for the memory system
struct _memory_private
{
	bool					initialized;					// have we completed initialization?

	UINT8 *					bank_ptr[STATIC_COUNT];			// array of bank pointers
	UINT8 *					bankd_ptr[STATIC_COUNT];		// array of decrypted bank pointers

	simple_list<address_space> spacelist;					// list of address spaces
	simple_list<memory_block> blocklist;					// head of the list of memory blocks

	simple_list<memory_bank> banklist;						// data gathered for each bank
	tagmap_t<memory_bank *>	bankmap;						// map for fast bank lookups
	UINT8					banknext;						// next bank to allocate

	tagmap_t<void *>		sharemap;						// map for share lookups
};



//**************************************************************************
//  GLOBAL VARIABLES
//**************************************************************************

// global watchpoint table
UINT8 address_table::s_watchpoint_table[1 << LEVEL1_BITS];



//**************************************************************************
//  FUNCTION PROTOTYPES
//**************************************************************************

// banking helpers
static STATE_POSTLOAD( bank_reattach );

// debugging
static void generate_memdump(running_machine *machine);



//**************************************************************************
//  CORE SYSTEM OPERATIONS
//**************************************************************************

//-------------------------------------------------
//  memory_init - initialize the memory system
//-------------------------------------------------

void memory_init(running_machine *machine)
{
	// allocate our private data
	memory_private *memdata = machine->memory_data = auto_alloc_clear(machine, memory_private);
	memdata->banknext = STATIC_BANK1;

	// loop over devices and spaces within each device
	device_memory_interface *memory = NULL;
	for (bool gotone = machine->m_devicelist.first(memory); gotone; gotone = memory->next(memory))
		for (int spacenum = 0; spacenum < ADDRESS_SPACES; spacenum++)
		{
			// if there is a configuration for this space, we need an address space
			const address_space_config *spaceconfig = memory->space_config(spacenum);
			if (spaceconfig != NULL)
				memdata->spacelist.append(address_space::allocate(*machine, *spaceconfig, *memory, spacenum));
		}

	// construct and preprocess the address_map for each space
	for (address_space *space = memdata->spacelist.first(); space != NULL; space = space->next())
		space->prepare_map();

	// create the handlers from the resulting address maps
	for (address_space *space = memdata->spacelist.first(); space != NULL; space = space->next())
		space->populate_from_map();

	// allocate memory needed to back each address space
	for (address_space *space = memdata->spacelist.first(); space != NULL; space = space->next())
		space->allocate_memory();

	// find all the allocated pointers
	for (address_space *space = memdata->spacelist.first(); space != NULL; space = space->next())
		space->locate_memory();

	// register a callback to reset banks when reloading state
	state_save_register_postload(machine, bank_reattach, NULL);

	// dump the final memory configuration
	generate_memdump(machine);

	// borrow the first address space to be used as a dummy space
	machine->m_nonspecific_space = memdata->spacelist.first();

	// we are now initialized
	memdata->initialized = true;
}



//**************************************************************************
//  MEMORY BANKING
//**************************************************************************

//-------------------------------------------------
//  memory_configure_bank - configure the
//  addresses for a bank
//-------------------------------------------------

void memory_configure_bank(running_machine *machine, const char *tag, int startentry, int numentries, void *base, offs_t stride)
{
	// validation checks
	memory_bank *bank = machine->memory_data->bankmap.find_hash_only(tag);
	if (bank == NULL)
		fatalerror("memory_configure_bank called for unknown bank '%s'", tag);
	if (base == NULL)
		fatalerror("memory_configure_bank called NULL base");

	// fill in the requested bank entries (backwards to improve allocation)
	for (int entrynum = startentry + numentries - 1; entrynum >= startentry; entrynum--)
		bank->configure(entrynum, reinterpret_cast<UINT8 *>(base) + (entrynum - startentry) * stride);
}


//-------------------------------------------------
//  memory_configure_bank_decrypted - configure
//  the decrypted addresses for a bank
//-------------------------------------------------

void memory_configure_bank_decrypted(running_machine *machine, const char *tag, int startentry, int numentries, void *base, offs_t stride)
{
	// validation checks
	memory_bank *bank = machine->memory_data->bankmap.find_hash_only(tag);
	if (bank == NULL)
		fatalerror("memory_configure_bank_decrypted called for unknown bank '%s'", tag);
	if (base == NULL)
		fatalerror("memory_configure_bank_decrypted called NULL base");

	// fill in the requested bank entries (backwards to improve allocation)
	for (int entrynum = startentry + numentries - 1; entrynum >= startentry; entrynum--)
		bank->configure_decrypted(entrynum, reinterpret_cast<UINT8 *>(base) + (entrynum - startentry) * stride);
}


//-------------------------------------------------
//  memory_set_bank - select one pre-configured
//  entry to be the new bank base
//-------------------------------------------------

void memory_set_bank(running_machine *machine, const char *tag, int entrynum)
{
	// validation checks
	memory_bank *bank = machine->memory_data->bankmap.find_hash_only(tag);
	if (bank == NULL)
		fatalerror("memory_set_bank called for unknown bank '%s'", tag);

	// set the base
	bank->set_entry(entrynum);
}


//-------------------------------------------------
//  memory_get_bank - return the currently
//  selected bank
//-------------------------------------------------

int memory_get_bank(running_machine *machine, const char *tag)
{
	// validation checks
	memory_bank *bank = machine->memory_data->bankmap.find_hash_only(tag);
	if (bank == NULL)
		fatalerror("memory_get_bank called for unknown bank '%s'", tag);

	// return the current entry
	return bank->entry();
}


//-------------------------------------------------
//  memory_set_bankptr - set the base of a bank
//-------------------------------------------------

void memory_set_bankptr(running_machine *machine, const char *tag, void *base)
{
	// validation checks
	memory_bank *bank = machine->memory_data->bankmap.find_hash_only(tag);
	if (bank == NULL)
		throw emu_fatalerror("memory_set_bankptr called for unknown bank '%s'", tag);

	// set the base
	bank->set_base(base);
}


//-------------------------------------------------
//  memory_dump - dump the internal memory tables
//  to the given file
//-------------------------------------------------

void memory_dump(running_machine *machine, FILE *file)
{
	// skip if we can't open the file
	if (file == NULL)
		return;

	// loop over address spaces
	for (address_space *space = machine->memory_data->spacelist.first(); space != NULL; space = space->next())
	{
		fprintf(file, "\n\n"
		              "====================================================\n"
		              "Device '%s' %s address space read handler dump\n"
		              "====================================================\n", space->device().tag(), space->name());
		space->dump_map(file, ROW_READ);

		fprintf(file, "\n\n"
		              "====================================================\n"
		              "Device '%s' %s address space write handler dump\n"
		              "====================================================\n", space->device().tag(), space->name());
		space->dump_map(file, ROW_WRITE);
	}
}


//-------------------------------------------------
//  generate_memdump - internal memory dump
//-------------------------------------------------

static void generate_memdump(running_machine *machine)
{
	if (MEM_DUMP)
	{
		FILE *file = fopen("memdump.log", "w");
		if (file)
		{
			memory_dump(machine, file);
			fclose(file);
		}
	}
}


//-------------------------------------------------
//  bank_reattach - reconnect banks after a load
//-------------------------------------------------

static STATE_POSTLOAD( bank_reattach )
{
	// for each non-anonymous bank, explicitly reset its entry
	for (memory_bank *bank = machine->memory_data->banklist.first(); bank != NULL; bank = bank->next())
		if (!bank->anonymous() && bank->entry() != BANK_ENTRY_UNSPECIFIED)
			bank->set_entry(bank->entry());
}



//**************************************************************************
//  ADDRESS SPACE
//**************************************************************************

//-------------------------------------------------
//  address_space - constructor
//-------------------------------------------------

address_space::address_space(device_memory_interface &memory, int spacenum, bool large)
	: machine(memory.device().machine),
	  cpu(&memory.device()),
	  m_machine(*memory.device().machine),
	  m_next(NULL),
	  m_config(*memory.space_config(spacenum)),
	  m_device(memory.device()),
	  m_map(NULL),
	  m_addrmask(0xffffffffUL >> (32 - m_config.m_addrbus_width)),
	  m_bytemask(address_to_byte_end(m_addrmask)),
	  m_logaddrmask(0xffffffffUL >> (32 - m_config.m_logaddr_width)),
	  m_logbytemask(address_to_byte_end(m_logaddrmask)),
	  m_unmap(0),
	  m_spacenum(spacenum),
	  m_debugger_access(false),
	  m_log_unmap(true),
	  m_direct(*auto_alloc(memory.device().machine, direct_read_data(*this))),
	  m_name(memory.space_config(spacenum)->name()),
	  m_addrchars((m_config.m_databus_width + 3) / 4),
	  m_logaddrchars((m_config.m_logaddr_width + 3) / 4)
{
	// notify the device
	memory.set_address_space(spacenum, *this);
}


//-------------------------------------------------
//  ~address_space - destructor
//-------------------------------------------------

address_space::~address_space()
{
	global_free(&m_direct);
	global_free(m_map);
}


//-------------------------------------------------
//  allocate - static smart allocator of subtypes
//-------------------------------------------------

address_space &address_space::allocate(running_machine &machine, const address_space_config &config, device_memory_interface &memory, int spacenum)
{
	// allocate one of the appropriate type
	bool large = (config.addr2byte_end(0xffffffffUL >> (32 - config.m_addrbus_width)) >= (1 << 18));

	switch (config.data_width())
	{
		case 8:
			if (config.endianness() == ENDIANNESS_LITTLE)
			{
				if (large)
					return *auto_alloc(&machine, address_space_8le_large(memory, spacenum));
				else
					return *auto_alloc(&machine, address_space_8le_small(memory, spacenum));
			}
			else
			{
				if (large)
					return *auto_alloc(&machine, address_space_8be_large(memory, spacenum));
				else
					return *auto_alloc(&machine, address_space_8be_small(memory, spacenum));
			}

		case 16:
			if (config.endianness() == ENDIANNESS_LITTLE)
			{
				if (large)
					return *auto_alloc(&machine, address_space_16le_large(memory, spacenum));
				else
					return *auto_alloc(&machine, address_space_16le_small(memory, spacenum));
			}
			else
			{
				if (large)
					return *auto_alloc(&machine, address_space_16be_large(memory, spacenum));
				else
					return *auto_alloc(&machine, address_space_16be_small(memory, spacenum));
			}

		case 32:
			if (config.endianness() == ENDIANNESS_LITTLE)
			{
				if (large)
					return *auto_alloc(&machine, address_space_32le_large(memory, spacenum));
				else
					return *auto_alloc(&machine, address_space_32le_small(memory, spacenum));
			}
			else
			{
				if (large)
					return *auto_alloc(&machine, address_space_32be_large(memory, spacenum));
				else
					return *auto_alloc(&machine, address_space_32be_small(memory, spacenum));
			}

		case 64:
			if (config.endianness() == ENDIANNESS_LITTLE)
			{
				if (large)
					return *auto_alloc(&machine, address_space_64le_large(memory, spacenum));
				else
					return *auto_alloc(&machine, address_space_64le_small(memory, spacenum));
			}
			else
			{
				if (large)
					return *auto_alloc(&machine, address_space_64be_large(memory, spacenum));
				else
					return *auto_alloc(&machine, address_space_64be_small(memory, spacenum));
			}
	}
	throw emu_fatalerror("Invalid width %d specified for address_space::allocate", config.data_width());
}


//-------------------------------------------------
//  adjust_addresses - adjust addresses for a
//  given address space in a standard fashion
//-------------------------------------------------

inline void address_space::adjust_addresses(offs_t &start, offs_t &end, offs_t &mask, offs_t &mirror)
{
	// adjust start/end/mask values
	if (mask == 0)
		mask = m_addrmask & ~mirror;
	else
		mask &= m_addrmask;
	start &= ~mirror & m_addrmask;
	end &= ~mirror & m_addrmask;

	// adjust to byte values
	start = address_to_byte(start);
	end = address_to_byte_end(end);
	mask = address_to_byte_end(mask);
	mirror = address_to_byte(mirror);
}


//-------------------------------------------------
//  prepare_map - allocate the address map and
//  walk through it to find implcit memory regions
//  and identify shared regions
//-------------------------------------------------

void address_space::prepare_map()
{
	const region_info *devregion = (m_spacenum == ADDRESS_SPACE_0) ? m_machine.region(m_device.tag()) : NULL;
	UINT32 devregionsize = (devregion != NULL) ? devregion->bytes() : 0;

	// allocate the address map
	m_map = global_alloc(address_map(m_device.baseconfig(), m_spacenum));

	// extract global parameters specified by the map
	m_unmap = (m_map->m_unmapval == 0) ? 0 : ~0;
	if (m_map->m_globalmask != 0)
	{
		m_addrmask = m_map->m_globalmask;
		m_bytemask = address_to_byte_end(m_addrmask);
	}

	// make a pass over the address map, adjusting for the device and getting memory pointers
	for (address_map_entry *entry = m_map->m_entrylist.first(); entry != NULL; entry = entry->next())
	{
		// if we have a share entry, add it to our map
		if (entry->m_share != NULL)
			m_machine.memory_data->sharemap.add(entry->m_share, UNMAPPED_SHARE_PTR, false);

		// computed adjusted addresses first
		entry->m_bytestart = entry->m_addrstart;
		entry->m_byteend = entry->m_addrend;
		entry->m_bytemirror = entry->m_addrmirror;
		entry->m_bytemask = entry->m_addrmask;
		adjust_addresses(entry->m_bytestart, entry->m_byteend, entry->m_bytemask, entry->m_bytemirror);

		// if this is a ROM handler without a specified region, attach it to the implicit region
		if (m_spacenum == ADDRESS_SPACE_0 && entry->m_read.m_type == AMH_ROM && entry->m_region == NULL)
		{
			// make sure it fits within the memory region before doing so, however
			if (entry->m_byteend < devregionsize)
			{
				entry->m_region = m_device.tag();
				entry->m_rgnoffs = entry->m_bytestart;
			}
		}

		// validate adjusted addresses against implicit regions
		if (entry->m_region != NULL && entry->m_share == NULL && entry->m_baseptr == NULL)
		{
			const region_info *region = m_machine.region(entry->m_region);
			if (region == NULL)
				fatalerror("Error: device '%s' %s space memory map entry %X-%X references non-existant region \"%s\"", m_device.tag(), m_name, entry->m_addrstart, entry->m_addrend, entry->m_region);

			// validate the region
			if (entry->m_rgnoffs + (entry->m_byteend - entry->m_bytestart + 1) > region->bytes())
				fatalerror("Error: device '%s' %s space memory map entry %X-%X extends beyond region \"%s\" size (%X)", m_device.tag(), m_name, entry->m_addrstart, entry->m_addrend, entry->m_region, region->bytes());
		}

		// convert any region-relative entries to their memory pointers
		if (entry->m_region != NULL)
			entry->m_memory = m_machine.region(entry->m_region)->base() + entry->m_rgnoffs;
	}

	// now loop over all the handlers and enforce the address mask
	read().mask_all_handlers(m_bytemask);
	write().mask_all_handlers(m_bytemask);
}


//-------------------------------------------------
//  populate_from_map - walk the map in reverse
//  order and install the appropriate handler for
//  each case
//-------------------------------------------------

void address_space::populate_from_map()
{
	// no map, nothing to do
	if (m_map == NULL)
		return;

	// install the handlers, using the original, unadjusted memory map
	const address_map_entry *last_entry = NULL;
	while (last_entry != m_map->m_entrylist.first())
	{
		// find the entry before the last one we processed
		const address_map_entry *entry;
		for (entry = m_map->m_entrylist.first(); entry->next() != last_entry; entry = entry->next()) ;
		last_entry = entry;

		// map both read and write halves
		populate_map_entry(*entry, ROW_READ);
		populate_map_entry(*entry, ROW_WRITE);
	}
}


