diff options
author | 2013-01-11 07:32:46 +0000 | |
---|---|---|
committer | 2013-01-11 07:32:46 +0000 | |
commit | 0e19f641d3186cdbf51f8ca857e2b07ab95779c2 (patch) | |
tree | 234109de1123b13f217494af4b3f8efad346d5cc /src/lib/libjpeg/jdhuff.c | |
parent | 111157ca09a9ff60fe4a9ba49173c315e94314fa (diff) |
Cleanups and version bumpmame0148
Diffstat (limited to 'src/lib/libjpeg/jdhuff.c')
-rw-r--r-- | src/lib/libjpeg/jdhuff.c | 1912 |
1 files changed, 956 insertions, 956 deletions
diff --git a/src/lib/libjpeg/jdhuff.c b/src/lib/libjpeg/jdhuff.c index 8f0581fa172..ef3c9c72201 100644 --- a/src/lib/libjpeg/jdhuff.c +++ b/src/lib/libjpeg/jdhuff.c @@ -23,28 +23,28 @@ /* Derived data constructed for each Huffman table */ -#define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */ +#define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */ typedef struct { - /* Basic tables: (element [0] of each array is unused) */ - INT32 maxcode[18]; /* largest code of length k (-1 if none) */ - /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */ - INT32 valoffset[17]; /* huffval[] offset for codes of length k */ - /* valoffset[k] = huffval[] index of 1st symbol of code length k, less - * the smallest code of length k; so given a code of length k, the - * corresponding symbol is huffval[code + valoffset[k]] - */ - - /* Link to public Huffman table (needed only in jpeg_huff_decode) */ - JHUFF_TBL *pub; - - /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of - * the input data stream. If the next Huffman code is no more - * than HUFF_LOOKAHEAD bits long, we can obtain its length and - * the corresponding symbol directly from these tables. - */ - int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */ - UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */ + /* Basic tables: (element [0] of each array is unused) */ + INT32 maxcode[18]; /* largest code of length k (-1 if none) */ + /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */ + INT32 valoffset[17]; /* huffval[] offset for codes of length k */ + /* valoffset[k] = huffval[] index of 1st symbol of code length k, less + * the smallest code of length k; so given a code of length k, the + * corresponding symbol is huffval[code + valoffset[k]] + */ + + /* Link to public Huffman table (needed only in jpeg_huff_decode) */ + JHUFF_TBL *pub; + + /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of + * the input data stream. If the next Huffman code is no more + * than HUFF_LOOKAHEAD bits long, we can obtain its length and + * the corresponding symbol directly from these tables. + */ + int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */ + UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */ } d_derived_tbl; @@ -66,8 +66,8 @@ typedef struct { * necessary. */ -typedef INT32 bit_buf_type; /* type of bit-extraction buffer */ -#define BIT_BUF_SIZE 32 /* size of buffer in bits */ +typedef INT32 bit_buf_type; /* type of bit-extraction buffer */ +#define BIT_BUF_SIZE 32 /* size of buffer in bits */ /* If long is > 32 bits on your machine, and shifting/masking longs is * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE @@ -76,23 +76,23 @@ typedef INT32 bit_buf_type; /* type of bit-extraction buffer */ * because not all machines measure sizeof in 8-bit bytes. */ -typedef struct { /* Bitreading state saved across MCUs */ - bit_buf_type get_buffer; /* current bit-extraction buffer */ - int bits_left; /* # of unused bits in it */ +typedef struct { /* Bitreading state saved across MCUs */ + bit_buf_type get_buffer; /* current bit-extraction buffer */ + int bits_left; /* # of unused bits in it */ } bitread_perm_state; -typedef struct { /* Bitreading working state within an MCU */ - /* Current data source location */ - /* We need a copy, rather than munging the original, in case of suspension */ - const JOCTET * next_input_byte; /* => next byte to read from source */ - size_t bytes_in_buffer; /* # of bytes remaining in source buffer */ - /* Bit input buffer --- note these values are kept in register variables, - * not in this struct, inside the inner loops. - */ - bit_buf_type get_buffer; /* current bit-extraction buffer */ - int bits_left; /* # of unused bits in it */ - /* Pointer needed by jpeg_fill_bit_buffer. */ - j_decompress_ptr cinfo; /* back link to decompress master record */ +typedef struct { /* Bitreading working state within an MCU */ + /* Current data source location */ + /* We need a copy, rather than munging the original, in case of suspension */ + const JOCTET * next_input_byte; /* => next byte to read from source */ + size_t bytes_in_buffer; /* # of bytes remaining in source buffer */ + /* Bit input buffer --- note these values are kept in register variables, + * not in this struct, inside the inner loops. + */ + bit_buf_type get_buffer; /* current bit-extraction buffer */ + int bits_left; /* # of unused bits in it */ + /* Pointer needed by jpeg_fill_bit_buffer. */ + j_decompress_ptr cinfo; /* back link to decompress master record */ } bitread_working_state; /* Macros to declare and load/save bitread local variables. */ @@ -134,9 +134,9 @@ typedef struct { /* Bitreading working state within an MCU */ #define CHECK_BIT_BUFFER(state,nbits,action) \ { if (bits_left < (nbits)) { \ - if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \ - { action; } \ - get_buffer = (state).get_buffer; bits_left = (state).bits_left; } } + if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \ + { action; } \ + get_buffer = (state).get_buffer; bits_left = (state).bits_left; } } #define GET_BITS(nbits) \ (((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits)) @@ -167,24 +167,24 @@ typedef struct { /* Bitreading working state within an MCU */ #define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \ { register int nb, look; \ - if (bits_left < HUFF_LOOKAHEAD) { \ - if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \ - get_buffer = state.get_buffer; bits_left = state.bits_left; \ - if (bits_left < HUFF_LOOKAHEAD) { \ - nb = 1; goto slowlabel; \ - } \ - } \ - look = PEEK_BITS(HUFF_LOOKAHEAD); \ - if ((nb = htbl->look_nbits[look]) != 0) { \ - DROP_BITS(nb); \ - result = htbl->look_sym[look]; \ - } else { \ - nb = HUFF_LOOKAHEAD+1; \ + if (bits_left < HUFF_LOOKAHEAD) { \ + if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \ + get_buffer = state.get_buffer; bits_left = state.bits_left; \ + if (bits_left < HUFF_LOOKAHEAD) { \ + nb = 1; goto slowlabel; \ + } \ + } \ + look = PEEK_BITS(HUFF_LOOKAHEAD); \ + if ((nb = htbl->look_nbits[look]) != 0) { \ + DROP_BITS(nb); \ + result = htbl->look_sym[look]; \ + } else { \ + nb = HUFF_LOOKAHEAD+1; \ slowlabel: \ - if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \ + if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \ { failaction; } \ - get_buffer = state.get_buffer; bits_left = state.bits_left; \ - } \ + get_buffer = state.get_buffer; bits_left = state.bits_left; \ + } \ } @@ -196,8 +196,8 @@ slowlabel: \ */ typedef struct { - unsigned int EOBRUN; /* remaining EOBs in EOBRUN */ - int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ + unsigned int EOBRUN; /* remaining EOBs in EOBRUN */ + int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ } savable_state; /* This macro is to work around compilers with missing or broken @@ -211,106 +211,106 @@ typedef struct { #if MAX_COMPS_IN_SCAN == 4 #define ASSIGN_STATE(dest,src) \ ((dest).EOBRUN = (src).EOBRUN, \ - (dest).last_dc_val[0] = (src).last_dc_val[0], \ - (dest).last_dc_val[1] = (src).last_dc_val[1], \ - (dest).last_dc_val[2] = (src).last_dc_val[2], \ - (dest).last_dc_val[3] = (src).last_dc_val[3]) + (dest).last_dc_val[0] = (src).last_dc_val[0], \ + (dest).last_dc_val[1] = (src).last_dc_val[1], \ + (dest).last_dc_val[2] = (src).last_dc_val[2], \ + (dest).last_dc_val[3] = (src).last_dc_val[3]) #endif #endif typedef struct { - struct jpeg_entropy_decoder pub; /* public fields */ + struct jpeg_entropy_decoder pub; /* public fields */ - /* These fields are loaded into local variables at start of each MCU. - * In case of suspension, we exit WITHOUT updating them. - */ - bitread_perm_state bitstate; /* Bit buffer at start of MCU */ - savable_state saved; /* Other state at start of MCU */ + /* These fields are loaded into local variables at start of each MCU. + * In case of suspension, we exit WITHOUT updating them. + */ + bitread_perm_state bitstate; /* Bit buffer at start of MCU */ + savable_state saved; /* Other state at start of MCU */ - /* These fields are NOT loaded into local working state. */ - boolean insufficient_data; /* set TRUE after emitting warning */ - unsigned int restarts_to_go; /* MCUs left in this restart interval */ + /* These fields are NOT loaded into local working state. */ + boolean insufficient_data; /* set TRUE after emitting warning */ + unsigned int restarts_to_go; /* MCUs left in this restart interval */ - /* Following two fields used only in progressive mode */ + /* Following two fields used only in progressive mode */ - /* Pointers to derived tables (these workspaces have image lifespan) */ - d_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; + /* Pointers to