diff options
author | 2013-01-11 07:32:46 +0000 | |
---|---|---|
committer | 2013-01-11 07:32:46 +0000 | |
commit | 0e19f641d3186cdbf51f8ca857e2b07ab95779c2 (patch) | |
tree | 234109de1123b13f217494af4b3f8efad346d5cc /src/lib/libjpeg/jchuff.c | |
parent | 111157ca09a9ff60fe4a9ba49173c315e94314fa (diff) |
Cleanups and version bumpmame0148
Diffstat (limited to 'src/lib/libjpeg/jchuff.c')
-rw-r--r-- | src/lib/libjpeg/jchuff.c | 2134 |
1 files changed, 1067 insertions, 1067 deletions
diff --git a/src/lib/libjpeg/jchuff.c b/src/lib/libjpeg/jchuff.c index d226a5093cf..b1d008dd5b6 100644 --- a/src/lib/libjpeg/jchuff.c +++ b/src/lib/libjpeg/jchuff.c @@ -40,9 +40,9 @@ /* Derived data constructed for each Huffman table */ typedef struct { - unsigned int ehufco[256]; /* code for each symbol */ - char ehufsi[256]; /* length of code for each symbol */ - /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */ + unsigned int ehufco[256]; /* code for each symbol */ + char ehufsi[256]; /* length of code for each symbol */ + /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */ } c_derived_tbl; @@ -53,9 +53,9 @@ typedef struct { */ typedef struct { - INT32 put_buffer; /* current bit-accumulation buffer */ - int put_bits; /* # of bits now in it */ - int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ + INT32 put_buffer; /* current bit-accumulation buffer */ + int put_bits; /* # of bits now in it */ + int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ } savable_state; /* This macro is to work around compilers with missing or broken @@ -69,49 +69,49 @@ typedef struct { #if MAX_COMPS_IN_SCAN == 4 #define ASSIGN_STATE(dest,src) \ ((dest).put_buffer = (src).put_buffer, \ - (dest).put_bits = (src).put_bits, \ - (dest).last_dc_val[0] = (src).last_dc_val[0], \ - (dest).last_dc_val[1] = (src).last_dc_val[1], \ - (dest).last_dc_val[2] = (src).last_dc_val[2], \ - (dest).last_dc_val[3] = (src).last_dc_val[3]) + (dest).put_bits = (src).put_bits, \ + (dest).last_dc_val[0] = (src).last_dc_val[0], \ + (dest).last_dc_val[1] = (src).last_dc_val[1], \ + (dest).last_dc_val[2] = (src).last_dc_val[2], \ + (dest).last_dc_val[3] = (src).last_dc_val[3]) #endif #endif typedef struct { - struct jpeg_entropy_encoder pub; /* public fields */ + struct jpeg_entropy_encoder pub; /* public fields */ - savable_state saved; /* Bit buffer & DC state at start of MCU */ + savable_state saved; /* Bit buffer & DC state at start of MCU */ - /* These fields are NOT loaded into local working state. */ - unsigned int restarts_to_go; /* MCUs left in this restart interval */ - int next_restart_num; /* next restart number to write (0-7) */ + /* These fields are NOT loaded into local working state. */ + unsigned int restarts_to_go; /* MCUs left in this restart interval */ + int next_restart_num; /* next restart number to write (0-7) */ - /* Pointers to derived tables (these workspaces have image lifespan) */ - c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; - c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; + /* Pointers to derived tables (these workspaces have image lifespan) */ + c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; + c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; - /* Statistics tables for optimization */ - long * dc_count_ptrs[NUM_HUFF_TBLS]; - long * ac_count_ptrs[NUM_HUFF_TBLS]; + /* Statistics tables for optimization */ + long * dc_count_ptrs[NUM_HUFF_TBLS]; + long * ac_count_ptrs[NUM_HUFF_TBLS]; - /* Following fields used only in progressive mode */ + /* Following fields used only in progressive mode */ - /* Mode flag: TRUE for optimization, FALSE for actual data output */ - boolean gather_statistics; + /* Mode flag: TRUE for optimization, FALSE for actual data output */ + boolean gather_statistics; - /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields. - */ - JOCTET * next_output_byte; /* => next byte to write in buffer */ - size_t free_in_buffer; /* # of byte spaces remaining in buffer */ - j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */ + /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields. + */ + JOCTET * next_output_byte; /* => next byte to write in buffer */ + size_t free_in_buffer; /* # of byte spaces remaining in buffer */ + j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */ - /* Coding status for AC components */ - int ac_tbl_no; /* the table number of the single component */ - unsigned int EOBRUN; /* run length of EOBs */ - unsigned int BE; /* # of buffered correction bits before MCU */ - char * bit_buffer; /* buffer for correction bits (1 per char) */ - /* packing correction bits tightly would save some space but cost time... */ + /* Coding status for AC components */ + int ac_tbl_no; /* the table number of the single component */ + unsigned int EOBRUN; /* run length of EOBs */ + unsigned int BE; /* # of buffered correction bits before MCU */ + char * bit_buffer; /* buffer for correction bits (1 per char) */ + /* packing correction bits tightly would save some space but cost time... */ } huff_entropy_encoder; typedef huff_entropy_encoder * huff_entropy_ptr; @@ -121,10 +121,10 @@ typedef huff_entropy_encoder * huff_entropy_ptr; */ typedef struct { - JOCTET * next_output_byte; /* => next byte to write in buffer */ - size_t free_in_buffer; /* # of byte spaces remaining in buffer */ - savable_state cur; /* Current bit buffer & DC state */ - j_compress_ptr cinfo; /* dump_buffer needs access to this */ + JOCTET * next_output_byte; /* => next byte to write in buffer */ + size_t free_in_buffer; /* # of byte spaces remaining in buffer */ + savable_state cur; /* Current bit buffer & DC state */ + j_compress_ptr cinfo; /* dump_buffer needs access to this */ } working_state; /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit @@ -133,7 +133,7 @@ typedef struct { * The minimum safe size is 64 bits. */ -#define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */ +#define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */ /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. * We assume that int right shift is unsigned if INT32 right shift is, @@ -141,14 +141,14 @@ typedef struct { */ #ifdef RIGHT_SHIFT_IS_UNSIGNED -#define ISHIFT_TEMPS int ishift_temp; +#define ISHIFT_TEMPS int ishift_temp; #define IRIGHT_SHIFT(x,shft) \ ((ishift_temp = (x)) < 0 ? \ - (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ - (ishift_temp >> (shft))) + (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ + (ishift_temp >> (shft))) #else #define ISHIFT_TEMPS -#define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) +#define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) #endif @@ -159,90 +159,90 @@ typedef struct { LOCAL(void) jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, - c_derived_tbl ** pdtbl) + c_derived_tbl ** pdtbl) { - JHUFF_TBL *htbl; - c_derived_tbl *dtbl; - int p, i, l, lastp, si, maxsymbol; - char huffsize[257]; - unsigned int huffcode[257]; - unsigned int code; - - /* Note that huffsize[] and huffcode[] are filled in code-length order, - * paralleling the order of the symbols themselves in htbl->huffval[]. - */ - - /* Find the input Huffman table */ - if (tblno < 0 || tblno >= NUM_HUFF_TBLS) - ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); - htbl = - isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; - if (htbl == NULL) - ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); - - /* Allocate a workspace if we haven't already done so. */ - if (*pdtbl == NULL) - *pdtbl = (c_derived_tbl *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(c_derived_tbl)); - dtbl = *pdtbl; - - /* Figure C.1: make table of Huffman code length for each symbol */ - - p = 0; - for (l = 1; l <= 16; l++) { - i = (int) htbl->bits[l]; - if (i < 0 || p + i > 256) /* protect against table overrun */ - ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); - while (i--) - huffsize[p++] = (char) l; - } - huffsize[p] = 0; - lastp = p; - - /* Figure C.2: generate the codes themselves */ - /* We also validate that the counts represent a legal Huffman code tree. */ - - code = 0; - si = huffsize[0]; - p = 0; - while (huffsize[p]) { - while (((int) huffsize[p]) == si) { - huffcode[p++] = code; - code++; - } - /* code is now 1 more than the last code used for codelength si; but - * it must still fit in si bits, since no code is allowed to be all ones. - */ - if (((INT32) code) >= (((INT32) 1) << si)) - ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); - code <<= 1; - si++; - } - - /* Figure C.3: generate encoding tables */ - /* These are code and size indexed by symbol value */ - - /* Set all codeless symbols to have code length 0; - * this lets us detect duplicate VAL entries here, and later - * allows emit_bits to detect any attempt to emit such symbols. - */ - MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi)); - - /* This is also a convenient place to check for out-of-range - * and duplicated VAL entries. We allow 0..255 for AC symbols - * but only 0..15 for DC. (We could constrain them further - * based on data depth and mode, but this seems enough.) - */ - maxsymbol = isDC ? 15 : 255; - - for (p = 0; p < lastp; p++) { - i = htbl->huffval[p]; - if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) - ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); - dtbl->ehufco[i] = huffcode[p]; - dtbl->ehufsi[i] = huffsize[p]; - } + JHUFF_TBL *htbl; + c_derived_tbl *dtbl; + int p, i, l, lastp, si, maxsymbol; + char huffsize[257]; + unsigned int huffcode[257]; + unsigned int code; + + /* Note that huffsize[] and huffcode[] are filled in code-length order, + * paralleling the order of the symbols themselves in htbl->huffval[]. + */ + + /* Find the input Huffman table */ + if (tblno < 0 || tblno >= NUM_HUFF_TBLS) + ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); + htbl = + isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; + if (htbl == NULL) + ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); + + /* Allocate a workspace if we haven't already done so. */ + if (*pdtbl == NULL) + *pdtbl = (c_derived_tbl *) + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, + SIZEOF(c_derived_tbl)); + dtbl = *pdtbl; + + /* Figure C.1: make table of Huffman code length for each symbol */ + + p = 0; + for (l = 1; l <= 16; l++) { + i = (int) htbl->bits[l]; + if (i < 0 || p + i > 256) /* protect against table overrun */ + ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); + while (i--) + huffsize[p++] = (char) l; + } + huffsize[p] = 0; + lastp = p; + + /* Figure C.2: generate the codes themselves */ + /* We also validate that the counts represent a legal Huffman code tree. */ + + code = 0; + si = huffsize[0]; + p = 0; + while (huffsize[p]) { + while (((int) huffsize[p]) == si) { + huffcode[p++] = code; + code++; + } + /* code is now 1 more than the last code used for codelength si; but + * it must still fit in si bits, since no code is allowed to be all ones. + */ + if (((INT32) code) >= (((INT32) 1) << si)) + ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); + code <<= 1; + si++; + } + + /* Figure C.3: generate encoding tables */ + /* These are code and size indexed by symbol value */ + + /* Set all codeless symbols to have code length 0; + * this lets us detect duplicate VAL entries here, and later + * allows emit_bits to detect any attempt to emit such symbols. + */ + MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi)); + + /* This is also a convenient place to check for out-of-range + * and duplicated VAL entries. We allow 0..255 for AC symbols + * but only 0..15 for DC. (We could constrain them further + * based on data depth and mode, but this seems enough.) + */ + maxsymbol = isDC ? 