//-------------------------------------------------
//  populate_map_entry - map a single read or
//  write entry based on information from an
//  address map entry
//-------------------------------------------------

void address_space::populate_map_entry(const address_map_entry &entry, read_or_write readorwrite)
{
	const map_handler_data &data = (readorwrite == ROW_READ) ? entry.m_read : entry.m_write;
	bindable_object *object;
	device_t *device;

	// based on the handler type, alter the bits, name, funcptr, and object
	switch (data.m_type)
	{
		case AMH_NONE:
			return;

		case AMH_ROM:
			// writes to ROM are no-ops
			if (readorwrite == ROW_WRITE)
				return;
			// fall through to the RAM case otherwise

		case AMH_RAM:
			install_ram(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, readorwrite);
			break;

		case AMH_NOP:
			unmap(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, readorwrite, true);
			break;

		case AMH_UNMAP:
			unmap(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, readorwrite, false);
			break;

		case AMH_DRIVER_DELEGATE:
		case AMH_DEVICE_DELEGATE:
			if (data.m_type == AMH_DRIVER_DELEGATE)
			{
				object = m_machine.driver_data<driver_device>();
				if (object == NULL)
					throw emu_fatalerror("Attempted to map a driver delegate in space %s of device '%s' when there is no driver data\n", m_name, m_device.tag());
			}
			else
			{
				object = m_machine.device(data.m_tag);
				if (object == NULL)
					throw emu_fatalerror("Attempted to map a non-existent device '%s' in space %s of device '%s'\n", data.m_tag, m_name, m_device.tag());
			}

			if (readorwrite == ROW_READ)
				switch (data.m_bits)
				{
					case 8:		install_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, read8_delegate(entry.m_rproto8, *object), data.m_mask);		break;
					case 16:	install_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, read16_delegate(entry.m_rproto16, *object), data.m_mask);		break;
					case 32:	install_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, read32_delegate(entry.m_rproto32, *object), data.m_mask);		break;
					case 64:	install_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, read64_delegate(entry.m_rproto64, *object), data.m_mask);		break;
				}
			else
				switch (data.m_bits)
				{
					case 8:		install_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, write8_delegate(entry.m_wproto8, *object), data.m_mask);		break;
					case 16:	install_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, write16_delegate(entry.m_wproto16, *object), data.m_mask);	break;
					case 32:	install_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, write32_delegate(entry.m_wproto32, *object), data.m_mask);	break;
					case 64:	install_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, write64_delegate(entry.m_wproto64, *object), data.m_mask);	break;
				}
			break;

		case AMH_LEGACY_SPACE_HANDLER:
			if (readorwrite == ROW_READ)
				switch (data.m_bits)
				{
					case 8:		install_legacy_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_rspace8, data.m_name, data.m_mask);	break;
					case 16:	install_legacy_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_rspace16, data.m_name, data.m_mask);	break;
					case 32:	install_legacy_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_rspace32, data.m_name, data.m_mask);	break;
					case 64:	install_legacy_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_rspace64, data.m_name, data.m_mask);	break;
				}
			else
				switch (data.m_bits)
				{
					case 8:		install_legacy_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_wspace8, data.m_name, data.m_mask);	break;
					case 16:	install_legacy_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_wspace16, data.m_name, data.m_mask);	break;
					case 32:	install_legacy_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_wspace32, data.m_name, data.m_mask);	break;
					case 64:	install_legacy_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_wspace64, data.m_name, data.m_mask);	break;
				}
			break;

		case AMH_LEGACY_DEVICE_HANDLER:
			device = m_machine.device(data.m_tag);
			if (device == NULL)
				fatalerror("Attempted to map a non-existent device '%s' in space %s of device '%s'\n", data.m_tag, m_name, m_device.tag());

			if (readorwrite == ROW_READ)
				switch (data.m_bits)
				{
					case 8:		install_legacy_handler(*device, entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_rdevice8, data.m_name, data.m_mask);	break;
					case 16:	install_legacy_handler(*device, entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_rdevice16, data.m_name, data.m_mask);	break;
					case 32:	install_legacy_handler(*device, entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_rdevice32, data.m_name, data.m_mask);	break;
					case 64:	install_legacy_handler(*device, entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_rdevice64, data.m_name, data.m_mask);	break;
				}
			else
				switch (data.m_bits)
				{
					case 8:		install_legacy_handler(*device, entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_wdevice8, data.m_name, data.m_mask);	break;
					case 16:	install_legacy_handler(*device, entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_wdevice16, data.m_name, data.m_mask);	break;
					case 32:	install_legacy_handler(*device, entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_wdevice32, data.m_name, data.m_mask);	break;
					case 64:	install_legacy_handler(*device, entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_wdevice64, data.m_name, data.m_mask);	break;
				}
			break;

		case AMH_PORT:
			install_port(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror,
							(readorwrite == ROW_READ) ? data.m_tag : NULL,
							(readorwrite == ROW_WRITE) ? data.m_tag : NULL);
			break;

		case AMH_BANK:
			install_bank(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror,
							(readorwrite == ROW_READ) ? data.m_tag : NULL,
							(readorwrite == ROW_WRITE) ? data.m_tag : NULL);
			break;
	}
}


//-------------------------------------------------
//  allocate_memory - determine all neighboring
//  address ranges and allocate memory to back
//  them
//-------------------------------------------------

void address_space::allocate_memory()
{
	simple_list<memory_block> &blocklist = m_machine.memory_data->blocklist;

	// make a first pass over the memory map and track blocks with hardcoded pointers
	// we do this to make sure they are found by space_find_backing_memory first
	memory_block *prev_memblock_tail = blocklist.last();
	for (address_map_entry *entry = m_map->m_entrylist.first(); entry != NULL; entry = entry->next())
		if (entry->m_memory != NULL)
			blocklist.append(*auto_alloc(&m_machine, memory_block(*this, entry->m_bytestart, entry->m_byteend, entry->m_memory)));

	// loop over all blocks just allocated and assign pointers from them
	address_map_entry *unassigned = NULL;
	memory_block *first_new_block = (prev_memblock_tail != NULL) ? prev_memblock_tail->next() : blocklist.first();
	for (memory_block *memblock = first_new_block; memblock != NULL; memblock = memblock->next())
		unassigned = block_assign_intersecting(memblock->bytestart(), memblock->byteend(), memblock->data());

	// if we don't have an unassigned pointer yet, try to find one
	if (unassigned == NULL)
		unassigned = block_assign_intersecting(~0, 0, NULL);

	// loop until we've assigned all memory in this space
	while (unassigned != NULL)
	{
		// work in MEMORY_BLOCK_CHUNK-sized chunks
		offs_t curblockstart = unassigned->m_bytestart / MEMORY_BLOCK_CHUNK;
		offs_t curblockend = unassigned->m_byteend / MEMORY_BLOCK_CHUNK;

		// loop while we keep finding unassigned blocks in neighboring MEMORY_BLOCK_CHUNK chunks
		bool changed;
		do
		{
			changed = false;

			// scan for unmapped blocks in the adjusted map
			for (address_map_entry *entry = m_map->m_entrylist.first(); entry != NULL; entry = entry->next())
				if (entry->m_memory == NULL && entry != unassigned && needs_backing_store(entry))
				{
					// get block start/end blocks for this block
					offs_t blockstart = entry->m_bytestart / MEMORY_BLOCK_CHUNK;
					offs_t blockend = entry->m_byteend / MEMORY_BLOCK_CHUNK;

					// if we intersect or are adjacent, adjust the start/end
					if (blockstart <= curblockend + 1 && blockend >= curblockstart - 1)
					{
						if (blockstart < curblockstart)
							curblockstart = blockstart, changed = true;
						if (blockend > curblockend)
							curblockend = blockend, changed = true;
					}
				}
		} while (changed);

		// we now have a block to allocate; do it
		offs_t curbytestart = curblockstart * MEMORY_BLOCK_CHUNK;
		offs_t curbyteend = curblockend * MEMORY_BLOCK_CHUNK + (MEMORY_BLOCK_CHUNK - 1);
		memory_block &block = blocklist.append(*auto_alloc(&m_machine, memory_block(*this, curbytestart, curbyteend)));

		// assign memory that intersected the new block
		unassigned = block_assign_intersecting(curbytestart, curbyteend, block.data());
	}
}


//-------------------------------------------------
//  locate_memory - find all the requested
//  pointers into the final allocated memory
//-------------------------------------------------

void address_space::locate_memory()
{
	// fill in base/size entries
	for (const address_map_entry *entry = m_map->m_entrylist.first(); entry != NULL; entry = entry->next())
	{
		if (entry->m_baseptr != NULL)
			*entry->m_baseptr = entry->m_memory;
		if (entry->m_baseptroffs_plus1 != 0)
			*(void **)(reinterpret_cast<UINT8 *>(m_machine.driver_data<void>()) + entry->m_baseptroffs_plus1 - 1) = entry->m_memory;
		if (entry->m_genbaseptroffs_plus1 != 0)
			*(void **)((UINT8 *)&m_machine.generic + entry->m_genbaseptroffs_plus1 - 1) = entry->m_memory;
		if (entry->m_sizeptr != NULL)
			*entry->m_sizeptr = entry->m_byteend - entry->m_bytestart + 1;
		if (entry->m_sizeptroffs_plus1 != 0)
			*(size_t *)(reinterpret_cast<UINT8 *>(m_machine.driver_data<void>()) + entry->m_sizeptroffs_plus1 - 1) = entry->m_byteend - entry->m_bytestart + 1;
		if (entry->m_gensizeptroffs_plus1 != 0)
			*(size_t *)((UINT8 *)&m_machine.generic + entry->m_gensizeptroffs_plus1 - 1) = entry->m_byteend - entry->m_bytestart + 1;
	}

	// once this is done, find the starting bases for the banks
	for (memory_bank *bank = m_machine.memory_data->banklist.first(); bank != NULL; bank = bank->next())
		if (bank->base() == NULL && bank->references_space(*this, ROW_READWRITE))
		{
			// set the initial bank pointer
			for (address_map_entry *entry = m_map->m_entrylist.first(); entry != NULL; entry = entry->next())
				if (entry->m_bytestart == bank->bytestart() && entry->m_memory != NULL)
				{
					bank->set_base(entry->m_memory);
					VPRINTF(("assigned bank '%s' pointer to memory from range %08X-%08X [%p]\n", bank->tag(), entry->m_addrstart, entry->m_addrend, entry->m_memory));
					break;
				}

			// if the entry was set ahead of time, override the automatically found pointer
			if (!bank->anonymous() && bank->entry() != BANK_ENTRY_UNSPECIFIED)
				bank->set_entry(bank->entry());
		}
}


//-------------------------------------------------
//  set_decrypted_region - registers an address
//  range as having a decrypted data pointer
//-------------------------------------------------

void address_space::set_decrypted_region(offs_t addrstart, offs_t addrend, void *base)
{
	offs_t bytestart = address_to_byte(addrstart);
	offs_t byteend = address_to_byte_end(addrend);
	bool found = false;

	// loop over banks looking for a match
	for (memory_bank *bank = m_machine.memory_data->banklist.first(); bank != NULL; bank = bank->next())
	{
		// consider this bank if it is used for reading and matches the address space
		if (bank->references_space(*this, ROW_READ))
		{
			// verify that the provided range fully covers this bank
			if (bank->is_covered_by(bytestart, byteend))
			{
				// set the decrypted pointer for the corresponding memory bank
				bank->set_base_decrypted(reinterpret_cast<UINT8 *>(base) + bank->bytestart() - bytestart);
				found = true;
			}

			// fatal error if the decrypted region straddles the bank
			else if (bank->straddles(bytestart, byteend))
				throw emu_fatalerror("memory_set_decrypted_region found straddled region %08X-%08X for device '%s'", bytestart, byteend, m_device.tag());
		}
	}

	// fatal error as well if we didn't find any relevant memory banks
	if (!found)
		throw emu_fatalerror("memory_set_decrypted_region unable to find matching region %08X-%08X for device '%s'", bytestart, byteend, m_device.tag());
}


//-------------------------------------------------
//  block_assign_intersecting - find all
//  intersecting blocks and assign their pointers
//-------------------------------------------------

address_map_entry *address_space::block_assign_intersecting(offs_t bytestart, offs_t byteend, UINT8 *base)
{
	memory_private *memdata = m_machine.memory_data;
	address_map_entry *unassigned = NULL;

	// loop over the adjusted map and assign memory to any blocks we can
	for (address_map_entry *entry = m_map->m_entrylist.first(); entry != NULL; entry = entry->next())
	{
		// if we haven't assigned this block yet, see if we have a mapped shared pointer for it
		if (entry->m_memory == NULL && entry->m_share != NULL)
		{
			void *shareptr = memdata->sharemap.find(entry->m_share);
			if (shareptr != UNMAPPED_SHARE_PTR)
			{
				entry->m_memory = shareptr;
				VPRINTF(("memory range %08X-%08X -> shared_ptr '%s' [%p]\n", entry->m_addrstart, entry->m_addrend, entry->m_share, entry->m_memory));
			}
		}

		// otherwise, look for a match in this block
		if (entry->m_memory == NULL && entry->m_bytestart >= bytestart && entry->m_byteend <= byteend)
		{
			entry->m_memory = base + (entry->m_bytestart - bytestart);
			VPRINTF(("memory range %08X-%08X -> found in block from %08X-%08X [%p]\n", entry->m_addrstart, entry->m_addrend, bytestart, byteend, entry->m_memory));
		}

		// if we're the first match on a shared pointer, assign it now
		if (entry->m_memory != NULL && entry->m_share != NULL)
		{
			void *shareptr = memdata->sharemap.find(entry->m_share);
			if (shareptr == UNMAPPED_SHARE_PTR)
				memdata->sharemap.add(entry->m_share, entry->m_memory, TRUE);
		}

		// keep track of the first unassigned entry
		if (entry->m_memory == NULL && unassigned == NULL && needs_backing_store(entry))
			unassigned = entry;
	}

	return unassigned;
}


//-------------------------------------------------
//  get_handler_string - return a string
//  describing the handler at a particular offset
//-------------------------------------------------

const char *address_space::get_handler_string(read_or_write readorwrite, offs_t byteaddress)
{
	if (readorwrite == ROW_READ)
		return read().handler_name(read().lookup(byteaddress));
	else
		return write().handler_name(write().lookup(byteaddress));
}


//-------------------------------------------------
//  dump_map - dump the contents of a single
//  address space
//-------------------------------------------------

void address_space::dump_map(FILE *file, read_or_write readorwrite)
{
	const address_table &table = (readorwrite == ROW_READ) ? static_cast<address_table &>(read()) : static_cast<address_table &>(write());

	// dump generic information
	fprintf(file, "  Address bits = %d\n", m_config.m_addrbus_width);
	fprintf(file, "     Data bits = %d\n", m_config.m_databus_width);
	fprintf(file, "  Address mask = %X\n", m_bytemask);
	fprintf(file, "\n");

	// iterate over addresses
	offs_t bytestart, byteend;
	for (offs_t byteaddress = 0; byteaddress <= m_bytemask; byteaddress = byteend)
	{
		UINT8 entry = table.derive_range(byteaddress, bytestart, byteend);
		fprintf(file, "%08X-%08X    = %02X: %s [offset=%08X]\n",
						bytestart, byteend, entry, table.handler_name(entry), table.handler(entry).bytestart());
		if (++byteend == 0)
			break;
	}
}


//**************************************************************************
//  DYNAMIC ADDRESS SPACE MAPPING
//**************************************************************************

//-------------------------------------------------
//  unmap - unmap a section of address space
//-------------------------------------------------

void address_space::unmap(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read_or_write readorwrite, bool quiet)
{
	VPRINTF(("address_space::unmap(%s-%s mask=%s mirror=%s, %s, %s)\n",
			 core_i64_hex_format(addrstart, m_addrchars), core_i64_hex_format(addrend, m_addrchars),
			 core_i64_hex_format(addrmask, m_addrchars), core_i64_hex_format(addrmirror, m_addrchars),
			 (readorwrite == ROW_READ) ? "read" : (readorwrite == ROW_WRITE) ? "write" : (readorwrite == ROW_READWRITE) ? "read/write" : "??",
			 quiet ? "quiet" : "normal"));