derived tables (these workspaces have image lifespan) */ + d_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; - d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */ + d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */ - /* Following fields used only in sequential mode */ + /* Following fields used only in sequential mode */ - /* Pointers to derived tables (these workspaces have image lifespan) */ - d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; - d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; + /* Pointers to derived tables (these workspaces have image lifespan) */ + d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; + d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; - /* Precalculated info set up by start_pass for use in decode_mcu: */ + /* Precalculated info set up by start_pass for use in decode_mcu: */ - /* Pointers to derived tables to be used for each block within an MCU */ - d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; - d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; - /* Whether we care about the DC and AC coefficient values for each block */ - int coef_limit[D_MAX_BLOCKS_IN_MCU]; + /* Pointers to derived tables to be used for each block within an MCU */ + d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; + d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; + /* Whether we care about the DC and AC coefficient values for each block */ + int coef_limit[D_MAX_BLOCKS_IN_MCU]; } huff_entropy_decoder; typedef huff_entropy_decoder * huff_entropy_ptr; static const int jpeg_zigzag_order[8][8] = { - { 0, 1, 5, 6, 14, 15, 27, 28 }, - { 2, 4, 7, 13, 16, 26, 29, 42 }, - { 3, 8, 12, 17, 25, 30, 41, 43 }, - { 9, 11, 18, 24, 31, 40, 44, 53 }, - { 10, 19, 23, 32, 39, 45, 52, 54 }, - { 20, 22, 33, 38, 46, 51, 55, 60 }, - { 21, 34, 37, 47, 50, 56, 59, 61 }, - { 35, 36, 48, 49, 57, 58, 62, 63 } + { 0, 1, 5, 6, 14, 15, 27, 28 }, + { 2, 4, 7, 13, 16, 26, 29, 42 }, + { 3, 8, 12, 17, 25, 30, 41, 43 }, + { 9, 11, 18, 24, 31, 40, 44, 53 }, + { 10, 19, 23, 32, 39, 45, 52, 54 }, + { 20, 22, 33, 38, 46, 51, 55, 60 }, + { 21, 34, 37, 47, 50, 56, 59, 61 }, + { 35, 36, 48, 49, 57, 58, 62, 63 } }; static const int jpeg_zigzag_order7[7][7] = { - { 0, 1, 5, 6, 14, 15, 27 }, - { 2, 4, 7, 13, 16, 26, 28 }, - { 3, 8, 12, 17, 25, 29, 38 }, - { 9, 11, 18, 24, 30, 37, 39 }, - { 10, 19, 23, 31, 36, 40, 45 }, - { 20, 22, 32, 35, 41, 44, 46 }, - { 21, 33, 34, 42, 43, 47, 48 } + { 0, 1, 5, 6, 14, 15, 27 }, + { 2, 4, 7, 13, 16, 26, 28 }, + { 3, 8, 12, 17, 25, 29, 38 }, + { 9, 11, 18, 24, 30, 37, 39 }, + { 10, 19, 23, 31, 36, 40, 45 }, + { 20, 22, 32, 35, 41, 44, 46 }, + { 21, 33, 34, 42, 43, 47, 48 } }; static const int jpeg_zigzag_order6[6][6] = { - { 0, 1, 5, 6, 14, 15 }, - { 2, 4, 7, 13, 16, 25 }, - { 3, 8, 12, 17, 24, 26 }, - { 9, 11, 18, 23, 27, 32 }, - { 10, 19, 22, 28, 31, 33 }, - { 20, 21, 29, 30, 34, 35 } + { 0, 1, 5, 6, 14, 15 }, + { 2, 4, 7, 13, 16, 25 }, + { 3, 8, 12, 17, 24, 26 }, + { 9, 11, 18, 23, 27, 32 }, + { 10, 19, 22, 28, 31, 33 }, + { 20, 21, 29, 30, 34, 35 } }; static const int jpeg_zigzag_order5[5][5] = { - { 0, 1, 5, 6, 14 }, - { 2, 4, 7, 13, 15 }, - { 3, 8, 12, 16, 21 }, - { 9, 11, 17, 20, 22 }, - { 10, 18, 19, 23, 24 } + { 0, 1, 5, 6, 14 }, + { 2, 4, 7, 13, 15 }, + { 3, 8, 12, 16, 21 }, + { 9, 11, 17, 20, 22 }, + { 10, 18, 19, 23, 24 } }; static const int jpeg_zigzag_order4[4][4] = { - { 0, 1, 5, 6 }, - { 2, 4, 7, 12 }, - { 3, 8, 11, 13 }, - { 9, 10, 14, 15 } + { 0, 1, 5, 6 }, + { 2, 4, 7, 12 }, + { 3, 8, 11, 13 }, + { 9, 10, 14, 15 } }; static const int jpeg_zigzag_order3[3][3] = { - { 0, 1, 5 }, - { 2, 4, 6 }, - { 3, 7, 8 } + { 0, 1, 5 }, + { 2, 4, 6 }, + { 3, 7, 8 } }; static const int jpeg_zigzag_order2[2][2] = { - { 0, 1 }, - { 2, 3 } + { 0, 1 }, + { 2, 3 } }; @@ -321,122 +321,122 @@ static const int jpeg_zigzag_order2[2][2] = { LOCAL(void) jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, - d_derived_tbl ** pdtbl) + d_derived_tbl ** pdtbl) { - JHUFF_TBL *htbl; - d_derived_tbl *dtbl; - int p, i, l, si, numsymbols; - int lookbits, ctr; - char huffsize[257]; - unsigned int huffcode[257]; - unsigned int code; - - /* Note that huffsize[] and huffcode[] are filled in code-length order, - * paralleling the order of the symbols themselves in htbl->huffval[]. - */ - - /* Find the input Huffman table */ - if (tblno < 0 || tblno >= NUM_HUFF_TBLS) - ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); - htbl = - isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; - if (htbl == NULL) - ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); - - /* Allocate a workspace if we haven't already done so. */ - if (*pdtbl == NULL) - *pdtbl = (d_derived_tbl *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(d_derived_tbl)); - dtbl = *pdtbl; - dtbl->pub = htbl; /* fill in back link */ - - /* Figure C.1: make table of Huffman code length for each symbol */ - - p = 0; - for (l = 1; l <= 16; l++) { - i = (int) htbl->bits[l]; - if (i < 0 || p + i > 256) /* protect against table overrun */ - ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); - while (i--) - huffsize[p++] = (char) l; - } - huffsize[p] = 0; - numsymbols = p; - - /* Figure C.2: generate the codes themselves */ - /* We also validate that the counts represent a legal Huffman code tree. */ - - code = 0; - si = huffsize[0]; - p = 0; - while (huffsize[p]) { - while (((int) huffsize[p]) == si) { - huffcode[p++] = code; - code++; - } - /* code is now 1 more than the last code used for codelength si; but - * it must still fit in si bits, since no code is allowed to be all ones. - */ - if (((INT32) code) >= (((INT32) 1) << si)) - ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); - code <<= 1; - si++; - } - - /* Figure F.15: generate decoding tables for bit-sequential decoding */ - - p = 0; - for (l = 1; l <= 16; l++) { - if (htbl->bits[l]) { - /* valoffset[l] = huffval[] index of 1st symbol of code length l, - * minus the minimum code of length l - */ - dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p]; - p += htbl->bits[l]; - dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ - } else { - dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ - } - } - dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ - - /* Compute lookahead tables to speed up decoding. - * First we set all the table entries to 0, indicating "too long"; - * then we iterate through the Huffman codes that are short enough and - * fill in all the entries that correspond to bit sequences starting - * with that code. - */ - - MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits)); - - p = 0; - for (l = 1; l <= HUFF_LOOKAHEAD; l++) { - for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { - /* l = current code's length, p = its index in huffcode[] & huffval[]. */ - /* Generate left-justified code followed by all possible bit sequences */ - lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); - for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { + JHUFF_TBL *htbl; + d_derived_tbl *dtbl; + int p, i, l, si, numsymbols; + int lookbits, ctr; + char huffsize[257]; + unsigned int huffcode[257]; + unsigned int code; + + /* Note that huffsize[] and huffcode[] are filled in code-length order, + * paralleling the order of the symbols themselves in htbl->huffval[]. + */ + + /* Find the input Huffman table */ + if (tblno < 0 || tblno >= NUM_HUFF_TBLS) + ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); + htbl = + isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; + if (htbl == NULL) + ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); + + /* Allocate a workspace if we haven't already done so. */ + if (*pdtbl == NULL) + *pdtbl = (d_derived_tbl *) + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, + SIZEOF(d_derived_tbl)); + dtbl = *pdtbl; + dtbl->pub = htbl; /* fill in back link */ + + /* Figure C.1: make table of Huffman code length for each symbol */ + + p = 0; + for (l = 1; l <= 16; l++) { + i = (int) htbl->bits[l]; + if (i < 0 || p + i > 256) /* protect against table overrun */ + ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); + while (i--) + huffsize[p++] = (char) l; + } + huffsize[p] = 0; + numsymbols = p; + + /* Figure C.2: generate the codes themselves */ + /* We also validate that the counts represent a legal Huffman code tree. */ + + code = 0; + si = huffsize[0]; + p = 0; + while (huffsize[p]) { + while (((int) huffsize[p]) == si) { + huffcode[p++] = code; + code++; + } + /* code is now 1 more than the last code used for codelength si; but + * it must still fit in si bits, since no code is allowed to be all ones. + */ + if (((INT32) code) >= (((INT32) 1) << si)) + ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); + code <<= 1; + si++; + } + + /* Figure F.15: generate decoding tables for bit-sequential decoding */ + + p = 0; + for (l = 1; l <= 16; l++) { + if (htbl->bits[l]) { + /* valoffset[l] = huffval[] index of 1st symbol of code length l, + * minus the minimum code of length l + */ + dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p]; + p += htbl->bits[l]; + dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ + } else { + dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ + } + } + dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ + + /* Compute lookahead tables to speed up decoding. + * First we set all the table entries to 0, indicating "too long"; + * then we iterate through the Huffman codes that are short enough and + * fill in all the entries that correspond to bit sequences starting + * with that code. + */ + + MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits)); + + p = 0; + for (l = 1; l <= HUFF_LOOKAHEAD; l++) { + for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { + /* l = current code's length, p = its index in huffcode[] & huffval[]. */ + /* Generate left-justified code followed by all possible bit sequences */ + lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); + for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { dtbl->look_nbits[lookbits] = l; dtbl->look_sym[lookbits] = htbl->huffval[p]; lookbits++; - } - } - } - - /* Validate symbols as being reasonable. - * For AC tables, we make no check, but accept all byte values 0..255. - * For DC tables, we require the symbols to be in range 0..15. - * (Tighter bounds could be applied depending on the data depth and mode, - * but this is sufficient to ensure safe decoding.) - */ - if (isDC) { - for (i = 0; i < numsymbols; i++) { - int sym = htbl->huffval[i]; - if (sym < 0 || sym > 15) + } + } + } + + /* Validate symbols as being reasonable. + * For AC tables, we make no check, but accept all byte values 0..255. + * For DC tables, we require the symbols to be in range 0..15. + * (Tighter bounds could be applied depending on the data depth and mode, + * but this is sufficient to ensure safe decoding.) + */ + if (isDC) { + for (i = 0; i < numsymbols; i++) { + int sym = htbl->huffval[i]; + if (sym < 0 || sym > 15) ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); - } - } + } + } } @@ -455,7 +455,7 @@ jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, */ #ifdef SLOW_SHIFT_32 -#define MIN_GET_BITS 15 /* minimum allowable value */ +#define MIN_GET_BITS 15 /* minimum allowable value */ #else #define MIN_GET_BITS (BIT_BUF_SIZE-7) #endif @@ -463,102 +463,102 @@ jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, LOCAL(boolean) jpeg_fill_bit_buffer (bitread_working_state * state, - register bit_buf_type get_buffer, register int bits_left, - int nbits) + register bit_buf_type get_buffer, register int bits_left, + int nbits) /* Load up the bit buffer to a depth of at least nbits */ { - /* Copy heavily used state fields into locals (hopefully registers) */ - register const JOCTET * next_input_byte = state->next_input_byte; - register size_t bytes_in_buffer = state->bytes_in_buffer; - j_decompress_ptr cinfo = state->cinfo; + /* Copy heavily used state fields into locals (hopefully registers) */ + register const JOCTET * next_input_byte = state->next_input_byte; + register size_t bytes_in_buffer = state->bytes_in_buffer; + j_decompress_ptr cinfo = state->cinfo; - /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ - /* (It is assumed that no request will be for more than that many bits.) */ - /* We fail to do so only if we hit a marker or are forced to suspend. */ + /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ + /* (It is assumed that no request will be for more than that many bits.) */ + /* We fail to do so only if we hit a marker or are forced to suspend. */ - if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ - while (bits_left < MIN_GET_BITS) { - register int c; + if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ + while (bits_left < MIN_GET_BITS) { + register int c; - /* Attempt to read a byte */ - if (bytes_in_buffer == 0) { + /* Attempt to read a byte */ + if (bytes_in_buffer == 0) { if (! (*cinfo->src->fill_input_buffer) (cinfo)) - return FALSE; + return FALSE; next_input_byte = cinfo->src->next_input_byte; bytes_in_buffer = cinfo->src->bytes_in_buffer; - } - bytes_in_buffer--; - c = GETJOCTET(*next_input_byte++); + } + bytes_in_buffer--; + c = GETJOCTET(*next_input_byte++); - /* If it's 0xFF, check and discard stuffed zero byte */ - if (c == 0xFF) { + /* If it's 0xFF, check and discard stuffed zero byte */ + if (c == 0xFF) { /* Loop here to discard any padding FF's on terminating marker, - * so that we can save a valid unread_marker value. NOTE: we will - * accept multiple FF's followed by a 0 as meaning a single FF data - * byte. This data pattern is not valid according to the standard. - */ + * so that we can save a valid unread_marker value. NOTE: we will + * accept multiple FF's followed by a 0 as meaning a single FF data + * byte. This data pattern is not valid according to the standard. + */ do { - if (bytes_in_buffer == 0) { - if (! (*cinfo->src->fill_input_buffer) (cinfo)) - return FALSE; - next_input_byte = cinfo->src->next_input_byte; - bytes_in_buffer = cinfo->src->bytes_in_buffer; - } - bytes_in_buffer--; - c = GETJOCTET(*next_input_byte++); + if (bytes_in_buffer == 0) { + if (! (*cinfo->src->fill_input_buffer) (cinfo)) + return FALSE; + next_input_byte = cinfo->src->next_input_byte; + bytes_in_buffer = cinfo->src->bytes_in_buffer; + } + bytes_in_buffer--; + c = GETJOCTET(*next_input_byte++); } while (c == 0xFF); if (c == 0) { - /* Found FF/00, which represents an FF data byte */ - c = 0xFF; + /* Found FF/00, which represents an FF data byte */ + c = 0xFF; } else { - /* Oops, it's actually a marker indicating end of compressed data. - * Save the marker code for later use. - * Fine point: it might appear that we should save the marker into - * bitread working state, not straight into permanent state. But - * once we have hit a marker, we cannot need to suspend within the - * current MCU, because we will read no more bytes from the data - * source. So it is OK to update permanent state right away. - */ - cinfo->unread_marker = c; - /* See if we need to insert some fake zero bits. */ - goto no_more_bytes; + /* Oops, it's actually a marker indicating end of compressed data. + * Save the marker code for later use. + * Fine point: it might appear that we should save the marker into + * bitread working state, not straight into permanent state. But + * once we have hit a marker, we cannot need to suspend within the + * current MCU, because we will read no more bytes from the data + * source. So it is OK to update permanent state right away. + */ + cinfo->unread_marker = c; + /* See if we need to insert some fake zero bits. */ + goto no_more_bytes; } - } - - /* OK, load c into get_buffer */ - get_buffer = (get_buffer << 8) | c; - bits_left += 8; - } /* end while */ - } else { - no_more_bytes: - /* We get here if we've read the marker that terminates the compressed - * data segment. There should be enough bits in the buffer register - * to satisfy the request; if so, no problem. - */ - if (nbits > bits_left) { - /* Uh-oh. Report corrupted data to user and stuff zeroes into - * the data stream, so that we can produce some kind of image. - * We use a nonvolatile flag to ensure that only one warning message - * appears per data segment. - */ - if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) { + } + + /* OK, load c into get_buffer */ + get_buffer = (get_buffer << 8) | c; + bits_left += 8; + } /* end while */ + } else { + no_more_bytes: + /* We get here if we've read the marker that terminates the compressed + * data segment. There should be enough bits in the buffer register + * to satisfy the request; if so, no problem. + */ + if (nbits > bits_left) { + /* Uh-oh. Report corrupted data to user and stuff zeroes into + * the data stream, so that we can produce some kind of image. + * We use a nonvolatile flag to ensure that only one warning message + * appears per data segment. + */ + if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) { WARNMS(cinfo, JWRN_HIT_MARKER); ((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE; - } - /* Fill the buffer with zero bits */ - get_buffer <<= MIN_GET_BITS - bits_left; - bits_left = MIN_GET_BITS; - } - } - - /* Unload the local registers */ - state->next_input_byte = next_input_byte; - state->bytes_in_buffer = bytes_in_buffer; - state->get_buffer = get_buffer; - state->bits_left = bits_left; - - return TRUE; + } + /* Fill the buffer with zero bits */ + get_buffer <<= MIN_GET_BITS - bits_left; + bits_left = MIN_GET_BITS; + } + } + + /* Unload the local registers */ + state->next_input_byte = next_input_byte; + state->bytes_in_buffer = bytes_in_buffer; + state->get_buffer = get_buffer; + state->bits_left = bits_left; + + return TRUE; } @@ -577,9 +577,9 @@ jpeg_fill_bit_buffer (bitread_working_state * state, #define BIT_MASK(nbits) bmask[nbits] #define HUFF_EXTEND(x,s) ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x)) -static const int bmask[16] = /* bmask[n] is mask for n rightmost bits */ - { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, - 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF }; +static const int bmask[16] = /* bmask[n] is mask for n rightmost bits */ + { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, + 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF }; #endif /* AVOID_TABLES */ @@ -590,40 +590,40 @@ static const int bmask[16] = /* bmask[n] is mask for n rightmost bits */ LOCAL(int) jpeg_huff_decode (bitread_working_state * state, - register bit_buf_type get_buffer, register int bits_left, - d_derived_tbl * htbl, int min_bits) + register bit_buf_type get_buffer, register int bits_left, + d_derived_tbl * htbl, int min_bits) { - register int l = min_bits; - register INT32 code; + register int l = min_bits; + register INT32 code; - /* HUFF_DECODE has determined that the code is at least min_bits */ - /* bits long, so fetch that many bits in one swoop. */ + /* HUFF_DECODE has determined that the code is at least min_bits */ + /* bits long, so fetch that many bits in one swoop. */ - CHECK_BIT_BUFFER(*state, l, return -1); - code = GET_BITS(l); + CHECK_BIT_BUFFER(*state, l, return -1); + code = GET_BITS(l); - /* Collect the rest of the Huffman code one bit at a time. */ - /* This is per Figure F.16 in the JPEG spec. */ + /* Collect the rest of the Huffman code one bit at a time. */ + /* This is per Figure F.16 in the JPEG spec. */ - while (code > htbl->maxcode[l]) { - code <<= 1; - CHECK_BIT_BUFFER(*state, 1, return -1); - code |= GET_BITS(1); - l++; - } + while (code > htbl->maxcode[l]) { + code <<= 1; + CHECK_BIT_BUFFER(*state, 1, return -1); + code |= GET_BITS(1); + l++; + } - /* Unload the local registers */ - state->get_buffer = get_buffer; - state->bits_left = bits_left; + /* Unload the local registers */ + state->get_buffer = get_buffer; + state->bits_left = bits_left; - /* With garbage input we may reach the sentinel value l = 17. */ + /* With garbage input we may reach the sentinel value l = 17. */ - if (l > 16) { - WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); - return 0; /* fake a zero as the safest result */ - } + if (l > 16) { + WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); + return 0; /* fake a zero as the safest result */ + } - return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; + return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; } @@ -635,36 +635,36 @@ jpeg_huff_decode (bitread_working_state * state, LOCAL(boolean) process_restart (j_decompress_ptr cinfo) { - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - int ci; - - /* Throw away any unused bits remaining in bit buffer; */ - /* include any full bytes in next_marker's count of discarded bytes */ - cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; - entropy->bitstate.bits_left = 0; - - /* Advance past the RSTn marker */ - if (! (*cinfo->marker->read_restart_marker) (cinfo)) - return FALSE; - - /* Re-initialize DC predictions to 0 */ - for (ci = 0; ci < cinfo->comps_in_scan; ci++) - entropy->saved.last_dc_val[ci] = 0; - /* Re-init EOB run count, too */ - entropy->saved.EOBRUN = 0; - - /* Reset restart counter */ - entropy->restarts_to_go = cinfo->restart_interval; - - /* Reset out-of-data flag, unless read_restart_marker left us smack up - * against a marker. In that case we will end up treating the next data - * segment as empty, and we can avoid producing bogus output pixels by - * leaving the flag set. - */ - if (cinfo->unread_marker == 0) - entropy->insufficient_data = FALSE; - - return TRUE; + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; + int ci; + + /* Throw away any unused bits remaining in bit buffer; */ + /* include any full bytes in next_marker's count of discarded bytes */ + cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; + entropy->bitstate.bits_left = 0; + + /* Advance past the RSTn marker */ + if (! (*cinfo->marker->read_restart_marker) (cinfo)) + return FALSE; + + /* Re-initialize DC predictions to 0 */ + for (ci = 0; ci < cinfo->comps_in_scan; ci++) + entropy->saved.last_dc_val[ci] = 0; + /* Re-init EOB run count, too */ + entropy->saved.EOBRUN = 0; + + /* Reset restart counter */ + entropy->restarts_to_go = cinfo->restart_interval; + + /* Reset out-of-data flag, unless read_restart_marker left us smack up + * against a marker. In that case we will end up treating the next data + * segment as empty, and we can avoid producing bogus output pixels by + * leaving the flag set. + */ + if (cinfo->unread_marker == 0) + entropy->insufficient_data = FALSE; + + return TRUE; } @@ -694,66 +694,66 @@ process_restart (j_decompress_ptr cinfo) METHODDEF(boolean) decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - int Al = cinfo->Al; - register int s, r; - int blkn, ci; - JBLOCKROW block; - BITREAD_STATE_VARS; - savable_state state; - d_derived_tbl * tbl; - jpeg_component_info * compptr; - - /* Process restart marker if needed; may have to suspend */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) - if (! process_restart(cinfo)) + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; + int Al = cinfo->Al; + register int s, r; + int blkn, ci; + JBLOCKROW block; + BITREAD_STATE_VARS; + savable_state state; + d_derived_tbl * tbl; + jpeg_component_info * compptr; + + /* Process restart marker if needed; may have to suspend */ + if (cinfo->restart_interval) { + if (entropy->restarts_to_go == 0) + if (! process_restart(cinfo)) return FALSE; - } + } - /* If we've run out of data, just leave the MCU set to zeroes. - * This way, we return uniform gray for the remainder of the segment. - */ - if (! entropy->insufficient_data) { + /* If we've run out of data, just leave the MCU set to zeroes. + * This way, we return uniform gray for the remainder of the segment. + */ + if (! entropy->insufficient_data) { - /* Load up working state */ - BITREAD_LOAD_STATE(cinfo,entropy->bitstate); - ASSIGN_STATE(state, entropy->saved); + /* Load up working state */ + BITREAD_LOAD_STATE(cinfo,entropy->bitstate); + ASSIGN_STATE(state, entropy->saved); - /* Outer loop handles each block in the MCU */ + /* Outer loop handles each block in the MCU */ - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - block = MCU_data[blkn]; - ci = cinfo->MCU_membership[blkn]; - compptr = cinfo->cur_comp_info[ci]; - tbl = entropy->derived_tbls[compptr->dc_tbl_no]; + for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { + block = MCU_data[blkn]; + ci = cinfo->MCU_membership[blkn]; + compptr = cinfo->cur_comp_info[ci]; + tbl = entropy->derived_tbls[compptr->dc_tbl_no]; - /* Decode a single block's worth of coefficients */ + /* Decode a single block's worth of coefficients */ - /* Section F.2.2.1: decode the DC coefficient difference */ - HUFF_DECODE(s, br_state, tbl, return FALSE, label1); - if (s) { + /* Section F.2.2.1: decode the DC coefficient difference */ + HUFF_DECODE(s, br_state, tbl, return FALSE, label1); + if (s) { CHECK_BIT_BUFFER(br_state, s, return FALSE); r = GET_BITS(s); s = HUFF_EXTEND(r, s); - } + } - /* Convert DC difference to actual value, update last_dc_val */ - s += state.last_dc_val[ci]; - state.last_dc_val[ci] = s; - /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */ - (*block)[0] = (JCOEF) (s << Al); - } + /* Convert DC difference to actual value, update last_dc_val */ + s += state.last_dc_val[ci]; + state.last_dc_val[ci] = s; + /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */ + (*block)[0] = (JCOEF) (s << Al); + } - /* Completed MCU, so update state */ - BITREAD_SAVE_STATE(cinfo,entropy->bitstate); - ASSIGN_STATE(entropy->saved, state); - } + /* Completed MCU, so update state */ + BITREAD_SAVE_STATE(cinfo,entropy->bitstate); + ASSIGN_STATE(entropy->saved, state); + } - /* Account for restart interval (no-op if not using restarts) */ - entropy->restarts_to_go--; + /* Account for restart interval (no-op if not using restarts) */ + entropy->restarts_to_go--; - return TRUE; + return TRUE; } @@ -765,83 +765,83 @@ decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) METHODDEF(boolean) decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - register int s, k, r; - unsigned int EOBRUN; - int Se, Al; - const int * natural_order; - JBLOCKROW block; - BITREAD_STATE_VARS; - d_derived_tbl * tbl; - - /* Process restart marker if needed; may have to suspend */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) - if (! process_restart(cinfo)) + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; + register int s, k, r; + unsigned int EOBRUN; + int Se, Al; + const int * natural_order; + JBLOCKROW block; + BITREAD_STATE_VARS; + d_derived_tbl * tbl; + + /* Process restart marker if needed; may have to suspend */ + if (cinfo->restart_interval) { + if (entropy->restarts_to_go == 0) + if (! process_restart(cinfo)) return FALSE; - } + } - /* If we've run out of data, just leave the MCU set to zeroes. - * This way, we return uniform gray for the remainder of the segment. - */ - if (! entropy->insufficient_data) { + /* If we've run out of data, just leave the MCU set to zeroes. + * This way, we return uniform gray for the remainder of the segment. + */ + if (! entropy->insufficient_data) { - Se = cinfo->Se; - Al = cinfo->Al; - natural_order = cinfo->natural_order; + Se = cinfo->Se; + Al = cinfo->Al; + natural_order = cinfo->natural_order; - /* Load up working state. - * We can avoid loading/saving bitread state if in an EOB run. - */ - EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ + /* Load up working state. + * We can avoid loading/saving bitread state if in an EOB run. + */ + EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ - /* There is always only one block per MCU */ + /* There is always only one block per MCU */ - if (EOBRUN > 0) /* if it's a band of zeroes... */ - EOBRUN--; /* ...process it now (we do nothing) */ - else { - BITREAD_LOAD_STATE(cinfo,entropy->bitstate); - block = MCU_data[0]; - tbl = entropy->ac_derived_tbl; + if (EOBRUN > 0) /* if it's a band of zeroes... */ + EOBRUN--; /* ...process it now (we do nothing) */ + else { + BITREAD_LOAD_STATE(cinfo,entropy->bitstate); + block = MCU_data[0]; + tbl = entropy->ac_derived_tbl; - for (k = cinfo->Ss; k <= Se; k++) { + for (k = cinfo->Ss; k <= Se; k++) { HUFF_DECODE(s, br_state, tbl, return FALSE, label2); r = s >> 4; s &= 15; if (s) { - k += r; - CHECK_BIT_BUFFER(br_state, s, return FALSE); - r = GET_BITS(s); - s = HUFF_EXTEND(r, s); - /* Scale and output coefficient in natural (dezigzagged) order */ - (*block)[natural_order[k]] = (JCOEF) (s << Al); + k += r; + CHECK_BIT_BUFFER(br_state, s, return FALSE); + r = GET_BITS(s); + s = HUFF_EXTEND(r, s); + /* Scale and output coefficient in natural (dezigzagged) order */ + (*block)[natural_order[k]] = (JCOEF) (s << Al); } else { - if (r == 15) { /* ZRL */ - k += 15; /* skip 15 zeroes in band */ - } else { /* EOBr, run length is 2^r + appended bits */ - EOBRUN = 1 << r; - if (r) { /* EOBr, r > 0 */ - CHECK_BIT_BUFFER(br_state, r, return FALSE); - r = GET_BITS(r); - EOBRUN += r; - } - EOBRUN--; /* this band is processed at this moment */ - break; /* force end-of-band */ - } + if (r == 15) { /* ZRL */ + k += 15; /* skip 15 zeroes in band */ + } else { /* EOBr, run length is 2^r + appended bits */ + EOBRUN = 1 << r; + if (r) { /* EOBr, r > 0 */ + CHECK_BIT_BUFFER(br_state, r, return FALSE); + r = GET_BITS(r); + EOBRUN += r; + } + EOBRUN--; /* this band is processed at this moment */ + break; /* force end-of-band */ + } } - } + } - BITREAD_SAVE_STATE(cinfo,entropy->bitstate); - } + BITREAD_SAVE_STATE(cinfo,entropy->bitstate); + } - /* Completed MCU, so update state */ - entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ - } + /* Completed MCU, so update state */ + entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ + } - /* Account for restart interval (no-op if not using restarts) */ - entropy->restarts_to_go--; + /* Account for restart interval (no-op if not using restarts) */ + entropy->restarts_to_go--; - return TRUE; + return TRUE; } @@ -854,45 +854,45 @@ decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) METHODDEF(boolean) decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ - int blkn; - JBLOCKROW block; - BITREAD_STATE_VARS; - - /* Process restart marker if needed; may have to suspend */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) - if (! process_restart(cinfo)) + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; + int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ + int blkn; + JBLOCKROW block; + BITREAD_STATE_VARS; + + /* Process restart marker if needed; may have to suspend */ + if (cinfo->restart_interval) { + if (entropy->restarts_to_go == 0) + if (! process_restart(cinfo)) return FALSE; - } + } - /* Not worth the cycles to check insufficient_data here, - * since we will not change the data anyway if we read zeroes. - */ + /* Not worth the cycles to check insufficient_data here, + * since we will not change the data anyway if we read zeroes. + */ - /* Load up working state */ - BITREAD_LOAD_STATE(cinfo,entropy->bitstate); + /* Load up working state */ + BITREAD_LOAD_STATE(cinfo,entropy->bitstate); - /* Outer loop handles each block in the MCU */ + /* Outer loop handles each block in the MCU */ - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - block = MCU_data[blkn]; + for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { + block = MCU_data[blkn]; - /* Encoded data is simply the next bit of the two's-complement DC value */ - CHECK_BIT_BUFFER(br_state, 1, return FALSE); - if (GET_BITS(1)) - (*block)[0] |= p1; - /* Note: since we use |=, repeating the assignment later is safe */ - } + /* Encoded data is simply the next bit of the two's-complement DC value */ + CHECK_BIT_BUFFER(br_state, 1, return FALSE); + if (GET_BITS(1)) + (*block)[0] |= p1; + /* Note: since we use |=, repeating the assignment later is safe */ + } - /* Completed MCU, so update state */ - BITREAD_SAVE_STATE(cinfo,entropy->bitstate); + /* Completed MCU, so update state */ + BITREAD_SAVE_STATE(cinfo,entropy->bitstate); - /* Account for restart interval (no-op if not using restarts) */ - entropy->restarts_to_go--; + /* Account for restart interval (no-op if not using restarts) */ + entropy->restarts_to_go--; - return TRUE; + return TRUE; } @@ -903,150 +903,150 @@ decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) METHODDEF(boolean) decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - register int s, k, r; - unsigned int EOBRUN; - int Se, p1, m1; - const int * natural_order; - JBLOCKROW block; - JCOEFPTR thiscoef; - BITREAD_STATE_VARS; - d_derived_tbl * tbl; - int num_newnz; - int newnz_pos[DCTSIZE2]; - - /* Process restart marker if needed; may have to suspend */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) - if (! process_restart(cinfo)) + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; + register int s, k, r; + unsigned int EOBRUN; + int Se, p1, m1; + const int * natural_order; + JBLOCKROW block; + JCOEFPTR thiscoef; + BITREAD_STATE_VARS; + d_derived_tbl * tbl; + int num_newnz; + int newnz_pos[DCTSIZE2]; + + /* Process restart marker if needed; may have to suspend */ + if (cinfo->restart_interval) { + if (entropy->restarts_to_go == 0) + if (! process_restart(cinfo)) return FALSE; - } - - /* If we've run out of data, don't modify the MCU. - */ - if (! entropy->insufficient_data) { - - Se = cinfo->Se; - p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ - m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */ - natural_order = cinfo->natural_order; - - /* Load up working state */ - BITREAD_LOAD_STATE(cinfo,entropy->bitstate); - EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ - - /* There is always only one block per MCU */ - block = MCU_data[0]; - tbl = entropy->ac_derived_tbl; - - /* If we are forced to suspend, we must undo the assignments to any newly - * nonzero coefficients in the block, because otherwise we'd get confused - * next time about which coefficients were already nonzero. - * But we need not undo addition of bits to already-nonzero coefficients; - * instead, we can test the current bit to see if we already did it. - */ - num_newnz = 0; - - /* initialize coefficient loop counter to start of band */ - k = cinfo->Ss; - - if (EOBRUN == 0) { - for (; k <= Se; k++) { + } + + /* If we've run out of data, don't modify the MCU. + */ + if (! entropy->insufficient_data) { + + Se = cinfo->Se; + p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ + m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */ + natural_order = cinfo->natural_order; + + /* Load up working state */ + BITREAD_LOAD_STATE(cinfo,entropy->bitstate); + EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ + + /* There is always only one block per MCU */ + block = MCU_data[0]; + tbl = entropy->ac_derived_tbl; + + /* If we are forced to suspend, we must undo the assignments to any newly + * nonzero coefficients in the block, because otherwise we'd get confused + * next time about which coefficients were already nonzero. + * But we need not undo addition of bits to already-nonzero coefficients; + * instead, we can test the current bit to see if we already did it. + */ + num_newnz = 0; + + /* initialize coefficient loop counter to start of band */ + k = cinfo->Ss; + + if (EOBRUN == 0) { + for (; k <= Se; k++) { HUFF_DECODE(s, br_state, tbl, goto undoit, label3); r = s >> 4; s &= 15; if (s) { - if (s != 1) /* size of new coef should always be 1 */ - WARNMS(cinfo, JWRN_HUFF_BAD_CODE); - CHECK_BIT_BUFFER(br_state, 1, goto undoit); - if (GET_BITS(1)) - s = p1; /* newly nonzero coef is positive */ - else - s = m1; /* newly nonzero coef is negative */ + if (s != 1) /* size of new coef should always be 1 */ + WARNMS(cinfo, JWRN_HUFF_BAD_CODE); + CHECK_BIT_BUFFER(br_state, 1, goto undoit); + if (GET_BITS(1)) + s = p1; /* newly nonzero coef is positive */ + else + s = m1; /* newly nonzero coef is negative */ } else { - if (r != 15) { - EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */ - if (r) { - CHECK_BIT_BUFFER(br_state, r, goto undoit); - r = GET_BITS(r); - EOBRUN += r; - } - break; /* rest of block is handled by EOB logic */ - } - /* note s = 0 for processing ZRL */ + if (r != 15) { + EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */ + if (r) { + CHECK_BIT_BUFFER(br_state, r, goto undoit); + r = GET_BITS(r); + EOBRUN += r; + } + break; /* rest of block is handled by EOB logic */ + } + /* note s = 0 for processing ZRL */ } /* Advance over already-nonzero coefs and r still-zero coefs, - * appending correction bits to the nonzeroes. A correction bit is 