15 : 255; + + for (p = 0; p < lastp; p++) { + i = htbl->huffval[p]; + if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) + ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); + dtbl->ehufco[i] = huffcode[p]; + dtbl->ehufsi[i] = huffsize[p]; + } } @@ -254,29 +254,29 @@ jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, /* Emit a byte, taking 'action' if must suspend. */ #define emit_byte_s(state,val,action) \ { *(state)->next_output_byte++ = (JOCTET) (val); \ - if (--(state)->free_in_buffer == 0) \ - if (! dump_buffer_s(state)) \ - { action; } } + if (--(state)->free_in_buffer == 0) \ + if (! dump_buffer_s(state)) \ + { action; } } /* Emit a byte */ #define emit_byte_e(entropy,val) \ { *(entropy)->next_output_byte++ = (JOCTET) (val); \ - if (--(entropy)->free_in_buffer == 0) \ - dump_buffer_e(entropy); } + if (--(entropy)->free_in_buffer == 0) \ + dump_buffer_e(entropy); } LOCAL(boolean) dump_buffer_s (working_state * state) /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ { - struct jpeg_destination_mgr * dest = state->cinfo->dest; - - if (! (*dest->empty_output_buffer) (state->cinfo)) - return FALSE; - /* After a successful buffer dump, must reset buffer pointers */ - state->next_output_byte = dest->next_output_byte; - state->free_in_buffer = dest->free_in_buffer; - return TRUE; + struct jpeg_destination_mgr * dest = state->cinfo->dest; + + if (! (*dest->empty_output_buffer) (state->cinfo)) + return FALSE; + /* After a successful buffer dump, must reset buffer pointers */ + state->next_output_byte = dest->next_output_byte; + state->free_in_buffer = dest->free_in_buffer; + return TRUE; } @@ -284,13 +284,13 @@ LOCAL(void) dump_buffer_e (huff_entropy_ptr entropy) /* Empty the output buffer; we do not support suspension in this case. */ { - struct jpeg_destination_mgr * dest = entropy->cinfo->dest; + struct jpeg_destination_mgr * dest = entropy->cinfo->dest; - if (! (*dest->empty_output_buffer) (entropy->cinfo)) - ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); - /* After a successful buffer dump, must reset buffer pointers */ - entropy->next_output_byte = dest->next_output_byte; - entropy->free_in_buffer = dest->free_in_buffer; + if (! (*dest->empty_output_buffer) (entropy->cinfo)) + ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); + /* After a successful buffer dump, must reset buffer pointers */ + entropy->next_output_byte = dest->next_output_byte; + entropy->free_in_buffer = dest->free_in_buffer; } @@ -307,37 +307,37 @@ LOCAL(boolean) emit_bits_s (working_state * state, unsigned int code, int size) /* Emit some bits; return TRUE if successful, FALSE if must suspend */ { - /* This routine is heavily used, so it's worth coding tightly. */ - register INT32 put_buffer = (INT32) code; - register int put_bits = state->cur.put_bits; + /* This routine is heavily used, so it's worth coding tightly. */ + register INT32 put_buffer = (INT32) code; + register int put_bits = state->cur.put_bits; - /* if size is 0, caller used an invalid Huffman table entry */ - if (size == 0) - ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); + /* if size is 0, caller used an invalid Huffman table entry */ + if (size == 0) + ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); - put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ + put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ - put_bits += size; /* new number of bits in buffer */ + put_bits += size; /* new number of bits in buffer */ - put_buffer <<= 24 - put_bits; /* align incoming bits */ + put_buffer <<= 24 - put_bits; /* align incoming bits */ - put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */ + put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */ - while (put_bits >= 8) { - int c = (int) ((put_buffer >> 16) & 0xFF); + while (put_bits >= 8) { + int c = (int) ((put_buffer >> 16) & 0xFF); - emit_byte_s(state, c, return FALSE); - if (c == 0xFF) { /* need to stuff a zero byte? */ - emit_byte_s(state, 0, return FALSE); - } - put_buffer <<= 8; - put_bits -= 8; - } + emit_byte_s(state, c, return FALSE); + if (c == 0xFF) { /* need to stuff a zero byte? */ + emit_byte_s(state, 0, return FALSE); + } + put_buffer <<= 8; + put_bits -= 8; + } - state->cur.put_buffer = put_buffer; /* update state variables */ - state->cur.put_bits = put_bits; + state->cur.put_buffer = put_buffer; /* update state variables */ + state->cur.put_bits = put_bits; - return TRUE; + return TRUE; } @@ -346,59 +346,59 @@ LOCAL(void) emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size) /* Emit some bits, unless we are in gather mode */ { - /* This routine