	// read space
	if (readorwrite == ROW_READ || readorwrite == ROW_READWRITE)
		read().map_range(addrstart, addrend, addrmask, addrmirror, quiet ? STATIC_NOP : STATIC_UNMAP);

	// write space
	if (readorwrite == ROW_WRITE || readorwrite == ROW_READWRITE)
		write().map_range(addrstart, addrend, addrmask, addrmirror, quiet ? STATIC_NOP : STATIC_UNMAP);
}


//-------------------------------------------------
//  install_port - install a new I/O port handler
//  into this address space
//-------------------------------------------------

void address_space::install_port(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, const char *rtag, const char *wtag)
{
	VPRINTF(("address_space::install_port(%s-%s mask=%s mirror=%s, read=\"%s\" / write=\"%s\")\n",
			 core_i64_hex_format(addrstart, m_addrchars), core_i64_hex_format(addrend, m_addrchars),
			 core_i64_hex_format(addrmask, m_addrchars), core_i64_hex_format(addrmirror, m_addrchars),
			 (rtag != NULL) ? rtag : "(none)", (wtag != NULL) ? wtag : "(none)"));

	// read handler
	if (rtag != NULL)
	{
		// find the port
		const input_port_config *port = m_machine.port(rtag);
		if (port == NULL)
			throw emu_fatalerror("Attempted to map non-existent port '%s' for read in space %s of device '%s'\n", rtag, m_name, m_device.tag());

		// map the range and set the ioport
		UINT32 entry = read().map_range(addrstart, addrend, addrmask, addrmirror);
		read().handler_read(entry).set_ioport(*port);
	}

	if (wtag != NULL)
	{
		// find the port
		const input_port_config *port = m_machine.port(wtag);
		if (port == NULL)
			fatalerror("Attempted to map non-existent port '%s' for write in space %s of device '%s'\n", wtag, m_name, m_device.tag());

		// map the range and set the ioport
		UINT32 entry = write().map_range(addrstart, addrend, addrmask, addrmirror);
		write().handler_write(entry).set_ioport(*port);
	}

	// update the memory dump
	generate_memdump(&m_machine);
}


//-------------------------------------------------
//  install_bank - install a range as mapping to
//  a particular bank
//-------------------------------------------------

void address_space::install_bank(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, const char *rtag, const char *wtag)
{
	VPRINTF(("address_space::install_bank(%s-%s mask=%s mirror=%s, read=\"%s\" / write=\"%s\")\n",
			 core_i64_hex_format(addrstart, m_addrchars), core_i64_hex_format(addrend, m_addrchars),
			 core_i64_hex_format(addrmask, m_addrchars), core_i64_hex_format(addrmirror, m_addrchars),
			 (rtag != NULL) ? rtag : "(none)", (wtag != NULL) ? wtag : "(none)"));

	// map the read bank
	if (rtag != NULL)
	{
		memory_bank &bank = bank_find_or_allocate(rtag, addrstart, addrend, addrmask, addrmirror, ROW_READ);
		read().map_range(addrstart, addrend, addrmask, addrmirror, bank.index());
	}

	// map the write bank
	if (wtag != NULL)
	{
		memory_bank &bank = bank_find_or_allocate(wtag, addrstart, addrend, addrmask, addrmirror, ROW_WRITE);
		write().map_range(addrstart, addrend, addrmask, addrmirror, bank.index());
	}

	// update the memory dump
	generate_memdump(&m_machine);
}


//-------------------------------------------------
//  install_ram - install a simple fixed RAM
//  region into the given address space
//-------------------------------------------------

void *address_space::install_ram(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read_or_write readorwrite, void *baseptr)
{
	memory_private *memdata = m_machine.memory_data;

	VPRINTF(("address_space::install_ram(%s-%s mask=%s mirror=%s, %s, %p)\n",
			 core_i64_hex_format(addrstart, m_addrchars), core_i64_hex_format(addrend, m_addrchars),
			 core_i64_hex_format(addrmask, m_addrchars), core_i64_hex_format(addrmirror, m_addrchars),
			 (readorwrite == ROW_READ) ? "read" : (readorwrite == ROW_WRITE) ? "write" : (readorwrite == ROW_READWRITE) ? "read/write" : "??",
			 baseptr));

	// map for read
	if (readorwrite == ROW_READ || readorwrite == ROW_READWRITE)
	{
		// find a bank and map it
		memory_bank &bank = bank_find_or_allocate(NULL, addrstart, addrend, addrmask, addrmirror, ROW_READ);
		read().map_range(addrstart, addrend, addrmask, addrmirror, bank.index());

		// if we are provided a pointer, set it
		if (baseptr != NULL)
			bank.set_base(baseptr);

		// if we don't have a bank pointer yet, try to find one
		if (bank.base() == NULL)
		{
			void *backing = find_backing_memory(addrstart, addrend);
			if (backing != NULL)
				bank.set_base(backing);
		}

		// if we still don't have a pointer, and we're past the initialization phase, allocate a new block
		if (bank.base() == NULL && memdata->initialized)
		{
			if (m_machine.phase() >= MACHINE_PHASE_RESET)
				fatalerror("Attempted to call memory_install_ram() after initialization time without a baseptr!");
			memory_block &block = memdata->blocklist.append(*auto_alloc(&m_machine, memory_block(*this, address_to_byte(addrstart), address_to_byte_end(addrend))));
			bank.set_base(block.data());
		}
	}

	// map for write
	if (readorwrite == ROW_WRITE || readorwrite == ROW_READWRITE)
	{
		// find a bank and map it
		memory_bank &bank = bank_find_or_allocate(NULL, addrstart, addrend, addrmask, addrmirror, ROW_WRITE);
		write().map_range(addrstart, addrend, addrmask, addrmirror, bank.index());

		// if we are provided a pointer, set it
		if (baseptr != NULL)
			bank.set_base(baseptr);

		// if we don't have a bank pointer yet, try to find one
		if (bank.base() == NULL)
		{
			void *backing = find_backing_memory(addrstart, addrend);
			if (backing != NULL)
				bank.set_base(backing);
		}

		// if we still don't have a pointer, and we're past the initialization phase, allocate a new block
		if (bank.base() == NULL && memdata->initialized)
		{
			if (m_machine.phase() >= MACHINE_PHASE_RESET)
				fatalerror("Attempted to call memory_install_ram() after initialization time without a baseptr!");
			memory_block &block = memdata->blocklist.append(*auto_alloc(&m_machine, memory_block(*this, address_to_byte(addrstart), address_to_byte_end(addrend))));
			bank.set_base(block.data());
		}
	}

	return (void *)find_backing_memory(addrstart, addrend);
}


//-------------------------------------------------
//  install_handler - install 8-bit read/write
//  delegate handlers for the space
//-------------------------------------------------

UINT8 *address_space::install_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read8_delegate handler, UINT64 unitmask)
{
	VPRINTF(("address_space::install_handler(%s-%s mask=%s mirror=%s, %s, %s)\n",
			 core_i64_hex_format(addrstart, m_addrchars), core_i64_hex_format(addrend, m_addrchars),
			 core_i64_hex_format(addrmask, m_addrchars), core_i64_hex_format(addrmirror, m_addrchars),
			 handler.name(), core_i64_hex_format(unitmask, data_width() / 4)));

	UINT32 entry = read().map_range(addrstart, addrend, addrmask, addrmirror);
	read().handler_read(entry).set_delegate(handler, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT8 *>(find_backing_memory(addrstart, addrend));
}

UINT8 *address_space::install_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, write8_delegate handler, UINT64 unitmask)
{
	VPRINTF(("address_space::install_handler(%s-%s mask=%s mirror=%s, %s, %s)\n",
			 core_i64_hex_format(addrstart, m_addrchars), core_i64_hex_format(addrend, m_addrchars),
			 core_i64_hex_format(addrmask, m_addrchars), core_i64_hex_format(addrmirror, m_addrchars),
			 handler.name(), core_i64_hex_format(unitmask, data_width() / 4)));

	UINT32 entry = write().map_range(addrstart, addrend, addrmask, addrmirror);
	write().handler_write(entry).set_delegate(handler, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT8 *>(find_backing_memory(addrstart, addrend));
}

UINT8 *address_space::install_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read8_delegate rhandler, write8_delegate whandler, UINT64 unitmask)
{
	install_handler(addrstart, addrend, addrmask, addrmirror, rhandler, unitmask);
	return install_handler(addrstart, addrend, addrmask, addrmirror, whandler, unitmask);
}


//-------------------------------------------------
//  install_legacy_handler - install 8-bit read/
//  write legacy address space handlers for the
//  space
//-------------------------------------------------

UINT8 *address_space::install_legacy_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read8_space_func rhandler, const char *rname, UINT64 unitmask)
{
	VPRINTF(("address_space::install_legacy_handler(%s-%s mask=%s mirror=%s, %s, %s) [read8]\n",
			 core_i64_hex_format(addrstart, m_addrchars), core_i64_hex_format(addrend, m_addrchars),
			 core_i64_hex_format(addrmask, m_addrchars), core_i64_hex_format(addrmirror, m_addrchars),
			 rname, core_i64_hex_format(unitmask, data_width() / 4)));

	UINT32 entry = read().map_range(addrstart, addrend, addrmask, addrmirror);
	read().handler_read(entry).set_legacy_func(*this, rhandler, rname, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT8 *>(find_backing_memory(addrstart, addrend));
}

UINT8 *address_space::install_legacy_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, write8_space_func whandler, const char *wname, UINT64 unitmask)
{
	VPRINTF(("address_space::install_legacy_handler(%s-%s mask=%s mirror=%s, %s, %s) [write8]\n",
			 core_i64_hex_format(addrstart, m_addrchars), core_i64_hex_format(addrend, m_addrchars),
			 core_i64_hex_format(addrmask, m_addrchars), core_i64_hex_format(addrmirror, m_addrchars),
			 wname, core_i64_hex_format(unitmask, data_width() / 4)));

	UINT32 entry = write().map_range(addrstart, addrend, addrmask, addrmirror);
	write().handler_write(entry).set_legacy_func(*this, whandler, wname, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT8 *>(find_backing_memory(addrstart, addrend));
}

UINT8 *address_space::install_legacy_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read8_space_func rhandler, const char *rname, write8_space_func whandler, const char *wname, UINT64 unitmask)
{
	install_legacy_handler(addrstart, addrend, addrmask, addrmirror, rhandler, rname, unitmask);
	return install_legacy_handler(addrstart, addrend, addrmask, addrmirror, whandler, wname, unitmask);
}


//-------------------------------------------------
//  install_legacy_handler - install 8-bit read/
//  write legacy device handlers for the space
//-------------------------------------------------

UINT8 *address_space::install_legacy_handler(device_t &device, offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read8_device_func rhandler, const char *rname, UINT64 unitmask)
{
	VPRINTF(("address_space::install_legacy_handler(%s-%s mask=%s mirror=%s, %s, %s, \"%s\") [read8]\n",
			 core_i64_hex_format(addrstart, m_addrchars), core_i64_hex_format(addrend, m_addrchars),
			 core_i64_hex_format(addrmask, m_addrchars), core_i64_hex_format(addrmirror, m_addrchars),
			 rname, core_i64_hex_format(unitmask, data_width() / 4), device.tag()));

	UINT32 entry = read().map_range(addrstart, addrend, addrmask, addrmirror);
	read().handler_read(entry).set_legacy_func(device, rhandler, rname, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT8 *>(find_backing_memory(addrstart, addrend));
}

UINT8 *address_space::install_legacy_handler(device_t &device, offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, write8_device_func whandler, const char *wname, UINT64 unitmask)
{
	VPRINTF(("address_space::install_legacy_handler(%s-%s mask=%s mirror=%s, %s, %s, \"%s\") [write8]\n",
			 core_i64_hex_format(addrstart, m_addrchars), core_i64_hex_format(addrend, m_addrchars),
			 core_i64_hex_format(addrmask, m_addrchars), core_i64_hex_format(addrmirror, m_addrchars),
			 wname, core_i64_hex_format(unitmask, data_width() / 4), device.tag()));

	UINT32 entry = write().map_range(addrstart, addrend, addrmask, addrmirror);
	write().handler_write(entry).set_legacy_func(device, whandler, wname, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT8 *>(find_backing_memory(addrstart, addrend));
}

UINT8 *address_space::install_legacy_handler(device_t &device, offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read8_device_func rhandler, const char *rname, write8_device_func whandler, const char *wname, UINT64 unitmask)
{
	install_legacy_handler(device, addrstart, addrend, addrmask, addrmirror, rhandler, rname, unitmask);
	return install_legacy_handler(device, addrstart, addrend, addrmask, addrmirror, whandler, wname, unitmask);
}


//-------------------------------------------------
//  install_handler - install 16-bit read/write
//  delegate handlers for the space
//-------------------------------------------------

UINT16 *address_space::install_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read16_delegate handler, UINT64 unitmask)
{
	UINT32 entry = read().map_range(addrstart, addrend, addrmask, addrmirror);
	read().handler_read(entry).set_delegate(handler, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT16 *>(find_backing_memory(addrstart, addrend));
}

UINT16 *address_space::install_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, write16_delegate handler, UINT64 unitmask)
{
	UINT32 entry = write().map_range(addrstart, addrend, addrmask, addrmirror);
	write().handler_write(entry).set_delegate(handler, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT16 *>(find_backing_memory(addrstart, addrend));
}

UINT16 *address_space::install_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read16_delegate rhandler, write16_delegate whandler, UINT64 unitmask)
{
	install_handler(addrstart, addrend, addrmask, addrmirror, rhandler, unitmask);
	return install_handler(addrstart, addrend, addrmask, addrmirror, whandler, unitmask);
}


//-------------------------------------------------
//  install_legacy_handler - install 16-bit read/
//  write legacy address space handlers for the
//  space
//-------------------------------------------------

UINT16 *address_space::install_legacy_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read16_space_func rhandler, const char *rname, UINT64 unitmask)
{
	UINT32 entry = read().map_range(addrstart, addrend, addrmask, addrmirror);
	read().handler_read(entry).set_legacy_func(*this, rhandler, rname, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT16 *>(find_backing_memory(addrstart, addrend));
}

UINT16 *address_space::install_legacy_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, write16_space_func whandler, const char *wname, UINT64 unitmask)
{
	UINT32 entry = write().map_range(addrstart, addrend, addrmask, addrmirror);
	write().handler_write(entry).set_legacy_func(*this, whandler, wname, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT16 *>(find_backing_memory(addrstart, addrend));
}

UINT16 *address_space::install_legacy_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read16_space_func rhandler, const char *rname, write16_space_func whandler, const char *wname, UINT64 unitmask)
{
	install_legacy_handler(addrstart, addrend, addrmask, addrmirror, rhandler, rname, unitmask);
	return install_legacy_handler(addrstart, addrend, addrmask, addrmirror, whandler, wname, unitmask);
}


//-------------------------------------------------
//  install_legacy_handler - install 16-bit read/
//  write legacy device handlers for the space
//-------------------------------------------------

UINT16 *address_space::install_legacy_handler(device_t &device, offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read16_device_func rhandler, const char *rname, UINT64 unitmask)
{
	UINT32 entry = read().map_range(addrstart, addrend, addrmask, addrmirror);
	read().handler_read(entry).set_legacy_func(device, rhandler, rname, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT16 *>(find_backing_memory(addrstart, addrend));
}

UINT16 *address_space::install_legacy_handler(device_t &device, offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, write16_device_func whandler, const char *wname, UINT64 unitmask)
{
	UINT32 entry = write().map_range(addrstart, addrend, addrmask, addrmirror);
	write().handler_write(entry).set_legacy_func(device, whandler, wname, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT16 *>(find_backing_memory(addrstart, addrend));
}