1 - * if the absolute value of the coefficient must be increased. - */ + * appending correction bits to the nonzeroes. A correction bit is 1 + * if the absolute value of the coefficient must be increased. + */ do { - thiscoef = *block + natural_order[k]; - if (*thiscoef != 0) { - CHECK_BIT_BUFFER(br_state, 1, goto undoit); - if (GET_BITS(1)) { - if ((*thiscoef & p1) == 0) { /* do nothing if already set it */ + thiscoef = *block + natural_order[k]; + if (*thiscoef != 0) { + CHECK_BIT_BUFFER(br_state, 1, goto undoit); + if (GET_BITS(1)) { + if ((*thiscoef & p1) == 0) { /* do nothing if already set it */ if (*thiscoef >= 0) - *thiscoef += p1; + *thiscoef += p1; else - *thiscoef += m1; - } - } - } else { - if (--r < 0) - break; /* reached target zero coefficient */ - } - k++; + *thiscoef += m1; + } + } + } else { + if (--r < 0) + break; /* reached target zero coefficient */ + } + k++; } while (k <= Se); if (s) { - int pos = natural_order[k]; - /* Output newly nonzero coefficient */ - (*block)[pos] = (JCOEF) s; - /* Remember its position in case we have to suspend */ - newnz_pos[num_newnz++] = pos; + int pos = natural_order[k]; + /* Output newly nonzero coefficient */ + (*block)[pos] = (JCOEF) s; + /* Remember its position in case we have to suspend */ + newnz_pos[num_newnz++] = pos; + } + } } - } - } - - if (EOBRUN > 0) { - /* Scan any remaining coefficient positions after the end-of-band - * (the last newly nonzero coefficient, if any). Append a correction - * bit to each already-nonzero coefficient. A correction bit is 1 - * if the absolute value of the coefficient must be increased. - */ - for (; k <= Se; k++) { + + if (EOBRUN > 0) { + /* Scan any remaining coefficient positions after the end-of-band + * (the last newly nonzero coefficient, if any). Append a correction + * bit to each already-nonzero coefficient. A correction bit is 1 + * if the absolute value of the coefficient must be increased. + */ + for (; k <= Se; k++) { thiscoef = *block + natural_order[k]; if (*thiscoef != 0) { - CHECK_BIT_BUFFER(br_state, 1, goto undoit); - if (GET_BITS(1)) { - if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ - if (*thiscoef >= 0) + CHECK_BIT_BUFFER(br_state, 1, goto undoit); + if (GET_BITS(1)) { + if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ + if (*thiscoef >= 0) *thiscoef += p1; - else + else *thiscoef += m1; - } - } + } + } + } + } + /* Count one block completed in EOB run */ + EOBRUN--; } - } - /* Count one block completed in EOB run */ - EOBRUN--; - } - /* Completed MCU, so update state */ - BITREAD_SAVE_STATE(cinfo,entropy->bitstate); - entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ - } + /* Completed MCU, so update state */ + BITREAD_SAVE_STATE(cinfo,entropy->bitstate); + entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ + } - /* Account for restart interval (no-op if not using restarts) */ - entropy->restarts_to_go--; + /* Account for restart interval (no-op if not using restarts) */ + entropy->restarts_to_go--; - return TRUE; + return TRUE; undoit: - /* Re-zero any output coefficients that we made newly nonzero */ - while (num_newnz > 0) - (*block)[newnz_pos[--num_newnz]] = 0; + /* Re-zero any output coefficients that we made newly nonzero */ + while (num_newnz > 0) + (*block)[newnz_pos[--num_newnz]] = 0; - return FALSE; + return FALSE; } @@ -1058,54 +1058,54 @@ undoit: METHODDEF(boolean) decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - const int * natural_order; - int Se, blkn; - BITREAD_STATE_VARS; - savable_state state; - - /* Process restart marker if needed; may have to suspend */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) - if (! process_restart(cinfo)) + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; + const int * natural_order; + int Se, blkn; + BITREAD_STATE_VARS; + savable_state state; + + /* Process restart marker if needed; may have to suspend */ + if (cinfo->restart_interval) { + if (entropy->restarts_to_go == 0) + if (! process_restart(cinfo)) return FALSE; - } + } - /* If we've run out of data, just leave the MCU set to zeroes. - * This way, we return uniform gray for the remainder of the segment. - */ - if (! entropy->insufficient_data) { + /* If we've run out of data, just leave the MCU set to zeroes. + * This way, we return uniform gray for the remainder of the segment. + */ + if (! entropy->insufficient_data) { - natural_order = cinfo->natural_order; - Se = cinfo->lim_Se; + natural_order = cinfo->natural_order; + Se = cinfo->lim_Se; - /* Load up working state */ - BITREAD_LOAD_STATE(cinfo,entropy->bitstate); - ASSIGN_STATE(state, entropy->saved); + /* Load up working state */ + BITREAD_LOAD_STATE(cinfo,entropy->bitstate); + ASSIGN_STATE(state, entropy->saved); - /* Outer loop handles each block in the MCU */ + /* Outer loop handles each block in the MCU */ - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - JBLOCKROW block = MCU_data[blkn]; - d_derived_tbl * htbl; - register int s, k, r; - int coef_limit, ci; + for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { + JBLOCKROW block = MCU_data[blkn]; + d_derived_tbl * htbl; + register int s, k, r; + int coef_limit, ci; - /* Decode a single block's worth of coefficients */ + /* Decode a single block's worth of coefficients */ - /* Section F.2.2.1: decode the DC coefficient difference */ - htbl = entropy->dc_cur_tbls[blkn]; - HUFF_DECODE(s, br_state, htbl, return FALSE, label1); + /* Section F.2.2.1: decode the DC coefficient difference */ + htbl = entropy->dc_cur_tbls[blkn]; + HUFF_DECODE(s, br_state, htbl, return FALSE, label1); - htbl = entropy->ac_cur_tbls[blkn]; - k = 1; - coef_limit = entropy->coef_limit[blkn]; - if (coef_limit) { + htbl = entropy->ac_cur_tbls[blkn]; + k = 1; + coef_limit = entropy->coef_limit[blkn]; + if (coef_limit) { /* Convert DC difference to actual value, update last_dc_val */ if (s) { - CHECK_BIT_BUFFER(br_state, s, return FALSE); - r = GET_BITS(s); - s = HUFF_EXTEND(r, s); + CHECK_BIT_BUFFER(br_state, s, return FALSE); + r = GET_BITS(s); + s = HUFF_EXTEND(r, s); } ci = cinfo->MCU_membership[blkn]; s += state.last_dc_val[ci]; @@ -1116,65 +1116,65 @@ decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) /* Section F.2.2.2: decode the AC coefficients */ /* Since zeroes are skipped, output area must be cleared beforehand */ for (; k < coef_limit; k++) { - HUFF_DECODE(s, br_state, htbl, return FALSE, label2); - - r = s >> 4; - s &= 15; - - if (s) { - k += r; - CHECK_BIT_BUFFER(br_state, s, return FALSE); - r = GET_BITS(s); - s = HUFF_EXTEND(r, s); - /* Output coefficient in natural (dezigzagged) order. - * Note: the extra entries in natural_order[] will save us - * if k > Se, which could happen if the data is corrupted. - */ - (*block)[natural_order[k]] = (JCOEF) s; - } else { - if (r != 15) - goto EndOfBlock; - k += 15; - } + HUFF_DECODE(s, br_state, htbl, return FALSE, label2); + + r = s >> 4; + s &= 15; + + if (s) { + k += r; + CHECK_BIT_BUFFER(br_state, s, return FALSE); + r = GET_BITS(s); + s = HUFF_EXTEND(r, s); + /* Output coefficient in natural (dezigzagged) order. + * Note: the extra entries in natural_order[] will save us + * if k > Se, which could happen if the data is corrupted. + */ + (*block)[natural_order[k]] = (JCOEF) s; + } else { + if (r != 15) + goto EndOfBlock; + k += 15; + } } - } else { + } else { if (s) { - CHECK_BIT_BUFFER(br_state, s, return FALSE); - DROP_BITS(s); + CHECK_BIT_BUFFER(br_state, s, return FALSE); + DROP_BITS(s); } - } + } - /* Section F.2.2.2: decode the AC coefficients */ - /* In this path we just discard the values */ - for (; k <= Se; k++) { + /* Section F.2.2.2: decode the AC coefficients */ + /* In this path we just discard the values */ + for (; k <= Se; k++) { HUFF_DECODE(s, br_state, htbl, return FALSE, label3); r = s >> 4; s &= 15; if (s) { - k += r; - CHECK_BIT_BUFFER(br_state, s, return FALSE); - DROP_BITS(s); + k += r; + CHECK_BIT_BUFFER(br_state, s, return FALSE); + DROP_BITS(s); } else { - if (r != 15) - break; - k += 15; + if (r != 15) + break; + k += 15; } - } + } - EndOfBlock: ; - } + EndOfBlock: ; + } - /* Completed MCU, so update state */ - BITREAD_SAVE_STATE(cinfo,entropy->bitstate); - ASSIGN_STATE(entropy->saved, state); - } + /* Completed MCU, so update state */ + BITREAD_SAVE_STATE(cinfo,entropy->bitstate); + ASSIGN_STATE(entropy->saved, state); + } - /* Account for restart interval (no-op if not using restarts) */ - entropy->restarts_to_go--; + /* Account for restart interval (no-op if not using restarts) */ + entropy->restarts_to_go--; - return TRUE; + return TRUE; } @@ -1186,50 +1186,50 @@ decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) METHODDEF(boolean) decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - int blkn; - BITREAD_STATE_VARS; - savable_state state; - - /* Process restart marker if needed; may have to suspend */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) - if (! process_restart(cinfo)) + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; + int blkn; + BITREAD_STATE_VARS; + savable_state state; + + /* Process restart marker if needed; may have to suspend */ + if (cinfo->restart_interval) { + if (entropy->restarts_to_go == 0) + if (! process_restart(cinfo)) return FALSE; - } + } - /* If we've run out of data, just leave the MCU set to zeroes. - * This way, we return uniform gray for the remainder of the segment. - */ - if (! entropy->insufficient_data) { + /* If we've run out of data, just leave the MCU set to zeroes. + * This way, we return uniform gray for the remainder of the segment. + */ + if (! entropy->insufficient_data) { - /* Load up working state */ - BITREAD_LOAD_STATE(cinfo,entropy->bitstate); - ASSIGN_STATE(state, entropy->saved); + /* Load up working state */ + BITREAD_LOAD_STATE(cinfo,entropy->bitstate); + ASSIGN_STATE(state, entropy->saved); - /* Outer loop handles each block in the MCU */ + /* Outer loop handles each block in the MCU */ - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - JBLOCKROW block = MCU_data[blkn]; - d_derived_tbl * htbl; - register int s, k, r; - int coef_limit, ci; + for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { + JBLOCKROW block = MCU_data[blkn]; + d_derived_tbl * htbl; + register int s, k, r; + int coef_limit, ci; - /* Decode a single block's worth of coefficients */ + /* Decode a single block's worth of coefficients */ - /* Section F.2.2.1: decode the DC coefficient difference */ - htbl = entropy->dc_cur_tbls[blkn]; - HUFF_DECODE(s, br_state, htbl, return FALSE, label1); + /* Section F.2.2.1: decode the DC coefficient difference */ + htbl = entropy->dc_cur_tbls[blkn]; + HUFF_DECODE(s, br_state, htbl, return FALSE, label1); - htbl = entropy->ac_cur_tbls[blkn]; - k = 1; - coef_limit = entropy->coef_limit[blkn]; - if (coef_limit) { + htbl = entropy->ac_cur_tbls[blkn]; + k = 1; + coef_limit = entropy->coef_limit[blkn]; + if (coef_limit) { /* Convert DC difference to actual value, update last_dc_val */ if (s) { - CHECK_BIT_BUFFER(br_state, s, return FALSE); - r = GET_BITS(s); - s = HUFF_EXTEND(r, s); + CHECK_BIT_BUFFER(br_state, s, return FALSE); + r = GET_BITS(s); + s = HUFF_EXTEND(r, s); } ci = cinfo->MCU_membership[blkn]; s += state.last_dc_val[ci]; @@ -1240,65 +1240,65 @@ decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) /* Section F.2.2.2: decode the AC coefficients */ /* Since zeroes are skipped, output area must be cleared beforehand */ for (; k < coef_limit; k++) { - HUFF_DECODE(s, br_state, htbl, return FALSE, label2); - - r = s >> 4; - s &= 15; - - if (s) { - k += r; - CHECK_BIT_BUFFER(br_state, s, return FALSE); - r = GET_BITS(s); - s = HUFF_EXTEND(r, s); - /* Output coefficient in natural (dezigzagged) order. - * Note: the extra entries in jpeg_natural_order[] will save us - * if k >= DCTSIZE2, which could happen if the data is corrupted. - */ - (*block)[jpeg_natural_order[k]] = (JCOEF) s; - } else { - if (r != 15) - goto EndOfBlock; - k += 15; - } + HUFF_DECODE(s, br_state, htbl, return FALSE, label2); + + r = s >> 4; + s &= 15; + + if (s) { + k += r; + CHECK_BIT_BUFFER(br_state, s, return FALSE); + r = GET_BITS(s); + s = HUFF_EXTEND(r, s); + /* Output coefficient in natural (dezigzagged) order. + * Note: the extra entries in jpeg_natural_order[] will save us + * if k >= DCTSIZE2, which could happen if the data is corrupted. + */ + (*block)[jpeg_natural_order[k]] = (JCOEF) s; + } else { + if (r != 15) + goto EndOfBlock; + k += 15; + } } - } else { + } else { if (s) { - CHECK_BIT_BUFFER(br_state, s, return FALSE); - DROP_BITS(s); + CHECK_BIT_BUFFER(br_state, s, return FALSE); + DROP_BITS(s); } - } + } - /* Section F.2.2.2: decode the AC coefficients */ - /* In this path we just discard the values */ - for (; k < DCTSIZE2; k++) { + /* Section F.2.2.2: decode the AC coefficients */ + /* In this path we just discard the values */ + for (; k < DCTSIZE2; k++) { HUFF_DECODE(s, br_state, htbl, return FALSE, label3); r = s >> 4; s &= 15; if (s) { - k += r; - CHECK_BIT_BUFFER(br_state, s, return FALSE); - DROP_BITS(s); + k += r; + CHECK_BIT_BUFFER(br_state, s, return FALSE); + DROP_BITS(s); } else { - if (r != 15) - break; - k += 15; + if (r != 15) + break; + k += 15; } - } + } - EndOfBlock: ; - } + EndOfBlock: ; + } - /* Completed MCU, so update state */ - BITREAD_SAVE_STATE(cinfo,entropy->bitstate); - ASSIGN_STATE(entropy->saved, state); - } + /* Completed MCU, so update state */ + BITREAD_SAVE_STATE(cinfo,entropy->bitstate); + ASSIGN_STATE(entropy->saved, state); + } - /* Account for restart interval (no-op if not using restarts) */ - entropy->restarts_to_go--; + /* Account for restart interval (no-op if not using restarts) */ + entropy->restarts_to_go--; - return TRUE; + return TRUE; } @@ -1309,195 +1309,195 @@ decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) METHODDEF(void) start_pass_huff_decoder (j_decompress_ptr cinfo) { - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - int ci, blkn, tbl, i; - jpeg_component_info * compptr; - - if (cinfo->progressive_mode) { - /* Validate progressive scan parameters */ - if (cinfo->Ss == 0) { - if (cinfo->Se != 0) + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; + int ci, blkn, tbl, i; + jpeg_component_info * compptr; + + if (cinfo->progressive_mode) { + /* Validate progressive scan parameters */ + if (cinfo->Ss == 0) { + if (cinfo->Se != 0) goto bad; - } else { - /* need not check Ss/Se < 0 since they came from unsigned bytes */ - if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se) + } else { + /* need not check Ss/Se < 0 since they came from unsigned bytes */ + if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se) goto bad; - /* AC scans may have only one component */ - if (cinfo->comps_in_scan != 1) + /* AC scans may have only one component */ + if (cinfo->comps_in_scan != 1) goto bad; - } - if (cinfo->Ah != 0) { - /* Successive approximation refinement scan: must have Al = Ah-1. */ - if (cinfo->Ah-1 != cinfo->Al) + } + if (cinfo->Ah != 0) { + /* Successive approximation refinement scan: must have Al = Ah-1. */ + if (cinfo->Ah-1 != cinfo->Al) goto bad; - } - if (cinfo->Al > 13) { /* need not check for < 0 */ - /* Arguably the maximum Al value should be less than 13 for 8-bit precision, - * but the spec doesn't say so, and we try to be liberal about what we - * accept. Note: large Al values could result in out-of-range DC - * coefficients during early scans, leading to bizarre displays due to - * overflows in the IDCT math. But we won't crash. - */ - bad: - ERREXIT4(cinfo, JERR_BAD_PROGRESSION, - cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); - } - /* Update progression status, and verify that scan order is legal. - * Note that inter-scan inconsistencies are treated as warnings - * not fatal errors ... not clear if this is right way to behave. - */ - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; - int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; - if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ + } + if (cinfo->Al > 13) { /* need not check for < 0 */ + /* Arguably the maximum Al value should be less than 13 for 8-bit precision, + * but the spec doesn't say so, and we try to be liberal about what we + * accept. Note: large Al values could result in out-of-range DC + * coefficients during early scans, leading to bizarre displays due to + * overflows in the IDCT math. But we won't crash. + */ + bad: + ERREXIT4(cinfo, JERR_BAD_PROGRESSION, + cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); + } + /* Update progression status, and verify that scan order is legal. + * Note that inter-scan inconsistencies are treated as warnings + * not fatal errors ... not clear if this is right way to behave. + */ + for (ci = 0; ci < cinfo->comps_in_scan; ci++) { + int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; + int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; + if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); - for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { + for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; if (cinfo->Ah != expected) - WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); + WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); coef_bit_ptr[coefi] = cinfo->Al; - } - } + } + } - /* Select MCU decoding routine */ - if (cinfo->Ah == 0) { - if (cinfo->Ss == 0) + /* Select MCU decoding routine */ + if (cinfo->Ah == 0) { + if (cinfo->Ss == 0) entropy->pub.decode_mcu = decode_mcu_DC_first; - else + else entropy->pub.decode_mcu = decode_mcu_AC_first; - } else { - if (cinfo->Ss == 0) + } else { + if (cinfo->Ss == 0) entropy->pub.decode_mcu = decode_mcu_DC_refine; - else + else entropy->pub.decode_mcu = decode_mcu_AC_refine; - } - - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - /* Make sure requested tables are present, and compute derived tables. - * We may build same derived table more than once, but it's not expensive. - */ - if (cinfo->Ss == 0) { - if (cinfo->Ah == 0) { /* DC refinement needs no table */ - tbl = compptr->dc_tbl_no; - jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, - & entropy->derived_tbls[tbl]); } - } else { + + for (ci = 0; ci < cinfo->comps_in_scan; ci++) { + compptr = cinfo->cur_comp_info[ci]; + /* Make sure requested tables are present, and compute derived tables. + * We may build