is heavily used, so it's worth coding tightly. */ - register INT32 put_buffer = (INT32) code; - register int put_bits = entropy->saved.put_bits; + /* This routine is heavily used, so it's worth coding tightly. */ + register INT32 put_buffer = (INT32) code; + register int put_bits = entropy->saved.put_bits; - /* if size is 0, caller used an invalid Huffman table entry */ - if (size == 0) - ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); + /* if size is 0, caller used an invalid Huffman table entry */ + if (size == 0) + ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); - if (entropy->gather_statistics) - return; /* do nothing if we're only getting stats */ + if (entropy->gather_statistics) + return; /* do nothing if we're only getting stats */ - put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ + put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ - put_bits += size; /* new number of bits in buffer */ + put_bits += size; /* new number of bits in buffer */ - put_buffer <<= 24 - put_bits; /* align incoming bits */ + put_buffer <<= 24 - put_bits; /* align incoming bits */ - /* and merge with old buffer contents */ - put_buffer |= entropy->saved.put_buffer; + /* and merge with old buffer contents */ + put_buffer |= entropy->saved.put_buffer; - while (put_bits >= 8) { - int c = (int) ((put_buffer >> 16) & 0xFF); + while (put_bits >= 8) { + int c = (int) ((put_buffer >> 16) & 0xFF); - emit_byte_e(entropy, c); - if (c == 0xFF) { /* need to stuff a zero byte? */ - emit_byte_e(entropy, 0); - } - put_buffer <<= 8; - put_bits -= 8; - } + emit_byte_e(entropy, c); + if (c == 0xFF) { /* need to stuff a zero byte? */ + emit_byte_e(entropy, 0); + } + put_buffer <<= 8; + put_bits -= 8; + } - entropy->saved.put_buffer = put_buffer; /* update variables */ - entropy->saved.put_bits = put_bits; + entropy->saved.put_buffer = put_buffer; /* update variables */ + entropy->saved.put_bits = put_bits; } LOCAL(boolean) flush_bits_s (working_state * state) { - if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */ - return FALSE; - state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ - state->cur.put_bits = 0; - return TRUE; + if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */ + return FALSE; + state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ + state->cur.put_bits = 0; + return TRUE; } LOCAL(void) flush_bits_e (huff_entropy_ptr entropy) { - emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */ - entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */ - entropy->saved.put_bits = 0; + emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */ + entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */ + entropy->saved.put_bits = 0; } @@ -410,12 +410,12 @@ flush_bits_e (huff_entropy_ptr entropy) LOCAL(void) emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) { - if (entropy->gather_statistics) - entropy->dc_count_ptrs[tbl_no][symbol]++; - else { - c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no]; - emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); - } + if (entropy->gather_statistics) + entropy->dc_count_ptrs[tbl_no][symbol]++; + else { + c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no]; + emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); + } } @@ -423,12 +423,12 @@ emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) LOCAL(void) emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) { - if (entropy->gather_statistics) - entropy->ac_count_ptrs[tbl_no][symbol]++; - else { - c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no]; - emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); - } + if (entropy->gather_statistics) + entropy->ac_count_ptrs[tbl_no][symbol]++; + else { + c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no]; + emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); + } } @@ -438,16 +438,16 @@ emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) LOCAL(void) emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart, - unsigned int nbits) + unsigned int nbits) { - if (entropy->gather_statistics) - return; /* no