UINT16 *address_space::install_legacy_handler(device_t &device, offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read16_device_func rhandler, const char *rname, write16_device_func whandler, const char *wname, UINT64 unitmask)
{
	install_legacy_handler(device, addrstart, addrend, addrmask, addrmirror, rhandler, rname, unitmask);
	return install_legacy_handler(device, addrstart, addrend, addrmask, addrmirror, whandler, wname, unitmask);
}


//-------------------------------------------------
//  install_handler - install 32-bit read/write
//  delegate handlers for the space
//-------------------------------------------------

UINT32 *address_space::install_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read32_delegate handler, UINT64 unitmask)
{
	UINT32 entry = read().map_range(addrstart, addrend, addrmask, addrmirror);
	read().handler_read(entry).set_delegate(handler, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT32 *>(find_backing_memory(addrstart, addrend));
}

UINT32 *address_space::install_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, write32_delegate handler, UINT64 unitmask)
{
	UINT32 entry = write().map_range(addrstart, addrend, addrmask, addrmirror);
	write().handler_write(entry).set_delegate(handler, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT32 *>(find_backing_memory(addrstart, addrend));
}

UINT32 *address_space::install_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read32_delegate rhandler, write32_delegate whandler, UINT64 unitmask)
{
	install_handler(addrstart, addrend, addrmask, addrmirror, rhandler, unitmask);
	return install_handler(addrstart, addrend, addrmask, addrmirror, whandler, unitmask);
}


//-------------------------------------------------
//  install_legacy_handler - install 32-bit read/
//  write legacy address space handlers for the
//  space
//-------------------------------------------------

UINT32 *address_space::install_legacy_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read32_space_func rhandler, const char *rname, UINT64 unitmask)
{
	UINT32 entry = read().map_range(addrstart, addrend, addrmask, addrmirror);
	read().handler_read(entry).set_legacy_func(*this, rhandler, rname, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT32 *>(find_backing_memory(addrstart, addrend));
}

UINT32 *address_space::install_legacy_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, write32_space_func whandler, const char *wname, UINT64 unitmask)
{
	UINT32 entry = write().map_range(addrstart, addrend, addrmask, addrmirror);
	write().handler_write(entry).set_legacy_func(*this, whandler, wname, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT32 *>(find_backing_memory(addrstart, addrend));
}

UINT32 *address_space::install_legacy_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read32_space_func rhandler, const char *rname, write32_space_func whandler, const char *wname, UINT64 unitmask)
{
	install_legacy_handler(addrstart, addrend, addrmask, addrmirror, rhandler, rname, unitmask);
	return install_legacy_handler(addrstart, addrend, addrmask, addrmirror, whandler, wname, unitmask);
}


//-------------------------------------------------
//  install_legacy_handler - install 32-bit read/
//  write legacy device handlers for the space
//-------------------------------------------------

UINT32 *address_space::install_legacy_handler(device_t &device, offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read32_device_func rhandler, const char *rname, UINT64 unitmask)
{
	UINT32 entry = read().map_range(addrstart, addrend, addrmask, addrmirror);
	read().handler_read(entry).set_legacy_func(device, rhandler, rname, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT32 *>(find_backing_memory(addrstart, addrend));
}

UINT32 *address_space::install_legacy_handler(device_t &device, offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, write32_device_func whandler, const char *wname, UINT64 unitmask)
{
	UINT32 entry = write().map_range(addrstart, addrend, addrmask, addrmirror);
	write().handler_write(entry).set_legacy_func(device, whandler, wname, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT32 *>(find_backing_memory(addrstart, addrend));
}

UINT32 *address_space::install_legacy_handler(device_t &device, offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read32_device_func rhandler, const char *rname, write32_device_func whandler, const char *wname, UINT64 unitmask)
{
	install_legacy_handler(device, addrstart, addrend, addrmask, addrmirror, rhandler, rname, unitmask);
	return install_legacy_handler(device, addrstart, addrend, addrmask, addrmirror, whandler, wname, unitmask);
}


//-------------------------------------------------
//  install_handler64 - install 64-bit read/write
//  delegate handlers for the space
//-------------------------------------------------

UINT64 *address_space::install_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read64_delegate handler, UINT64 unitmask)
{
	UINT32 entry = read().map_range(addrstart, addrend, addrmask, addrmirror);
	read().handler_read(entry).set_delegate(handler, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT64 *>(find_backing_memory(addrstart, addrend));
}

UINT64 *address_space::install_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, write64_delegate handler, UINT64 unitmask)
{
	UINT32 entry = write().map_range(addrstart, addrend, addrmask, addrmirror);
	write().handler_write(entry).set_delegate(handler, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT64 *>(find_backing_memory(addrstart, addrend));
}

UINT64 *address_space::install_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read64_delegate rhandler, write64_delegate whandler, UINT64 unitmask)
{
	install_handler(addrstart, addrend, addrmask, addrmirror, rhandler, unitmask);
	return install_handler(addrstart, addrend, addrmask, addrmirror, whandler, unitmask);
}


//-------------------------------------------------
//  install_legacy_handler - install 64-bit read/
//  write legacy address space handlers for the
//  space
//-------------------------------------------------

UINT64 *address_space::install_legacy_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read64_space_func rhandler, const char *rname, UINT64 unitmask)
{
	UINT32 entry = read().map_range(addrstart, addrend, addrmask, addrmirror);
	read().handler_read(entry).set_legacy_func(*this, rhandler, rname, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT64 *>(find_backing_memory(addrstart, addrend));
}

UINT64 *address_space::install_legacy_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, write64_space_func whandler, const char *wname, UINT64 unitmask)
{
	UINT32 entry = write().map_range(addrstart, addrend, addrmask, addrmirror);
	write().handler_write(entry).set_legacy_func(*this, whandler, wname, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT64 *>(find_backing_memory(addrstart, addrend));
}

UINT64 *address_space::install_legacy_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read64_space_func rhandler, const char *rname, write64_space_func whandler, const char *wname, UINT64 unitmask)
{
	install_legacy_handler(addrstart, addrend, addrmask, addrmirror, rhandler, rname, unitmask);
	return install_legacy_handler(addrstart, addrend, addrmask, addrmirror, whandler, wname, unitmask);
}


//-------------------------------------------------
//  install_legacy_handler - install 64-bit read/
//  write legacy device handlers for the space
//-------------------------------------------------

UINT64 *address_space::install_legacy_handler(device_t &device, offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read64_device_func rhandler, const char *rname, UINT64 unitmask)
{
	UINT32 entry = read().map_range(addrstart, addrend, addrmask, addrmirror);
	read().handler_read(entry).set_legacy_func(device, rhandler, rname, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT64 *>(find_backing_memory(addrstart, addrend));
}

UINT64 *address_space::install_legacy_handler(device_t &device, offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, write64_device_func whandler, const char *wname, UINT64 unitmask)
{
	UINT32 entry = write().map_range(addrstart, addrend, addrmask, addrmirror);
	write().handler_write(entry).set_legacy_func(device, whandler, wname, unitmask);
	generate_memdump(machine);
	return reinterpret_cast<UINT64 *>(find_backing_memory(addrstart, addrend));
}

UINT64 *address_space::install_legacy_handler(device_t &device, offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read64_device_func rhandler, const char *rname, write64_device_func whandler, const char *wname, UINT64 unitmask)
{
	install_legacy_handler(device, addrstart, addrend, addrmask, addrmirror, rhandler, rname, unitmask);
	return install_legacy_handler(device, addrstart, addrend, addrmask, addrmirror, whandler, wname, unitmask);
}



//**************************************************************************
//  INTERNAL INITIALIZATION
//**************************************************************************


//**************************************************************************
//  MEMORY MAPPING HELPERS
//**************************************************************************

//-------------------------------------------------
//  find_backing_memory - return a pointer to
//  the base of RAM associated with the given
//  device and offset
//-------------------------------------------------

void *address_space::find_backing_memory(offs_t addrstart, offs_t addrend)
{
	offs_t bytestart = address_to_byte(addrstart);
	offs_t byteend = address_to_byte_end(addrend);

	VPRINTF(("address_space::find_backing_memory('%s',%s,%08X-%08X) -> ", m_device.tag(), m_name, bytestart, byteend));

	if (m_map == NULL)
		return NULL;

	// look in the address map first
	for (address_map_entry *entry = m_map->m_entrylist.first(); entry != NULL; entry = entry->next())
	{
		offs_t maskstart = bytestart & entry->m_bytemask;
		offs_t maskend = byteend & entry->m_bytemask;
		if (entry->m_memory != NULL && maskstart >= entry->m_bytestart && maskend <= entry->m_byteend)
		{
			VPRINTF(("found in entry %08X-%08X [%p]\n", entry->m_addrstart, entry->m_addrend, (UINT8 *)entry->m_memory + (maskstart - entry->m_bytestart)));
			return (UINT8 *)entry->m_memory + (maskstart - entry->m_bytestart);
		}
	}

	// if not found there, look in the allocated blocks
	for (memory_block *block = m_machine.memory_data->blocklist.first(); block != NULL; block = block->next())
		if (block->contains(*this, bytestart, byteend))
		{
			VPRINTF(("found in allocated memory block %08X-%08X [%p]\n", block->bytestart(), block->byteend(), block->data() + (bytestart - block->bytestart())));
			return block->data() + bytestart - block->bytestart();
		}

	VPRINTF(("did not find\n"));
	return NULL;
}


//-------------------------------------------------
//  space_needs_backing_store - return whether a
//  given memory map entry implies the need of
//  allocating and registering memory
//-------------------------------------------------

bool address_space::needs_backing_store(const address_map_entry *entry)
{
	// if we are asked to provide a base pointer, then yes, we do need backing
	if (entry->m_baseptr != NULL || entry->m_baseptroffs_plus1 != 0 || entry->m_genbaseptroffs_plus1 != 0)
		return true;

	// if we're writing to any sort of bank or RAM, then yes, we do need backing
	if (entry->m_write.m_type == AMH_BANK || entry->m_write.m_type == AMH_RAM)
		return true;

	// if we're reading from RAM or from ROM outside of address space 0 or its region, then yes, we do need backing
	const region_info *region = m_machine.region(m_device.tag());
	if (entry->m_read.m_type == AMH_RAM ||
		(entry->m_read.m_type == AMH_ROM && (m_spacenum != ADDRESS_SPACE_0 || region == NULL || entry->m_addrstart >= region->bytes())))
		return true;

	// all other cases don't need backing
	return false;
}



//**************************************************************************
//  BANKING HELPERS
//**************************************************************************

//-------------------------------------------------
//  bank_find_or_allocate - allocate a new
//  bank, or find an existing one, and return the
//  read/write handler
//-------------------------------------------------

memory_bank &address_space::bank_find_or_allocate(const char *tag, offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read_or_write readorwrite)
{
	memory_private *memdata = m_machine.memory_data;

	// adjust the addresses, handling mirrors and such
	offs_t bytemirror = addrmirror;
	offs_t bytestart = addrstart;
	offs_t bytemask = addrmask;
	offs_t byteend = addrend;
	adjust_addresses(bytestart, byteend, bytemask, bytemirror);

	// if this bank is named, look it up
	memory_bank *bank = NULL;
	if (tag != NULL)
		bank = memdata->bankmap.find_hash_only(tag);

	// else try to find an exact match
	else
		for (bank = memdata->banklist.first(); bank != NULL; bank = bank->next())
			if (bank->anonymous() && bank->references_space(*this, ROW_READWRITE) && bank->matches_exactly(bytestart, byteend))
				break;

	// if we don't have a bank yet, find a free one
	if (bank == NULL)
	{
		// handle failure
		int banknum = memdata->banknext++;
		if (banknum > STATIC_BANKMAX)
		{
			if (tag != NULL)
				throw emu_fatalerror("Unable to allocate new bank '%s'", tag);
			else
				throw emu_fatalerror("Unable to allocate bank for RAM/ROM area %X-%X\n", bytestart, byteend);
		}

		// allocate the bank
		bank = auto_alloc(&m_machine, memory_bank(*this, banknum, bytestart, byteend, tag));
		memdata->banklist.append(*bank);

		// for named banks, add to the map and register for save states
		if (tag != NULL)
			memdata->bankmap.add_unique_hash(tag, bank, false);
	}

	// add a reference for this space
	bank->add_reference(*this, readorwrite);
	return *bank;
}



//**************************************************************************
//  TABLE MANAGEMENT
//**************************************************************************

//-------------------------------------------------
//  address_table - constructor
//-------------------------------------------------

address_table::address_table(address_space &space, bool large)
	: m_table(auto_alloc_array(&space.m_machine, UINT8, 1 << LEVEL1_BITS)),
	  m_live_lookup(m_table),
	  m_space(space),
	  m_large(large),
	  m_subtable(auto_alloc_array(&space.m_machine, subtable_data, SUBTABLE_COUNT)),
	  m_subtable_alloc(0)
{
	// make our static table all watchpoints
	if (s_watchpoint_table[0] != STATIC_WATCHPOINT)
		memset(s_watchpoint_table, STATIC_WATCHPOINT, sizeof(s_watchpoint_table));

	// initialize everything to unmapped
	memset(m_table, STATIC_UNMAP, 1 << LEVEL1_BITS);
}


//-------------------------------------------------
//  ~address_table - destructor
//-------------------------------------------------

address_table::~address_table()
{
	auto_free(&m_space.m_machine, m_table);
	auto_free(&m_space.m_machine, m_subtable);
}


//-------------------------------------------------
//  map_range - finds an approprite handler entry
//  and requests to populate the address map with
//  it
//-------------------------------------------------

UINT8 address_table::map_range(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, UINT8 staticentry)
{
	// convert addresses to bytes
	offs_t bytestart = addrstart;
	offs_t byteend = addrend;
	offs_t bytemask = addrmask;
	offs_t bytemirror = addrmirror;
	m_space.adjust_addresses(bytestart, byteend, bytemask, bytemirror);

	// validity checks
	assert_always(addrstart <= addrend, "address_table::map_range called with start greater than end");
	assert_always((bytestart & (m_space.data_width() / 8 - 1)) == 0, "address_table::map_range called with misaligned start address");
	assert_always((byteend & (m_space.data_width() / 8 - 1)) == (m_space.data_width() / 8 - 1), "address_table::map_range called with misaligned end address");

	// if we weren't given an explicit entry, find a free one
	UINT8 entry = staticentry;
	if (entry == STATIC_INVALID)
	{
		// two attempts to find an empty
		for (int attempt = 0; attempt < 2; attempt++)
		{
			// scan all possible assigned entries for something unpopulated, or for an exact match
			for (UINT8 scanentry = STATIC_COUNT; scanentry < SUBTABLE_BASE; scanentry++)
			{
				handler_entry &curentry = handler(scanentry);

				// exact match takes precedence
				if (curentry.matches_exactly(bytestart, byteend, bytemask))
				{
					entry = scanentry;
					break;
				}

				// unpopulated is our second choice
				if (entry == STATIC_INVALID && !curentry.populated())
					entry = scanentry;
			}

			// if we didn't find anything, find something to depopulate
			if (entry != STATIC_INVALID)
				break;
			depopulate_unused();
		}

		// if we utterly failed, it's fatal
		if (entry == STATIC_INVALID)
			throw emu_fatalerror("Out of handler entries in address table");
	}

	// configure the entry to our parameters
	handler_entry &curentry = handler(entry);
	curentry.configure(bytestart, byteend, bytemask);

	// populate it
	populate_range_mirrored(bytestart, byteend, bytemirror, entry);

	// recompute any direct access on this space if it is a read modification
	m_space.m_direct.force_update(entry);
	return entry;
}


//-------------------------------------------------
//  populate_range - assign a memory handler to a
//  range of addresses
//-------------------------------------------------

void address_table::populate_range(offs_t bytestart, offs_t byteend, UINT8 handlerindex)
{
	offs_t l2mask = (1 << level2_bits()) - 1;
	offs_t l1start = bytestart >> level2_bits();
	offs_t l2start = bytestart & l2mask;
	offs_t l1stop = byteend >> level2_bits();
	offs_t l2stop = byteend & l2mask;