same derived table more than once, but it's not expensive. + */ + if (cinfo->Ss == 0) { + if (cinfo->Ah == 0) { /* DC refinement needs no table */ + tbl = compptr->dc_tbl_no; + jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, + & entropy->derived_tbls[tbl]); + } + } else { tbl = compptr->ac_tbl_no; jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, & entropy->derived_tbls[tbl]); /* remember the single active table */ entropy->ac_derived_tbl = entropy->derived_tbls[tbl]; - } - /* Initialize DC predictions to 0 */ - entropy->saved.last_dc_val[ci] = 0; - } - - /* Initialize private state variables */ - entropy->saved.EOBRUN = 0; - } else { - /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. - * This ought to be an error condition, but we make it a warning because - * there are some baseline files out there with all zeroes in these bytes. - */ - if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || + } + /* Initialize DC predictions to 0 */ + entropy->saved.last_dc_val[ci] = 0; + } + + /* Initialize private state variables */ + entropy->saved.EOBRUN = 0; + } else { + /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. + * This ought to be an error condition, but we make it a warning because + * there are some baseline files out there with all zeroes in these bytes. + */ + if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || ((cinfo->is_baseline || cinfo->Se < DCTSIZE2) && cinfo->Se != cinfo->lim_Se)) - WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); - - /* Select MCU decoding routine */ - /* We retain the hard-coded case for full-size blocks. - * This is not necessary, but it appears that this version is slightly - * more performant in the given implementation. - * With an improved implementation we would prefer a single optimized - * function. - */ - if (cinfo->lim_Se != DCTSIZE2-1) - entropy->pub.decode_mcu = decode_mcu_sub; - else - entropy->pub.decode_mcu = decode_mcu; - - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - /* Compute derived values for Huffman tables */ - /* We may do this more than once for a table, but it's not expensive */ - tbl = compptr->dc_tbl_no; - jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, - & entropy->dc_derived_tbls[tbl]); - if (cinfo->lim_Se) { /* AC needs no table when not present */ + WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); + + /* Select MCU decoding routine */ + /* We retain the hard-coded case for full-size blocks. + * This is not necessary, but it appears that this version is slightly + * more performant in the given implementation. + * With an improved implementation we would prefer a single optimized + * function. + */ + if (cinfo->lim_Se != DCTSIZE2-1) + entropy->pub.decode_mcu = decode_mcu_sub; + else + entropy->pub.decode_mcu = decode_mcu; + + for (ci = 0; ci < cinfo->comps_in_scan; ci++) { + compptr = cinfo->cur_comp_info[ci]; + /* Compute derived values for Huffman tables */ + /* We may do this more than once for a table, but it's not expensive */ + tbl = compptr->dc_tbl_no; + jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, + & entropy->dc_derived_tbls[tbl]); + if (cinfo->lim_Se) { /* AC needs no table when not present */ tbl = compptr->ac_tbl_no; jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, & entropy->ac_derived_tbls[tbl]); - } - /* Initialize DC predictions to 0 */ - entropy->saved.last_dc_val[ci] = 0; - } - - /* Precalculate decoding info for each block in an MCU of this scan */ - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - ci = cinfo->MCU_membership[blkn]; - compptr = cinfo->cur_comp_info[ci]; - /* Precalculate which table to use for each block */ - entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; - entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; - /* Decide whether we really care about the coefficient values */ - if (compptr->component_needed) { + } + /* Initialize DC predictions to 0 */ + entropy->saved.last_dc_val[ci] = 0; + } + + /* Precalculate decoding info for each block in an MCU of this scan */ + for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { + ci = cinfo->MCU_membership[blkn]; + compptr = cinfo->cur_comp_info[ci]; + /* Precalculate which table to use for each block */ + entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; + entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; + /* Decide whether we really care about the coefficient values */ + if (compptr->component_needed) { ci = compptr->DCT_v_scaled_size; i = compptr->DCT_h_scaled_size; switch (cinfo->lim_Se) { case (1*1-1): - entropy->coef_limit[blkn] = 1; - break; + entropy->coef_limit[blkn] = 1; + break; case (2*2-1): - if (ci <= 0 || ci > 2) ci = 2; - if (i <= 0 || i > 2) i = 2; - entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1]; - break; + if (ci <= 0 || ci > 2) ci = 2; + if (i <= 0 || i > 2) i = 2; + entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1]; + break; case (3*3-1): - if (ci <= 0 || ci > 3) ci = 3; - if (i <= 0 || i > 3) i = 3; - entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1]; - break; + if (ci <= 0 || ci > 3) ci = 3; + if (i <= 0 || i > 3) i = 3; + entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1]; + break; case (4*4-1): - if (ci <= 0 || ci > 4) ci = 4; - if (i <= 0 || i > 4) i = 4; - entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1]; - break; + if (ci <= 0 || ci > 4) ci = 4; + if (i <= 0 || i > 4) i = 4; + entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1]; + break; case (5*5-1): - if (ci <= 0 || ci > 5) ci = 5; - if (i <= 0 || i > 5) i = 5; - entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1]; - break; + if (ci <= 0 || ci > 5) ci = 5; + if (i <= 0 || i > 5) i = 5; + entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1]; + break; case (6*6-1): - if (ci <= 0 || ci > 6) ci = 6; - if (i <= 0 || i > 6) i = 6; - entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1]; - break; + if (ci <= 0 || ci > 6) ci = 6; + if (i <= 0 || i > 6) i = 6; + entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1]; + break; case (7*7-1): - if (ci <= 0 || ci > 7) ci = 7; - if (i <= 0 || i > 7) i = 7; - entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1]; - break; + if (ci <= 0 || ci > 7) ci = 7; + if (i <= 0 || i > 7) i = 7; + entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1]; + break; default: - if (ci <= 0 || ci > 8) ci = 8; - if (i <= 0 || i > 8) i = 8; - entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1]; - break; + if (ci <= 0 || ci > 8) ci = 8; + if (i <= 0 || i > 8) i = 8; + entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1]; + break; } - } else { + } else { entropy->coef_limit[blkn] = 0; - } - } - } + } + } + } - /* Initialize bitread state variables */ - entropy->bitstate.bits_left = 0; - entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ - entropy->insufficient_data = FALSE; + /* Initialize bitread state variables */ + entropy->bitstate.bits_left = 0; + entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ + entropy->insufficient_data = FALSE; - /* Initialize restart counter */ - entropy->restarts_to_go = cinfo->restart_interval; + /* Initialize restart counter */ + entropy->restarts_to_go = cinfo->restart_interval; } @@ -1508,34 +1508,34 @@ start_pass_huff_decoder (j_decompress_ptr cinfo) GLOBAL(void) jinit_huff_decoder (j_decompress_ptr cinfo) { - huff_entropy_ptr entropy; - int i; + huff_entropy_ptr entropy; + int i; - entropy = (huff_entropy_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, + entropy = (huff_entropy_ptr) + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(huff_entropy_decoder)); - cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; - entropy->pub.start_pass = start_pass_huff_decoder; - - if (cinfo->progressive_mode) { - /* Create progression status table */ - int *coef_bit_ptr, ci; - cinfo->coef_bits = (int (*)[DCTSIZE2]) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - cinfo->num_components*DCTSIZE2*SIZEOF(int)); - coef_bit_ptr = & cinfo->coef_bits[0][0]; - for (ci = 0; ci < cinfo->num_components; ci++) - for (i = 0; i < DCTSIZE2; i++) + cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; + entropy->pub.start_pass = start_pass_huff_decoder; + + if (cinfo->progressive_mode) { + /* Create progression status table */ + int *coef_bit_ptr, ci; + cinfo->coef_bits = (int (*)[DCTSIZE2]) + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, + cinfo->num_components*DCTSIZE2*SIZEOF(int)); + coef_bit_ptr = & cinfo->coef_bits[0][0]; + for (ci = 0; ci < cinfo->num_components; ci++) + for (i = 0; i < DCTSIZE2; i++) *coef_bit_ptr++ = -1; - /* Mark derived tables unallocated */ - for (i = 0; i < NUM_HUFF_TBLS; i++) { - entropy->derived_tbls[i] = NULL; - } - } else { - /* Mark tables unallocated */ - for (i = 0; i < NUM_HUFF_TBLS; i++) { - entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; - } - } + /* Mark derived tables unallocated */ + for (i = 0; i < NUM_HUFF_TBLS; i++) { + entropy->derived_tbls[i] = NULL; + } + } else { + /* Mark tables unallocated */ + for (i = 0; i < NUM_HUFF_TBLS; i++) { + entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; + } + } } |