	// sanity check
	if (bytestart > byteend)
		return;

	// handle the starting edge if it's not on a block boundary
	if (l2start != 0)
	{
		UINT8 *subtable = subtable_open(l1start);

		// if the start and stop end within the same block, handle that
		if (l1start == l1stop)
		{
			memset(&subtable[l2start], handlerindex, l2stop - l2start + 1);
			subtable_close(l1start);
			return;
		}

		// otherwise, fill until the end
		memset(&subtable[l2start], handlerindex, (1 << level2_bits()) - l2start);
		subtable_close(l1start);
		if (l1start != (offs_t)~0)
			l1start++;
	}

	// handle the trailing edge if it's not on a block boundary
	if (l2stop != l2mask)
	{
		UINT8 *subtable = subtable_open(l1stop);

		// fill from the beginning
		memset(&subtable[0], handlerindex, l2stop + 1);
		subtable_close(l1stop);

		// if the start and stop end within the same block, handle that
		if (l1start == l1stop)
			return;
		if (l1stop != 0)
			l1stop--;
	}

	// now fill in the middle tables
	for (offs_t l1index = l1start; l1index <= l1stop; l1index++)
	{
		// if we have a subtable here, release it
		if (m_table[l1index] >= SUBTABLE_BASE)
			subtable_release(m_table[l1index]);
		m_table[l1index] = handlerindex;
	}
}


//-------------------------------------------------
//  populate_range_mirrored - assign a memory
//  handler to a range of addresses including
//  mirrors
//-------------------------------------------------

void address_table::populate_range_mirrored(offs_t bytestart, offs_t byteend, offs_t bytemirror, UINT8 handlerindex)
{
	// determine the mirror bits
	offs_t lmirrorbits = 0;
	offs_t lmirrorbit[32];
	for (int bit = 0; bit < level2_bits(); bit++)
		if (bytemirror & (1 << bit))
			lmirrorbit[lmirrorbits++] = 1 << bit;

	offs_t hmirrorbits = 0;
	offs_t hmirrorbit[32];
	for (int bit = level2_bits(); bit < 32; bit++)
		if (bytemirror & (1 << bit))
			hmirrorbit[hmirrorbits++] = 1 << bit;

	// loop over mirrors in the level 2 table
	UINT8 prev_entry = STATIC_INVALID;
	int prev_index = 0;
	for (offs_t hmirrorcount = 0; hmirrorcount < (1 << hmirrorbits); hmirrorcount++)
	{
		// compute the base of this mirror
		offs_t hmirrorbase = 0;
		for (int bit = 0; bit < hmirrorbits; bit++)
			if (hmirrorcount & (1 << bit))
				hmirrorbase |= hmirrorbit[bit];

		// invalidate any intersecting cached ranges
		for (offs_t lmirrorcount = 0; lmirrorcount < (1 << lmirrorbits); lmirrorcount++)
		{
			// compute the base of this mirror
			offs_t lmirrorbase = hmirrorbase;
			for (int bit = 0; bit < lmirrorbits; bit++)
				if (lmirrorcount & (1 << bit))
					lmirrorbase |= lmirrorbit[bit];
			m_space.m_direct.remove_intersecting_ranges(bytestart + lmirrorbase, byteend + lmirrorbase);
		}

		// if this is not our first time through, and the level 2 entry matches the previous
		// level 2 entry, just do a quick map and get out; note that this only works for entries
		// which don't span multiple level 1 table entries
		int cur_index = level1_index(bytestart + hmirrorbase);
		if (cur_index == level1_index(byteend + hmirrorbase))
		{
			if (hmirrorcount != 0 && prev_entry == m_table[cur_index])
			{
				VPRINTF(("Quick mapping subtable at %08X to match subtable at %08X\n", cur_index << level2_bits(), prev_index << level2_bits()));

				// release the subtable if the old value was a subtable
				if (m_table[cur_index] >= SUBTABLE_BASE)
					subtable_release(m_table[cur_index]);

				// reallocate the subtable if the new value is a subtable
				if (m_table[prev_index] >= SUBTABLE_BASE)
					subtable_realloc(m_table[prev_index]);

				// set the new value and short-circuit the mapping step
				m_table[cur_index] = m_table[prev_index];
				continue;
			}
			prev_index = cur_index;
			prev_entry = m_table[cur_index];
		}

		// loop over mirrors in the level 1 table
		for (offs_t lmirrorcount = 0; lmirrorcount < (1 << lmirrorbits); lmirrorcount++)
		{
			// compute the base of this mirror
			offs_t lmirrorbase = hmirrorbase;
			for (int bit = 0; bit < lmirrorbits; bit++)
				if (lmirrorcount & (1 << bit))
					lmirrorbase |= lmirrorbit[bit];

			// populate the tables
			populate_range(bytestart + lmirrorbase, byteend + lmirrorbase, handlerindex);
		}
	}
}


//-------------------------------------------------
//  depopulate_unused - scan the table and
//  eliminate entries that are no longer used
//-------------------------------------------------

void address_table::depopulate_unused()
{
	assert(false);
}


//-------------------------------------------------
//  derive_range - look up the entry for a memory
//  range, and then compute the extent of that
//  range based on the lookup tables
//-------------------------------------------------

UINT8 address_table::derive_range(offs_t byteaddress, offs_t &bytestart, offs_t &byteend) const
{
	// look up the initial address to get the entry we care about
	UINT8 l1entry;
	UINT8 entry = l1entry = m_table[level1_index(byteaddress)];
	if (l1entry >= SUBTABLE_BASE)
		entry = m_table[level2_index(l1entry, byteaddress)];

	// use the bytemask of the entry to set minimum and maximum bounds
	offs_t minscan, maxscan;
	handler(entry).mirrored_start_end(byteaddress, minscan, maxscan);

	// first scan backwards to find the start address
	UINT8 curl1entry = l1entry;
	UINT8 curentry = entry;
	bytestart = byteaddress;
	while (1)
	{
		// if we need to scan the subtable, do it
		if (curentry != curl1entry)
		{
			UINT32 minindex = level2_index(curl1entry, 0);
			UINT32 index;

			// scan backwards from the current address, until the previous entry doesn't match
			for (index = level2_index(curl1entry, bytestart); index > minindex; index--, bytestart -= 1)
				if (m_table[index - 1] != entry)
					break;

			// if we didn't hit the beginning, then we're finished scanning
			if (index != minindex)
				break;
		}

		// move to the beginning of this L1 entry; stop at the minimum address
		bytestart &= ~((1 << level2_bits()) - 1);
		if (bytestart <= minscan)
			break;

		// look up the entry of the byte at the end of the previous L1 entry; if it doesn't match, stop
		curentry = curl1entry = m_table[level1_index(bytestart - 1)];
		if (curl1entry >= SUBTABLE_BASE)
			curentry = m_table[level2_index(curl1entry, bytestart - 1)];
		if (curentry != entry)
			break;

		// move into the previous entry and resume searching
		bytestart -= 1;
	}

	// then scan forwards to find the end address
	curl1entry = l1entry;
	curentry = entry;
	byteend = byteaddress;
	while (1)
	{
		// if we need to scan the subtable, do it
		if (curentry != curl1entry)
		{
			UINT32 maxindex = level2_index(curl1entry, ~0);
			UINT32 index;

			// scan forwards from the current address, until the next entry doesn't match
			for (index = level2_index(curl1entry, byteend); index < maxindex; index++, byteend += 1)
				if (m_table[index + 1] != entry)
					break;

			// if we didn't hit the end, then we're finished scanning
			if (index != maxindex)
				break;
		}

		// move to the end of this L1 entry; stop at the maximum address
		byteend |= (1 << level2_bits()) - 1;
		if (byteend >= maxscan)
			break;

		// look up the entry of the byte at the start of the next L1 entry; if it doesn't match, stop
		curentry = curl1entry = m_table[level1_index(byteend + 1)];
		if (curl1entry >= SUBTABLE_BASE)
			curentry = m_table[level2_index(curl1entry, byteend + 1)];
		if (curentry != entry)
			break;

		// move into the next entry and resume searching
		byteend += 1;
	}

	return entry;
}


//-------------------------------------------------
//  mask_all_handlers - apply a mask to all
//  address handlers
//-------------------------------------------------

void address_table::mask_all_handlers(offs_t mask)
{
	// we don't loop over map entries because the mask applies to static handlers as well
	for (int entrynum = 0; entrynum < ENTRY_COUNT; entrynum++)
		handler(entrynum).apply_mask(mask);
}



//**************************************************************************
//  SUBTABLE MANAGEMENT
//**************************************************************************

//-------------------------------------------------
//  subtable_alloc - allocate a fresh subtable
//  and set its usecount to 1
//-------------------------------------------------

UINT8 address_table::subtable_alloc()
{
	// loop
	while (1)
	{
		// find a subtable with a usecount of 0
		for (UINT8 subindex = 0; subindex < SUBTABLE_COUNT; subindex++)
			if (m_subtable[subindex].m_usecount == 0)
			{
				// if this is past our allocation budget, allocate some more
				if (subindex >= m_subtable_alloc)
				{
					UINT32 oldsize = (1 << LEVEL1_BITS) + (m_subtable_alloc << level2_bits());
					m_subtable_alloc += SUBTABLE_ALLOC;
					UINT32 newsize = (1 << LEVEL1_BITS) + (m_subtable_alloc << level2_bits());

					UINT8 *newtable = auto_alloc_array_clear(&m_space.m_machine, UINT8, newsize);
					memcpy(newtable, m_table, oldsize);
					if (m_live_lookup == m_table)
						m_live_lookup = newtable;
					auto_free(&m_space.m_machine, m_table);
					m_table = newtable;
				}

				// bump the usecount and return
				m_subtable[subindex].m_usecount++;
				return subindex + SUBTABLE_BASE;
			}

		// merge any subtables we can
		if (!subtable_merge())
			fatalerror("Ran out of subtables!");
	}
}


//-------------------------------------------------
//  subtable_realloc - increment the usecount on
//  a subtable
//-------------------------------------------------

void address_table::subtable_realloc(UINT8 subentry)
{
	UINT8 subindex = subentry - SUBTABLE_BASE;

	// sanity check
	if (m_subtable[subindex].m_usecount <= 0)
		fatalerror("Called subtable_realloc on a table with a usecount of 0");

	// increment the usecount
	m_subtable[subindex].m_usecount++;
}


//-------------------------------------------------
//  subtable_merge - merge any duplicate
//  subtables
//-------------------------------------------------

int address_table::subtable_merge()
{
	int merged = 0;
	UINT8 subindex;

	VPRINTF(("Merging subtables....\n"));

	// okay, we failed; update all the checksums and merge tables
	for (subindex = 0; subindex < SUBTABLE_COUNT; subindex++)
		if (!m_subtable[subindex].m_checksum_valid && m_subtable[subindex].m_usecount != 0)
		{
			UINT32 *subtable = reinterpret_cast<UINT32 *>(subtable_ptr(subindex + SUBTABLE_BASE));
			UINT32 checksum = 0;

			// update the checksum
			for (int l2index = 0; l2index < (1 << level2_bits())/4; l2index++)
				checksum += subtable[l2index];
			m_subtable[subindex].m_checksum = checksum;
			m_subtable[subindex].m_checksum_valid = true;
		}

	// see if there's a matching checksum
	for (subindex = 0; subindex < SUBTABLE_COUNT; subindex++)
		if (m_subtable[subindex].m_usecount != 0)
		{
			UINT8 *subtable = subtable_ptr(subindex + SUBTABLE_BASE);
			UINT32 checksum = m_subtable[subindex].m_checksum;
			UINT8 sumindex;

			for (sumindex = subindex + 1; sumindex < SUBTABLE_COUNT; sumindex++)
				if (m_subtable[sumindex].m_usecount != 0 &&
					m_subtable[sumindex].m_checksum == checksum &&
					!memcmp(subtable, subtable_ptr(sumindex + SUBTABLE_BASE), 1 << level2_bits()))
				{
					int l1index;

					VPRINTF(("Merging subtable %d and %d....\n", subindex, sumindex));

					// find all the entries in the L1 tables that pointed to the old one, and point them to the merged table
					for (l1index = 0; l1index <= (0xffffffffUL >> level2_bits()); l1index++)
						if (m_table[l1index] == sumindex + SUBTABLE_BASE)
						{
							subtable_release(sumindex + SUBTABLE_BASE);
							subtable_realloc(subindex + SUBTABLE_BASE);
							m_table[l1index] = subindex + SUBTABLE_BASE;
							merged++;
						}
				}
		}

	return merged;
}


//-------------------------------------------------
//  subtable_release - decrement the usecount on
//  a subtable and free it if we're done
//-------------------------------------------------

void address_table::subtable_release(UINT8 subentry)
{
	UINT8 subindex = subentry - SUBTABLE_BASE;

	// sanity check
	if (m_subtable[subindex].m_usecount <= 0)
		fatalerror("Called subtable_release on a table with a usecount of 0");

	// decrement the usecount and clear the checksum if we're at 0
	m_subtable[subindex].m_usecount--;
	if (m_subtable[subindex].m_usecount == 0)
		m_subtable[subindex].m_checksum = 0;
}


//-------------------------------------------------
//  subtable_open - gain access to a subtable for
//  modification
//-------------------------------------------------

UINT8 *address_table::subtable_open(offs_t l1index)
{
	UINT8 subentry = m_table[l1index];

	// if we don't have a subtable yet, allocate a new one
	if (subentry < SUBTABLE_BASE)
	{
		UINT8 newentry = subtable_alloc();
		memset(subtable_ptr(newentry), subentry, 1 << level2_bits());
		m_table[l1index] = newentry;
		m_subtable[newentry - SUBTABLE_BASE].m_checksum = (subentry + (subentry << 8) + (subentry << 16) + (subentry << 24)) * ((1 << level2_bits())/4);
		subentry = newentry;
	}

	// if we're sharing this subtable, we also need to allocate a fresh copy
	else if (m_subtable[subentry - SUBTABLE_BASE].m_usecount > 1)
	{
		UINT8 newentry = subtable_alloc();

		// allocate may cause some additional merging -- look up the subentry again
		// when we're done; it should still require a split
		subentry = m_table[l1index];
		assert(subentry >= SUBTABLE_BASE);
		assert(m_subtable[subentry - SUBTABLE_BASE].m_usecount > 1);

		memcpy(subtable_ptr(newentry), subtable_ptr(subentry), 1 << level2_bits());
		subtable_release(subentry);
		m_table[l1index] = newentry;
		m_subtable[newentry - SUBTABLE_BASE].m_checksum = m_subtable[subentry - SUBTABLE_BASE].m_checksum;
		subentry = newentry;
	}

	// mark the table dirty
	m_subtable[subentry - SUBTABLE_BASE].m_checksum_valid = false;

	// return the pointer to the subtable
	return subtable_ptr(subentry);
}


//-------------------------------------------------
//  subtable_close - stop access to a subtable
//-------------------------------------------------

void address_table::subtable_close(offs_t l1index)
{
	// defer any merging until we run out of tables
}


//-------------------------------------------------
//  handler_name - return friendly string
//  description of a handler
//-------------------------------------------------

const char *address_table::handler_name(UINT8 entry) const
{
	static const char *const strings[] =
	{
		"invalid",		"bank 1",		"bank 2",		"bank 3",
		"bank 4",		"bank 5",		"bank 6",		"bank 7",
		"bank 8",		"bank 9",		"bank 10",		"bank 11",
		"bank 12",		"bank 13",		"bank 14",		"bank 15",
		"bank 16",		"bank 17",		"bank 18",		"bank 19",
		"bank 20",		"bank 21",		"bank 22",		"bank 23",
		"bank 24",		"bank 25",		"bank 26",		"bank 27",
		"bank 28",		"bank 29",		"bank 30",		"bank 31",
		"bank 32",		"bank 33",		"bank 34",		"bank 35",
		"bank 36",		"bank 37",		"bank 38",		"bank 39",
		"bank 40",		"bank 41",		"bank 42",		"bank 43",
		"bank 44",		"bank 45",		"bank 46",		"bank 47",
		"bank 48",		"bank 49",		"bank 50",		"bank 51",
		"bank 52",		"bank 53",		"bank 54",		"bank 55",
		"bank 56",		"bank 57",		"bank 58",		"bank 59",
		"bank 60",		"bank 61",		"bank 62",		"bank 63",
		"bank 64",		"bank 65",		"bank 66",		"bank 67",
		"bank 68",		"bank 69",		"bank 70",		"bank 71",
		"bank 72",		"bank 73",		"bank 74",		"bank 75",
		"bank 76",		"bank 77",		"bank 78",		"bank 79",
		"bank 80",		"bank 81",		"bank 82",		"bank 83",
		"bank 84",		"bank 85",		"bank 86",		"bank 87",
		"bank 88",		"bank 89",		"bank 90",		"bank 91",
		"bank 92",		"bank 93",		"bank 94",		"bank 95",
		"bank 96",		"bank 97",		"bank 98",		"bank 99",
		"bank 100",		"bank 101",		"bank 102",		"bank 103",
		"bank 104",		"bank 105",		"bank 106",		"bank 107",
		"bank 108",		"bank 109",		"bank 110",		"bank 111",
		"bank 112",		"bank 113",		"bank 114",		"bank 115",
		"bank 116",		"bank 117",		"bank 118",		"bank 119",
		"bank 120",		"bank 121",		"bank 122",		"ram",
		"rom",			"nop",			"unmapped",     "watchpoint"
	};

	// banks have names
	if (entry >= STATIC_BANK1 && entry <= STATIC_BANKMAX)
		for (memory_bank *info = m_space.m_machine.memory_data->banklist.first(); info != NULL; info = info->next())
			if (info->index() == entry)
				return info->name();

	// constant strings for lower entries
	if (entry < ARRAY_LENGTH(strings))
		return strings[entry];
	else if (handler(entry).name() != NULL)
		return handler(entry).name();
	else
		return "???";
}


//-------------------------------------------------
//  address_table_read - constructor
//-------------------------------------------------

address_table_read::address_table_read(address_space &space, bool large)
	: address_table(space, large)
{
	// allocate handlers for each entry, prepopulating the bankptrs for banks
	for (int entrynum = 0; entrynum < ARRAY_LENGTH(m_handlers); entrynum++)
	{
		UINT8 **bankptr = (entrynum >= STATIC_BANK1 && entrynum <= STATIC_BANKMAX) ? &space.m_machine.memory_data->bank_ptr[entrynum] : NULL;
		m_handlers[entrynum] = auto_alloc(&space.m_machine, handler_entry_read(space.data_width(), space.endianness(), bankptr));
	}

	// we have to allocate different object types based on the data bus width
	switch (space.data_width())
	{
		// 8-bit case
		case 8:
			m_handlers[STATIC_UNMAP]->set_delegate(read8_delegate_create(address_table_read, unmap_r<UINT8>, *this));
			m_handlers[STATIC_NOP]->set_delegate(read8_delegate_create(address_table_read, nop_r<UINT8>, *this));
			m_handlers[STATIC_WATCHPOINT]->set_delegate(read8_delegate_create(address_table_read, watchpoint_r<UINT8>, *this));
			break;

		// 16-bit case
		case 16:
			m_handlers[STATIC_UNMAP]->set_delegate(read16_delegate_create(address_table_read, unmap_r<UINT16>, *this));
			m_handlers[STATIC_NOP]->set_delegate(read16_delegate_create(address_table_read, nop_r<UINT16>, *this));
			m_handlers[STATIC_WATCHPOINT]->set_delegate(read16_delegate_create(address_table_read, watchpoint_r<UINT16>, *this));
			break;

		// 32-bit case
		case 32:
			m_handlers[STATIC_UNMAP]->set_delegate(read32_delegate_create(address_table_read, unmap_r<UINT32>, *this));
			m_handlers[STATIC_NOP]->set_delegate(read32_delegate_create(address_table_read, nop_r<UINT32>, *this));
			m_handlers[STATIC_WATCHPOINT]->set_delegate(read32_delegate_create(address_table_read, watchpoint_r<UINT32>, *this));
			break;

		// 64-bit case
		case 64:
			m_handlers[STATIC_UNMAP]->set_delegate(read64_delegate_create(address_table_read, unmap_r<UINT64>, *this));
			m_handlers[STATIC_NOP]->set_delegate(read64_delegate_create(address_table_read, nop_r<UINT64>, *this));
			m_handlers[STATIC_WATCHPOINT]->set_delegate(read64_delegate_create(address_table_read, watchpoint_r<UINT64>, *this));
			break;
	}

	// reset the byte masks on the special handlers to open up the full address space for proper reporting
	m_handlers[STATIC_UNMAP]->configure(0, space.bytemask(), ~0);
	m_handlers[STATIC_NOP]->configure(0, space.bytemask(), ~0);
	m_handlers[STATIC_WATCHPOINT]->configure(0, space.bytemask(), ~0);
}


//-------------------------------------------------
//  address_table_read - destructor
//-------------------------------------------------

address_table_read::~address_table_read()
{
	for (int handnum = 0; handnum < ARRAY_LENGTH(m_handlers); handnum++)
		auto_free(&m_space.m_machine, m_handlers[handnum]);
}


//-------------------------------------------------
//  handler - return the generic handler entry for
//  this index
//-------------------------------------------------

handler_entry &address_table_read::handler(UINT32 index) const
{
	assert(index < ARRAY_LENGTH(m_handlers));
	return *m_handlers[index];
}


//-------------------------------------------------
//  address_table_write - constructor
//-------------------------------------------------

address_table_write::address_table_write(address_space &space, bool large)
	: address_table(space, large)
{
	// allocate handlers for each entry, prepopulating the bankptrs for banks
	for (int entrynum = 0; entrynum < ARRAY_LENGTH(m_handlers); entrynum++)
	{
		UINT8 **bankptr = (entrynum >= STATIC_BANK1 && entrynum <= STATIC_BANKMAX) ? &space.m_machine.memory_data->bank_ptr[entrynum] : NULL;
		m_handlers[entrynum] = auto_alloc(&space.m_machine, handler_entry_write(space.data_width(), space.endianness(), bankptr));
	}

	// we have to allocate different object types based on the data bus width
	switch (space.data_width())
	{
		// 8-bit case
		case 8:
			m_handlers[STATIC_UNMAP]->set_delegate(write8_delegate_create(address_table_write, unmap_w<UINT8>, *this));
			m_handlers[STATIC_NOP]->set_delegate(write8_delegate_create(address_table_write, nop_w<UINT8>, *this));
			m_handlers[STATIC_WATCHPOINT]->set_delegate(write8_delegate_create(address_table_write, watchpoint_w<UINT8>, *this));
			break;

		// 16-bit case
		case 16:
			m_handlers[STATIC_UNMAP]->set_delegate(write16_delegate_create(address_table_write, unmap_w<UINT16>, *this));
			m_handlers[STATIC_NOP]->set_delegate(write16_delegate_create(address_table_write, nop_w<UINT16>, *this));
			m_handlers[STATIC_WATCHPOINT]->set_delegate(write16_delegate_create(address_table_write, watchpoint_w<UINT16>, *this));
			break;

		// 32-bit case
		case 32:
			m_handlers[STATIC_UNMAP]->set_delegate(write32_delegate_create(address_table_write, unmap_w<UINT32>, *this));
			m_handlers[STATIC_NOP]->set_delegate(write32_delegate_create(address_table_write, nop_w<UINT32>, *this));
			m_handlers[STATIC_WATCHPOINT]->set_delegate(write32_delegate_create(address_table_write, watchpoint_w<UINT32>, *this));
			break;

		// 64-bit case
		case 64:
			m_handlers[STATIC_UNMAP]->set_delegate(write64_delegate_create(address_table_write, unmap_w<UINT64>, *this));
			m_handlers[STATIC_NOP]->set_delegate(write64_delegate_create(address_table_write, nop_w<UINT64>, *this));
			m_handlers[STATIC_WATCHPOINT]->set_delegate(write64_delegate_create(address_table_write, watchpoint_w<UINT64>, *this));
			break;
	}

	// reset the byte masks on the special handlers to open up the full address space for proper reporting
	m_handlers[STATIC_UNMAP]->configure(0, space.bytemask(), ~0);
	m_handlers[STATIC_NOP]->configure(0, space.bytemask(), ~0);
	m_handlers[STATIC_WATCHPOINT]->configure(0, space.bytemask(), ~0);
}


//-------------------------------------------------
//  address_table_write - destructor
//-------------------------------------------------

address_table_write::~address_table_write()
{
	for (int handnum = 0; handnum < ARRAY_LENGTH(m_handlers); handnum++)
		auto_free(&m_space.m_machine, m_handlers[handnum]);
}


//-------------------------------------------------
//  handler - return the generic handler entry for
//  this index
//-------------------------------------------------

handler_entry &address_table_write::handler(UINT32 index) const
{
	assert(index < ARRAY_LENGTH(m_handlers));
	return *m_handlers[index];
}



//**************************************************************************
//  DIRECT MEMORY RANGES
//**************************************************************************

//-------------------------------------------------
//  direct_read_data - constructor
//-------------------------------------------------

direct_read_data::direct_read_data(address_space &space)
	: m_space(space),
	  m_raw(NULL),
	  m_decrypted(NULL),
	  m_bytemask(space.bytemask()),
	  m_bytestart(1),
	  m_byteend(0),
	  m_entry(STATIC_UNMAP)
{
}


//-------------------------------------------------
//  ~direct_read_data - destructor
//-------------------------------------------------

direct_read_data::~direct_read_data()
{
}


//-------------------------------------------------
//  set_direct_region - called by device cores to
//  update the opcode base for the given address
//-------------------------------------------------

bool direct_read_data::set_direct_region(offs_t &byteaddress)
{
	// allow overrides
	offs_t overrideaddress = byteaddress;
	if (!m_directupdate.isnull())
	{
		overrideaddress = m_directupdate(*this, overrideaddress);
		if (overrideaddress == ~0)
			return true;

		byteaddress = overrideaddress;
	}

	// remove the masked bits (we'll put them back later)
	offs_t maskedbits = overrideaddress & ~m_bytemask;

	// find or allocate a matching range
	direct_range *range = find_range(overrideaddress, m_entry);

	// if we don't map to a bank, return FALSE
	if (m_entry < STATIC_BANK1 || m_entry >= STATIC_RAM)
	{
		// ensure future updates to land here as well until we get back into a bank
		m_byteend = 0;
		m_bytestart = 1;
		return false;
	}

	// if no decrypted opcodes, point to the same base
	UINT8 *base = m_space.m_machine.memory_data->bank_ptr[m_entry];
	UINT8 *based = m_space.m_machine.memory_data->bankd_ptr[m_entry];
	if (based == NULL)
		based = base;

	// compute the adjusted base
	const handler_entry_read &handler = m_space.read().handler_read(m_entry);
	m_bytemask = handler.bytemask();
	m_raw = base - (handler.bytestart() & m_bytemask);
	m_decrypted = based - (handler.bytestart() & m_bytemask);
	m_bytestart = maskedbits | range->m_bytestart;
	m_byteend = maskedbits | range->m_byteend;
	return true;
}


//-------------------------------------------------
//  find_range - find a byte address in a range
//-------------------------------------------------

direct_read_data::direct_range *direct_read_data::find_range(offs_t byteaddress, UINT8 &entry)
{
	// determine which entry
	byteaddress &= m_space.m_bytemask;
	entry = m_space.read().lookup_live(byteaddress);

	// scan our table
	for (direct_range *range = m_rangelist[entry].first(); range != NULL; range = range->next())
		if (byteaddress >= range->m_bytestart && byteaddress <= range->m_byteend)
			return range;

	// didn't find out; allocate a new one
	direct_range *range = m_freerangelist.first();
	if (range != NULL)
		m_freerangelist.detach(*range);
	else
		range = auto_alloc(&m_space.m_machine, direct_range);

	// fill in the range
	m_space.read().derive_range(byteaddress, range->m_bytestart, range->m_byteend);
	m_rangelist[entry].prepend(*range);

	return range;
}


//-------------------------------------------------
//  remove_intersecting_ranges - remove all cached
//  ranges that intersect the given address range
//-------------------------------------------------

void direct_read_data::remove_intersecting_ranges(offs_t bytestart, offs_t byteend)
{
	// loop over all entries
	for (int entry = 0; entry < ARRAY_LENGTH(m_rangelist); entry++)
	{
		// loop over all ranges in this entry's list
		direct_range *nextrange;
		for (direct_range *range = m_rangelist[entry].first(); range != NULL; range = nextrange)
		{
			nextrange = range->next();

			// if we intersect, remove and add to the free range list
			if (bytestart <= range->m_byteend && byteend >= range->m_bytestart)
			{
				m_rangelist[entry].detach(*range);
				m_freerangelist.prepend(*range);
			}
		}
	}
}


//-------------------------------------------------
//  set_direct_update - set a custom direct range
//  update callback
//-------------------------------------------------

direct_update_delegate direct_read_data::set_direct_update(direct_update_delegate function)
{
	direct_update_delegate old = m_directupdate;
	m_directupdate = function;
	return old;
}


//-------------------------------------------------
//  explicit_configure - explicitly configure
//  the start/end/mask and the pointers from
//  within a custom callback
//-------------------------------------------------

void direct_read_data::explicit_configure(offs_t bytestart, offs_t byteend, offs_t bytemask, void *raw, void *decrypted)
{
	m_bytestart = bytestart;
	m_byteend = byteend;
	m_bytemask = bytemask;
	m_raw = reinterpret_cast<UINT8 *>(raw);
	m_decrypted = reinterpret_cast<UINT8 *>((decrypted == NULL) ? raw : decrypted);
	m_raw -= bytestart & bytemask;
	m_decrypted -= bytestart & bytemask;
}



//**************************************************************************
//  MEMORY BLOCK
//**************************************************************************

//-------------------------------------------------
//  memory_block - constructor
//-------------------------------------------------

memory_block::memory_block(address_space &space, offs_t bytestart, offs_t byteend, void *memory)
	: m_next(NULL),
	  m_machine(space.m_machine),
	  m_space(space),
	  m_isallocated(memory == NULL),
	  m_bytestart(bytestart),
	  m_byteend(byteend),
	  m_data((memory != NULL) ? reinterpret_cast<UINT8 *>(memory) : auto_alloc_array_clear(&space.m_machine, UINT8, byteend + 1 - bytestart))
{
	VPRINTF(("block_allocate('%s',%s,%08X,%08X,%p)\n", space.device().tag(), space.name(), bytestart, byteend, memory));

	// register for saving, but only if we're not part of a memory region
	const region_info *region;
	for (region = space.m_machine.m_regionlist.first(); region != NULL; region = region->next())
		if (m_data >= region->base() && (m_data + (byteend - bytestart + 1)) < region->end())
		{
			VPRINTF(("skipping save of this memory block as it is covered by a memory region\n"));
			break;
		}

	// if we didn't find a match, register
	if (region == NULL)
	{
		int bytes_per_element = space.data_width() / 8;
		astring name;
		name.printf("%08x-%08x", bytestart, byteend);
		state_save_register_memory(&space.m_machine, "memory", space.device().tag(), space.spacenum(), name, m_data, bytes_per_element, (UINT32)(byteend + 1 - bytestart) / bytes_per_element, __FILE__, __LINE__);
	}
}


//-------------------------------------------------
//  memory_block - destructor
//-------------------------------------------------

memory_block::~memory_block()
{
	if (m_isallocated)
		auto_free(&m_machine, m_data);
}



//**************************************************************************
//  MEMORY BANK
//**************************************************************************

//-------------------------------------------------
//  memory_bank - constructor
//-------------------------------------------------

memory_bank::memory_bank(address_space &space, int index, offs_t bytestart, offs_t byteend, const char *tag)
	: m_next(NULL),
	  m_machine(space.m_machine),
	  m_baseptr(&space.m_machine.memory_data->bank_ptr[index]),
	  m_basedptr(&space.m_machine.memory_data->bankd_ptr[index]),
	  m_index(index),
	  m_anonymous(tag == NULL),
	  m_bytestart(bytestart),
	  m_byteend(byteend),
	  m_curentry(BANK_ENTRY_UNSPECIFIED),
	  m_entry(NULL),
	  m_entry_count(0)
{
	// generate an internal tag if we don't have one
	if (tag == NULL)
	{
		m_tag.printf("~%d~", index);
		m_name.printf("Internal bank #%d", index);
	}
	else
	{
		m_tag.cpy(tag);
		m_name.printf("Bank '%s'", tag);
	}

	if (!m_anonymous && state_save_registration_allowed(&space.m_machine))
		state_save_register_item(&space.m_machine, "memory", m_tag, 0, m_curentry);
}


//-------------------------------------------------
//  memory_bank - destructor
//-------------------------------------------------

memory_bank::~memory_bank()
{
	auto_free(&m_machine, m_entry);
}


//-------------------------------------------------
//  references_space - walk the list of references
//  to find a match against the provided space
//  and read/write
//-------------------------------------------------

bool memory_bank::references_space(address_space &space, read_or_write readorwrite) const
{
	for (bank_reference *ref = m_reflist.first(); ref != NULL; ref = ref->next())
		if (ref->matches(space, readorwrite))
			return true;
	return false;
}


//-------------------------------------------------
//  add_reference - add a new reference to the
//  given space
//-------------------------------------------------

void memory_bank::add_reference(address_space &space, read_or_write readorwrite)
{
	// if we already have a reference, skip it
	if (references_space(space, readorwrite))
		return;
	m_reflist.append(*auto_alloc(&space.m_machine, bank_reference(space, readorwrite)));
}


//-------------------------------------------------
//  invalidate_references - force updates on all
//  referencing address spaces
//-------------------------------------------------

void memory_bank::invalidate_references()
{
	// invalidate all the direct references to any referenced address spaces
	for (bank_reference *ref = m_reflist.first(); ref != NULL; ref = ref->next())
		ref->space().direct().force_update();
}


//-------------------------------------------------
//  set_base - set the bank base explicitly
//-------------------------------------------------

void memory_bank::set_base(void *base)
{
	// NULL is not an option
	if (base == NULL)
		throw emu_fatalerror("memory_bank::set_base called NULL base");

	// set the base and invalidate any referencing spaces
	*m_baseptr = reinterpret_cast<UINT8 *>(base);
	invalidate_references();
}


//-------------------------------------------------
//  set_base_decrypted - set the decrypted base
//  explicitly
//-------------------------------------------------

void memory_bank::set_base_decrypted(void *base)
{
	// NULL is not an option
	if (base == NULL)
		throw emu_fatalerror("memory_bank::set_base called NULL base");

	// set the base and invalidate any referencing spaces
	*m_basedptr = reinterpret_cast<UINT8 *>(base);
	invalidate_references();
}


//-------------------------------------------------
//  set_entry - set the base to a pre-configured
//  entry
//-------------------------------------------------

void memory_bank::set_entry(int entrynum)
{
	// validate
	if (m_anonymous)
		throw emu_fatalerror("memory_bank::set_entry called for anonymous bank");
	if (entrynum < 0 || entrynum >= m_entry_count)
		throw emu_fatalerror("memory_bank::set_entry called with out-of-range entry %d", entrynum);
	if (m_entry[entrynum].m_raw == NULL)
		throw emu_fatalerror("memory_bank::set_entry called for bank '%s' with invalid bank entry %d", m_tag.cstr(), entrynum);

	// set both raw and decrypted values
	m_curentry = entrynum;
	*m_baseptr = m_entry[entrynum].m_raw;
	*m_basedptr = m_entry[entrynum].m_decrypted;

	// invalidate referencing spaces
	invalidate_references();
}


//-------------------------------------------------
//  expand_entries - expand the allocated array
//  of entries
//-------------------------------------------------

void memory_bank::expand_entries(int entrynum)
{
	int newcount = entrynum + 1;

	// allocate a new array and copy from the old one; zero out the new entries
	bank_entry *newentry = auto_alloc_array(&m_machine, bank_entry, newcount);
	memcpy(newentry, m_entry, sizeof(m_entry[0]) * m_entry_count);
	memset(&newentry[m_entry_count], 0, (newcount - m_entry_count) * sizeof(m_entry[0]));

	// free the old array and set the updated values
	auto_free(&m_machine, m_entry);
	m_entry = newentry;
	m_entry_count = newcount;
}


//-------------------------------------------------
//  configure - configure an entry
//-------------------------------------------------

void memory_bank::configure(int entrynum, void *base)
{
	// must be positive
	if (entrynum < 0)
		throw emu_fatalerror("memory_bank::configure called with out-of-range entry %d", entrynum);

	// if we haven't allocated this many entries yet, expand our array
	if (entrynum >= m_entry_count)
		expand_entries(entrynum);

	// set the entry
	m_entry[entrynum].m_raw = reinterpret_cast<UINT8 *>(base);

	// if the bank base is not configured, and we're the first entry, set us up
	if (*m_baseptr == NULL && entrynum == 0)
		*m_baseptr = m_entry[entrynum].m_raw;
}


//-------------------------------------------------
//  configure_decrypted - configure a decrypted
//  entry
//-------------------------------------------------

void memory_bank::configure_decrypted(int entrynum, void *base)
{
	// must be positive
	if (entrynum < 0)
		throw emu_fatalerror("memory_bank::configure called with out-of-range entry %d", entrynum);

	// if we haven't allocated this many entries yet, expand our array
	if (entrynum >= m_entry_count)
		expand_entries(entrynum);

	// set the entry
	m_entry[entrynum].m_decrypted = reinterpret_cast<UINT8 *>(base);

	// if the bank base is not configured, and we're the first entry, set us up
	if (*m_basedptr == NULL && entrynum == 0)
		*m_basedptr = m_entry[entrynum].m_decrypted;
}



//**************************************************************************
//  HANDLER ENTRY
//**************************************************************************

//-------------------------------------------------
//  handler_entry - constructor
//-------------------------------------------------

handler_entry::handler_entry(UINT8 width, endianness_t endianness, UINT8 **rambaseptr)
	: m_populated(false),
	  m_datawidth(width),
	  m_endianness(endianness),
	  m_bytestart(0),
	  m_byteend(0),
	  m_bytemask(~0),
	  m_rambaseptr(rambaseptr),
	  m_subunits(0)
{
}


//-------------------------------------------------
//  ~handler_entry - destructor
//-------------------------------------------------

handler_entry::~handler_entry()
{
}


//-------------------------------------------------
//  configure_subunits - configure the subunits
//  and subshift array to represent the provided
//  mask
//-------------------------------------------------

void handler_entry::configure_subunits(UINT64 handlermask, int handlerbits)
{
	UINT64 unitmask = ((UINT64)1 << handlerbits) - 1;
	assert(handlermask != 0);

	// compute the maximum possible subunits
	int maxunits = m_datawidth / handlerbits;
	assert(maxunits > 1);
	assert(maxunits < ARRAY_LENGTH(m_subshift));

	// walk the handlermask to find out how many we have
	m_subunits = 0;
	for (int unitnum = 0; unitnum < maxunits; unitnum++)
	{
		UINT64 scanmask = unitmask << (unitnum * handlerbits);
		assert((handlermask & scanmask) == 0 || (handlermask & scanmask) == scanmask);
		if ((handlermask & scanmask) != 0)
			m_subunits++;
	}

	// then fill in the shifts based on the endianness
	if (m_endianness == ENDIANNESS_LITTLE)
	{
		UINT8 *unitshift = &m_subshift[0];
		for (int unitnum = 0; unitnum < maxunits; unitnum++)
			if ((handlermask & (unitmask << (unitnum * handlerbits))) != 0)
				*unitshift++ = unitnum * handlerbits;
	}
	else
	{
		UINT8 *unitshift = &m_subshift[m_subunits];
		for (int unitnum = 0; unitnum < maxunits; unitnum++)
			if ((handlermask & (unitmask << (unitnum * handlerbits))) != 0)
				*--unitshift = unitnum * handlerbits;
	}
}



//**************************************************************************
//  HANDLER ENTRY READ
//**************************************************************************

//-------------------------------------------------
//  name - return the handler name, from the
//  appropriately-sized delegate
//-------------------------------------------------

const char *handler_entry_read::name() const
{
	switch (m_datawidth)
	{
		case 8:		return m_read8.name();
		case 16:	return m_read16.name();
		case 32:	return m_read32.name();
		case 64:	return m_read64.name();
	}
	return NULL;
}


//-------------------------------------------------
//  set_delegate - set an 8-bit delegate, and
//  configure a stub if necessary
//-------------------------------------------------

void handler_entry_read::set_delegate(read8_delegate delegate, UINT64 mask)
{
	// error if no object
	if (!delegate.has_object())
		throw emu_fatalerror("Attempted to install delegate '%s' without a bound object", delegate.name());

	// make sure this is a valid size
	assert(m_datawidth >= 8);
	m_read8 = delegate;

	// if mismatched bus width, configure a stub
	if (m_datawidth != 8)
	{
		configure_subunits(mask, 8);
		if (m_datawidth == 16)
			set_delegate(read16_delegate(read16_proto_delegate::_create_member<handler_entry_read, &handler_entry_read::read_stub_16_from_8>(delegate.name()), *this));
		else if (m_datawidth == 32)
			set_delegate(read32_delegate(read32_proto_delegate::_create_member<handler_entry_read, &handler_entry_read::read_stub_32_from_8>(delegate.name()), *this));
		else if (m_datawidth == 64)
			set_delegate(read64_delegate(read64_proto_delegate::_create_member<handler_entry_read, &handler_entry_read::read_stub_64_from_8>(delegate.name()), *this));
	}
}


//-------------------------------------------------
//  set_delegate - set a 16-bit delegate, and
//  configure a stub if necessary
//-------------------------------------------------

void handler_entry_read::set_delegate(read16_delegate delegate, UINT64 mask)
{
	// error if no object
	if (!delegate.has_object())
		throw emu_fatalerror("Attempted to install delegate '%s' without a bound object", delegate.name());

	// make sure this is a valid size
	assert(m_datawidth >= 16);
	m_read16 = delegate;

	// if mismatched bus width, configure a stub
	if (m_datawidth != 16)
	{
		configure_subunits(mask, 16);
		if (m_datawidth == 32)
			set_delegate(read32_delegate(read32_proto_delegate::_create_member<handler_entry_read, &handler_entry_read::read_stub_32_from_16>(delegate.name()), *this));
		else if (m_datawidth == 64)
			set_delegate(read64_delegate(read64_proto_delegate::_create_member<handler_entry_read, &handler_entry_read::read_stub_64_from_16>(delegate.name()), *this));
	}
}


//-------------------------------------------------
//  set_delegate - set a 32-bit delegate, and
//  configure a stub if necessary
//-------------------------------------------------

void handler_entry_read::set_delegate(read32_delegate delegate, UINT64 mask)
{
	// error if no object
	if (!delegate.has_object())
		throw emu_fatalerror("Attempted to install delegate '%s' without a bound object", delegate.name());

	// make sure this is a valid size
	assert(m_datawidth >= 32);
	m_read32 = delegate;

	// if mismatched bus width, configure a stub
	if (m_datawidth != 32)
	{
		configure_subunits(mask, 16);
		if (m_datawidth == 64)
			set_delegate(read64_delegate(read64_proto_delegate::_create_member<handler_entry_read, &handler_entry_read::read_stub_64_from_32>(delegate.name()), *this));
	}
}


//-------------------------------------------------
//  set_delegate - set a 64-bit delegate
//-------------------------------------------------

void handler_entry_read::set_delegate(read64_delegate delegate, UINT64 mask)
{
	// error if no object
	if (!delegate.has_object())
		throw emu_fatalerror("Attempted to install delegate '%s' without a bound object", delegate.name());

	// make sure this is a valid size
	assert(m_datawidth >= 64);
	m_read64 = delegate;
}


//-------------------------------------------------
//  set_legacy_func - configure a legacy address
//  space stub of the appropriate size
//-------------------------------------------------

void handler_entry_read::set_legacy_func(address_space &space, read8_space_func func, const char *name, UINT64 mask)
{
	m_legacy_handler.space8 = func;
	m_legacy_object.space = &space;
	set_delegate(read8_delegate(read8_proto_delegate::_create_member<handler_entry_read, &handler_entry_read::read_stub_legacy>(name), *this), mask);
}

void handler_entry_read::set_legacy_func(address_space &space, read16_space_func func, const char *name, UINT64 mask)
{
	m_legacy_handler.space16 = func;
	m_legacy_object.space = &space;
	set_delegate(read16_delegate(read16_proto_delegate::_create_member<handler_entry_read, &handler_entry_read::read_stub_legacy>(name), *this), mask);
}

void handler_entry_read::set_legacy_func(address_space &space, read32_space_func func, const char *name, UINT64 mask)
{
	m_legacy_handler.space32 = func;
	m_legacy_object.space = &space;
	set_delegate(read32_delegate(read32_proto_delegate::_create_member<handler_entry_read, &handler_entry_read::read_stub_legacy>(name), *this), mask);
}

void handler_entry_read::set_legacy_func(address_space &space, read64_space_func func, const char *name, UINT64 mask)
{
	m_legacy_handler.space64 = func;
	m_legacy_object.space = &space;
	set_delegate(read64_delegate(read64_proto_delegate::_create_member<handler_entry_read, &handler_entry_read::read_stub_legacy>(name), *this), mask);
}


//-------------------------------------------------
//  set_legacy_func - configure a legacy device
//  stub of the appropriate size
//-------------------------------------------------

void handler_entry_read::set_legacy_func(device_t &device, read8_device_func func, const char *name, UINT64 mask)
{
	m_legacy_handler.device8 = func;
	m_legacy_object.device = &device;
	set_delegate(read8_delegate(read8_proto_delegate::_create_member<handler_entry_read, &handler_entry_read::read_stub_legacy>(name), *this), mask);
}

void handler_entry_read::set_legacy_func(device_t &device, read16_device_func func, const char *name, UINT64 mask)
{
	m_legacy_handler.device16 = func;
	m_legacy_object.device = &device;
	set_delegate(read16_delegate(read16_proto_delegate::_create_member<handler_entry_read, &handler_entry_read::read_stub_legacy>(name), *this), mask);
}

void handler_entry_read::set_legacy_func(device_t &device, read32_device_func func, const char *name, UINT64 mask)
{
	m_legacy_handler.device32 = func;
	m_legacy_object.device = &device;
	set_delegate(read32_delegate(read32_proto_delegate::_create_member<handler_entry_read, &handler_entry_read::read_stub_legacy>(name), *this), mask);
}

void handler_entry_read::set_legacy_func(device_t &device, read64_device_func func, const char *name, UINT64 mask)
{
	m_legacy_handler.device64 = func;
	m_legacy_object.device = &device;
	set_delegate(read64_delegate(read64_proto_delegate::_create_member<handler_entry_read, &handler_entry_read::read_stub_legacy>(name), *this), mask);
}


//-------------------------------------------------
//  set_ioport - configure an I/O port read stub
//  of the appropriate size
//-------------------------------------------------

void handler_entry_read::set_ioport(const input_port_config &ioport)
{
	m_ioport = &ioport;
	if (m_datawidth == 8)
		set_delegate(read8_delegate(read8_proto_delegate::_create_member<handler_entry_read, &handler_entry_read::read_stub_ioport<UINT8> >(ioport.tag), *this));
	else if (m_datawidth == 16)
		set_delegate(read16_delegate(read16_proto_delegate::_create_member<handler_entry_read, &handler_entry_read::read_stub_ioport<UINT16> >(ioport.tag), *this));
	else if (m_datawidth == 32)
		set_delegate(read32_delegate(read32_proto_delegate::_create_member<handler_entry_read, &handler_entry_read::read_stub_ioport<UINT32> >(ioport.tag), *this));
	else if (m_datawidth == 64)
		set_delegate(read64_delegate(read64_proto_delegate::_create_member<handler_entry_read, &handler_entry_read::read_stub_ioport<UINT64> >(ioport.tag), *this));
}


//-------------------------------------------------
//  read_stub_16_from_8 - construct a 16-bit read
//  from 8-bit sources
//-------------------------------------------------

UINT16 handler_entry_read::read_stub_16_from_8(address_space &space, offs_t offset, UINT16 mask)
{
	UINT16 result = 0;
	for (int index = 0; index < m_subunits; index++)
	{
		int shift = m_subshift[index];
		UINT8 mask8 = mask >> shift;
		if (mask8 != 0)
			result |= m_read8(space, offset * m_subunits + index, mask8) << shift;
	}
	return result;
}


//-------------------------------------------------
//  read_stub_32_from_8 - construct a 32-bit read
//  from 8-bit sources
//-------------------------------------------------

UINT32 handler_entry_read::read_stub_32_from_8(address_space &space, offs_t offset, UINT32 mask)
{
	UINT32 result = 0;
	for (int index = 0; index < m_subunits; index++)
	{
		int shift = m_subshift[index];
		UINT8 mask8 = mask >> shift;
		if (mask8 != 0)
			result |= m_read8(space, offset * m_subunits + index, mask8) << shift;
	}
	return result;
}


//-------------------------------------------------
//  read_stub_64_from_8 - construct a 64-bit read
//  from 8-bit sources
//-------------------------------------------------

UINT64 handler_entry_read::read_stub_64_from_8(address_space &space, offs_t offset, UINT64 mask)
{
	UINT64 result = 0;
	for (int index = 0; index < m_subunits; index++)
	{
		int shift = m_subshift[index];
		UINT8 mask8 = mask >> shift;
		if (mask8 != 0)
			result |= (UINT64)m_read8(space, offset * m_subunits + index, mask8) << shift;
	}
	return result;
}


//-------------------------------------------------
//  read_stub_32_from_16 - construct a 32-bit read
//  from 16-bit sources
//-------------------------------------------------

UINT32 handler_entry_read::read_stub_32_from_16(address_space &space, offs_t offset, UINT32 mask)
{
	UINT32 result = 0;
	for (int index = 0; index < m_subunits; index++)
	{
		int shift = m_subshift[index];
		UINT16 mask16 = mask >> shift;
		if (mask16 != 0)
			result |= m_read16(space, offset * m_subunits + index, mask16) << shift;
	}
	return result;
}


//-------------------------------------------------
//  read_stub_64_from_16 - construct a 64-bit read
//  from 16-bit sources
//-------------------------------------------------

UINT64 handler_entry_read::read_stub_64_from_16(address_space &space, offs_t offset, UINT64 mask)
{
	UINT64 result = 0;
	for (int index = 0; index < m_subunits; index++)
	{
		int shift = m_subshift[index];
		UINT16 mask16 = mask >> shift;
		if (mask16 != 0)
			result |= (UINT64)m_read16(space, offset * m_subunits + index, mask16) << shift;
	}
	return result;
}


//-------------------------------------------------
//  read_stub_64_from_32 - construct a 64-bit read
//  from 32-bit sources
//-------------------------------------------------

UINT64 handler_entry_read::read_stub_64_from_32(address_space &space, offs_t offset, UINT64 mask)
{
	UINT64 result = 0;
	for (int index = 0; index < m_subunits; index++)
	{
		int shift = m_subshift[index];
		UINT32 mask32 = mask >> shift;
		if (mask32 != 0)
			result |= (UINT64)m_read32(space, offset * m_subunits + index, mask32) << shift;
	}
	return result;
}


//-------------------------------------------------
//  read_stub_legacy - perform a read using legacy
//  handler callbacks
//-------------------------------------------------

UINT8 handler_entry_read::read_stub_legacy(address_space &space, offs_t offset, UINT8 mask)
{
	return m_legacy_handler.space8(m_legacy_object.space, offset);
}

UINT16 handler_entry_read::read_stub_legacy(address_space &space, offs_t offset, UINT16 mask)
{
	return m_legacy_handler.space16(m_legacy_object.space, offset, mask);
}

UINT32 handler_entry_read::read_stub_legacy(address_space &space, offs_t offset, UINT32 mask)
{
	return m_legacy_handler.space32(m_legacy_object.space, offset, mask);
}

UINT64 handler_entry_read::read_stub_legacy(address_space &space, offs_t offset, UINT64 mask)
{
	return m_legacy_handler.space64(m_legacy_object.space, offset, mask);
}



//**************************************************************************
//  HANDLER ENTRY WRITE
//**************************************************************************

//-------------------------------------------------
//  name - return the handler name, from the
//  appropriately-sized delegate
//-------------------------------------------------

const char *handler_entry_write::name() const
{
	switch (m_datawidth)
	{
		case 8:		return m_write8.name();
		case 16:	return m_write16.name();
		case 32:	return m_write32.name();
		case 64:	return m_write64.name();
	}
	return NULL;
}


//-------------------------------------------------
//  set_delegate - set an 8-bit delegate, and
//  configure a stub if necessary
//-------------------------------------------------

void handler_entry_write::set_delegate(write8_delegate delegate, UINT64 mask)
{
	assert(m_datawidth >= 8);
	m_write8 = delegate;

	// if mismatched bus width, configure a stub
	if (m_datawidth != 8)
	{
		configure_subunits(mask, 8);
		if (m_datawidth == 16)
			set_delegate(write16_delegate(write16_proto_delegate::_create_member<handler_entry_write, &handler_entry_write::write_stub_16_from_8>(delegate.name()), *this));
		else if (m_datawidth == 32)
			set_delegate(write32_delegate(write32_proto_delegate::_create_member<handler_entry_write, &handler_entry_write::write_stub_32_from_8>(delegate.name()), *this));
		else if (m_datawidth == 64)
			set_delegate(write64_delegate(write64_proto_delegate::_create_member<handler_entry_write, &handler_entry_write::write_stub_64_from_8>(delegate.name()), *this));
	}
}


//-------------------------------------------------
//  set_delegate - set a 16-bit delegate, and
//  configure a stub if necessary
//-------------------------------------------------

void handler_entry_write::set_delegate(write16_delegate delegate, UINT64 mask)
{
	assert(m_datawidth >= 16);
	m_write16 = delegate;

	// if mismatched bus width, configure a stub
	if (m_datawidth != 16)
	{
		configure_subunits(mask, 16);
		if (m_datawidth == 32)
			set_delegate(write32_delegate(write32_proto_delegate::_create_member<handler_entry_write, &handler_entry_write::write_stub_32_from_16>(delegate.name()), *this));
		else if (m_datawidth == 64)
			set_delegate(write64_delegate(write64_proto_delegate::_create_member<handler_entry_write, &handler_entry_write::write_stub_64_from_16>(delegate.name()), *this));
	}
}


//-------------------------------------------------
//  set_delegate - set a 32-bit delegate, and
//  configure a stub if necessary
//-------------------------------------------------

void handler_entry_write::set_delegate(write32_delegate delegate, UINT64 mask)
{
	assert(m_datawidth >= 32);
	m_write32 = delegate;

	// if mismatched bus width, configure a stub
	if (m_datawidth != 32)
	{
		configure_subunits(mask, 16);
		if (m_datawidth == 64)
			set_delegate(write64_delegate(write64_proto_delegate::_create_member<handler_entry_write, &handler_entry_write::write_stub_64_from_32>(delegate.name()), *this));
	}
}


//-------------------------------------------------
//  set_delegate - set a 64-bit delegate
//-------------------------------------------------

void handler_entry_write::set_delegate(write64_delegate delegate, UINT64 mask)
{
	assert(m_datawidth >= 64);
	m_write64 = delegate;
}


//-------------------------------------------------
//  set_legacy_func - configure a legacy address
//  space stub of the appropriate size
//-------------------------------------------------

void handler_entry_write::set_legacy_func(address_space &space, write8_space_func func, const char *name, UINT64 mask)
{
	m_legacy_handler.space8 = func;
	m_legacy_object.space = &space;
	set_delegate(write8_delegate(write8_proto_delegate::_create_member<handler_entry_write, &handler_entry_write::write_stub_legacy>(name), *this), mask);
}

void handler_entry_write::set_legacy_func(address_space &space, write16_space_func func, const char *name, UINT64 mask)
{
	m_legacy_handler.space16 = func;
	m_legacy_object.space = &space;
	set_delegate(write16_delegate(write16_proto_delegate::_create_member<handler_entry_write, &handler_entry_write::write_stub_legacy>(name), *this), mask);
}

void handler_entry_write::set_legacy_func(address_space &space, write32_space_func func, const char *name, UINT64 mask)
{
	m_legacy_handler.space32 = func;
	m_legacy_object.space = &space;
	set_delegate(write32_delegate(write32_proto_delegate::_create_member<handler_entry_write, &handler_entry_write::write_stub_legacy>(name), *this), mask);
}

void handler_entry_write::set_legacy_func(address_space &space, write64_space_func func, const char *name, UINT64 mask)
{
	m_legacy_handler.space64 = func;
	m_legacy_object.space = &space;
	set_delegate(write64_delegate(write64_proto_delegate::_create_member<handler_entry_write, &handler_entry_write::write_stub_legacy>(name), *this), mask);
}


//-------------------------------------------------
//  set_legacy_func - configure a legacy device
//  stub of the appropriate size
//-------------------------------------------------

void handler_entry_write::set_legacy_func(device_t &device, write8_device_func func, const char *name, UINT64 mask)
{
	m_legacy_handler.device8 = func;
	m_legacy_object.device = &device;
	set_delegate(write8_delegate(write8_proto_delegate::_create_member<handler_entry_write, &handler_entry_write::write_stub_legacy>(name), *this), mask);
}

void handler_entry_write::set_legacy_func(device_t &device, write16_device_func func, const char *name, UINT64 mask)
{
	m_legacy_handler.device16 = func;
	m_legacy_object.device = &device;
	set_delegate(write16_delegate(write16_proto_delegate::_create_member<handler_entry_write, &handler_entry_write::write_stub_legacy>(name), *this), mask);
}

void handler_entry_write::set_legacy_func(device_t &device, write32_device_func func, const char *name, UINT64 mask)
{
	m_legacy_handler.device32 = func;
	m_legacy_object.device = &device;
	set_delegate(write32_delegate(write32_proto_delegate::_create_member<handler_entry_write, &handler_entry_write::write_stub_legacy>(name), *this), mask);
}

void handler_entry_write::set_legacy_func(device_t &device, write64_device_func func, const char *name, UINT64 mask)
{
	m_legacy_handler.device64 = func;
	m_legacy_object.device = &device;
	set_delegate(write64_delegate(write64_proto_delegate::_create_member<handler_entry_write, &handler_entry_write::write_stub_legacy>(name), *this), mask);
}


//-------------------------------------------------
//  set_ioport - configure an I/O port read stub
//  of the appropriate size
//-------------------------------------------------

void handler_entry_write::set_ioport(const input_port_config &ioport)
{
	m_ioport = &ioport;
	if (m_datawidth == 8)
		set_delegate(write8_delegate(write8_proto_delegate::_create_member<handler_entry_write, &handler_entry_write::write_stub_ioport<UINT8> >(ioport.tag), *this));
	else if (m_datawidth == 16)
		set_delegate(write16_delegate(write16_proto_delegate::_create_member<handler_entry_write, &handler_entry_write::write_stub_ioport<UINT16> >(ioport.tag), *this));
	else if (m_datawidth == 32)
		set_delegate(write32_delegate(write32_proto_delegate::_create_member<handler_entry_write, &handler_entry_write::write_stub_ioport<UINT32> >(ioport.tag), *this));
	else if (m_datawidth == 64)
		set_delegate(write64_delegate(write64_proto_delegate::_create_member<handler_entry_write, &handler_entry_write::write_stub_ioport<UINT64> >(ioport.tag), *this));
}


//-------------------------------------------------
//  write_stub_16_from_8 - construct a 16-bit write
//  from 8-bit sources
//-------------------------------------------------

void handler_entry_write::write_stub_16_from_8(address_space &space, offs_t offset, UINT16 data, UINT16 mask)
{
	for (int index = 0; index < m_subunits; index++)
	{
		int shift = m_subshift[index];
		UINT8 mask8 = mask >> shift;
		if (mask8 != 0)
			m_write8(space, offset * m_subunits + index, data >> shift, mask8);
	}
}


//-------------------------------------------------
//  write_stub_32_from_8 - construct a 32-bit write
//  from 8-bit sources
//-------------------------------------------------

void handler_entry_write::write_stub_32_from_8(address_space &space, offs_t offset, UINT32 data, UINT32 mask)
{
	for (int index = 0; index < m_subunits; index++)
	{
		int shift = m_subshift[index];
		UINT8 mask8 = mask >> shift;
		if (mask8 != 0)
			m_write8(space, offset * m_subunits + index, data >> shift, mask8);
	}
}


//-------------------------------------------------
//  write_stub_64_from_8 - construct a 64-bit write
//  from 8-bit sources
//-------------------------------------------------

void handler_entry_write::write_stub_64_from_8(address_space &space, offs_t offset, UINT64 data, UINT64 mask)
{
	for (int index = 0; index < m_subunits; index++)
	{
		int shift = m_subshift[index];
		UINT8 mask8 = mask >> shift;
		if (mask8 != 0)
			m_write8(space, offset * m_subunits + index, data >> shift, mask8);
	}
}


//-------------------------------------------------
//  write_stub_32_from_16 - construct a 32-bit
//  write from 16-bit sources
//-------------------------------------------------

void handler_entry_write::write_stub_32_from_16(address_space &space, offs_t offset, UINT32 data, UINT32 mask)
{
	for (int index = 0; index < m_subunits; index++)
	{
		int shift = m_subshift[index];
		UINT16 mask16 = mask >> shift;
		if (mask16 != 0)
			m_write16(space, offset * m_subunits + index, data >> shift, mask16);
	}
}


//-------------------------------------------------
//  write_stub_64_from_16 - construct a 64-bit
//  write from 16-bit sources
//-------------------------------------------------

void handler_entry_write::write_stub_64_from_16(address_space &space, offs_t offset, UINT64 data, UINT64 mask)
{
	for (int index = 0; index < m_subunits; index++)
	{
		int shift = m_subshift[index];
		UINT16 mask16 = mask >> shift;
		if (mask16 != 0)
			m_write16(space, offset * m_subunits + index, data >> shift, mask16);
	}
}


//-------------------------------------------------
//  write_stub_64_from_32 - construct a 64-bit
//  write from 32-bit sources
//-------------------------------------------------

void handler_entry_write::write_stub_64_from_32(address_space &space, offs_t offset, UINT64 data, UINT64 mask)
{
	for (int index = 0; index < m_subunits; index++)
	{
		int shift = m_subshift[index];
		UINT32 mask32 = mask >> shift;
		if (mask32 != 0)
			m_write32(space, offset * m_subunits + index, data >> shift, mask32);
	}
}


//-------------------------------------------------
//  write_stub_legacy - perform a write using
//  legacy handler callbacks
//-------------------------------------------------

void handler_entry_write::write_stub_legacy(address_space &space, offs_t offset, UINT8 data, UINT8 mask)
{
	m_legacy_handler.space8(m_legacy_object.space, offset, data);
}

void handler_entry_write::write_stub_legacy(address_space &space, offs_t offset, UINT16 data, UINT16 mask)
{
	m_legacy_handler.space16(m_legacy_object.space, offset, data, mask);
}

void handler_entry_write::write_stub_legacy(address_space &space, offs_t offset, UINT32 data, UINT32 mask)
{
	m_legacy_handler.space32(m_legacy_object.space, offset, data, mask);
}

void handler_entry_write::write_stub_legacy(address_space &space, offs_t offset, UINT64 data, UINT64 mask)
{
	m_legacy_handler.space64(m_legacy_object.space, offset, data, mask);
}