real work */ - - while (nbits > 0) { - emit_bits_e(entropy, (unsigned int) (*bufstart), 1); - bufstart++; - nbits--; - } + if (entropy->gather_statistics) + return; /* no real work */ + + while (nbits > 0) { + emit_bits_e(entropy, (unsigned int) (*bufstart), 1); + bufstart++; + nbits--; + } } @@ -458,27 +458,27 @@ emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart, LOCAL(void) emit_eobrun (huff_entropy_ptr entropy) { - register int temp, nbits; - - if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */ - temp = entropy->EOBRUN; - nbits = 0; - while ((temp >>= 1)) - nbits++; - /* safety check: shouldn't happen given limited correction-bit buffer */ - if (nbits > 14) - ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); - - emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4); - if (nbits) - emit_bits_e(entropy, entropy->EOBRUN, nbits); - - entropy->EOBRUN = 0; - - /* Emit any buffered correction bits */ - emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); - entropy->BE = 0; - } + register int temp, nbits; + + if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */ + temp = entropy->EOBRUN; + nbits = 0; + while ((temp >>= 1)) + nbits++; + /* safety check: shouldn't happen given limited correction-bit buffer */ + if (nbits > 14) + ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); + + emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4); + if (nbits) + emit_bits_e(entropy, entropy->EOBRUN, nbits); + + entropy->EOBRUN = 0; + + /* Emit any buffered correction bits */ + emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); + entropy->BE = 0; + } } @@ -489,46 +489,46 @@ emit_eobrun (huff_entropy_ptr entropy) LOCAL(boolean) emit_restart_s (working_state * state, int restart_num) { - int ci; + int ci; - if (! flush_bits_s(state)) - return FALSE; + if (! flush_bits_s(state)) + return FALSE; - emit_byte_s(state, 0xFF, return FALSE); - emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE); + emit_byte_s(state, 0xFF, return FALSE); + emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE); - /* Re-initialize DC predictions to 0 */ - for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) - state->cur.last_dc_val[ci] = 0; + /* Re-initialize DC predictions to 0 */ + for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) + state->cur.last_dc_val[ci] = 0; - /* The restart counter is not updated until we successfully write the MCU. */ + /* The restart counter is not updated until we successfully write the MCU. */ - return TRUE; + return TRUE; } LOCAL(void) emit_restart_e (huff_entropy_ptr entropy, int restart_num) { - int ci; - - emit_eobrun(entropy); - - if (! entropy->gather_statistics) { - flush_bits_e(entropy); - emit_byte_e(entropy, 0xFF); - emit_byte_e(entropy, JPEG_RST0 + restart_num); - } - - if (entropy->cinfo->Ss == 0) { - /* Re-initialize DC predictions to 0 */ - for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) - entropy->saved.last_dc_val[ci] = 0; - } else { - /* Re-initialize all AC-related fields to 0 */ - entropy->EOBRUN = 0; - entropy->BE = 0; - } + int ci; + + emit_eobrun(entropy); + + if (! entropy->gather_statistics) { + flush_bits_e(entropy); + emit_byte_e(entropy, 0xFF); + emit_byte_e(entropy, JPEG_RST0 + restart_num); + } + + if (entropy->cinfo->Ss == 0) { + /* Re-initialize DC predictions to 0 */ + for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) + entropy->saved.last_dc_val[ci] = 0; + } else { + /* Re-initialize all AC-related fields to 0 */ + entropy->EOBRUN = 0; + entropy->BE = 0; + } } @@ -540,82 +540,82 @@ emit_restart_e (huff_entropy_ptr entropy, int restart_num) METHODDEF(boolean) encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - register int temp, temp2; - register int nbits; - int blkn, ci; - int Al = cinfo->Al; - JBLOCKROW block; - jpeg_component_info * compptr; - ISHIFT_TEMPS - - entropy->next_output_byte = cinfo->dest->next_output_byte; - entropy->free_in_buffer = cinfo->dest->free_in_buffer; - - /* Emit restart marker if needed */ - if (cinfo->restart_interval) - if (entropy->restarts_to_go == 0) - emit_restart_e(entropy, entropy->next_restart_num); - - /* Encode the MCU data blocks */ - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - block = MCU_data[blkn]; - ci = cinfo->MCU_membership[blkn]; - compptr = cinfo->cur_comp_info[ci]; - - /* Compute the DC value after the required point transform by Al. - * This is simply an arithmetic right shift. - */ - temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); - - /* DC differences are figured on the point-transformed values. */ - temp = temp2 - entropy->saved.last_dc_val[ci]; - entropy->saved.last_dc_val[ci] = temp2; - - /* Encode the DC coefficient difference per section G.1.2.1 */ - temp2 = temp; - if (temp < 0) { - temp = -temp; /* temp is abs value of input */ - /* For a negative input, want temp2 = bitwise complement of abs(input) */ - /* This code assumes we are on a two's complement machine */ - temp2--; - } - - /* Find the number of bits needed for the magnitude of the coefficient */ - nbits = 0; - while (temp) { - nbits++; - temp >>= 1; - } - /* Check for out-of-range coefficient values. - * Since we're encoding a difference, the range limit is twice as much. - */ - if (nbits > MAX_COEF_BITS+1) - ERREXIT(cinfo, JERR_BAD_DCT_COEF); - - /* Count/emit the Huffman-coded symbol for the number of bits */ - emit_dc_symbol(entropy, compptr->dc_tbl_no, nbits); - - /* Emit that number of bits of the value, if positive, */ - /* or the complement of its magnitude, if negative. */ - if (nbits) /* emit_bits rejects calls with size 0 */ - emit_bits_e(entropy, (unsigned int) temp2, nbits); - } - - cinfo->dest->next_output_byte = entropy->next_output_byte; - cinfo->dest->free_in_buffer = entropy->free_in_buffer; - - /* Update restart-interval state too */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) { - entropy->restarts_to_go = cinfo->restart_interval; - entropy->next_restart_num++; - entropy->next_restart_num &= 7; - } - entropy->restarts_to_go--; - } - - return TRUE; + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; + register int temp, temp2; + register int nbits; + int blkn, ci; + int Al = cinfo->Al; + JBLOCKROW block; + jpeg_component_info * compptr; + ISHIFT_TEMPS + + entropy->next_output_byte = cinfo->dest->next_output_byte; + entropy->free_in_buffer = cinfo->dest->free_in_buffer; + + /* Emit restart marker if needed */ + if (cinfo->restart_interval) + if (entropy->restarts_to_go == 0) + emit_restart_e(entropy, entropy->next_restart_num); + + /* Encode the MCU data blocks */ + for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { + block = MCU_data[blkn]; + ci = cinfo->MCU_membership[blkn]; + compptr = cinfo->cur_comp_info[ci]; + + /* Compute the DC value after the required point transform by Al. + * This is simply an arithmetic right shift. + */ + temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); + + /* DC differences are figured on the point-transformed values. */ + temp = temp2 - entropy->saved.last_dc_val[ci]; + entropy->saved.last_dc_val[ci] = temp2; + + /* Encode the DC coefficient difference per section G.1.2.1 */ + temp2 = temp; + if (temp < 0) { + temp = -temp; /* temp is abs value of input */ + /* For a negative input, want temp2 = bitwise complement of abs(input) */ + /* This code assumes we are on a two's complement machine */ + temp2--; + } + + /* Find the number of bits needed for the magnitude of the coefficient */ + nbits = 0; + while (temp) { + nbits++; + temp >>= 1; + } + /* Check for out-of-range coefficient values. + * Since we're encoding a difference, the range limit is twice as much. + */ + if (nbits > MAX_COEF_BITS+1) + ERREXIT(cinfo, JERR_BAD_DCT_COEF); + + /* Count/emit the Huffman-coded symbol for the number of bits */ + emit_dc_symbol(entropy, compptr->dc_tbl_no, nbits); + + /* Emit that number of bits of the value, if positive, */ + /* or the complement of its magnitude, if negative. */ + if (nbits) /* emit_bits rejects calls with size 0 */ + emit_bits_e(entropy, (unsigned int) temp2, nbits); + } + + cinfo->dest->next_output_byte = entropy->next_output_byte; + cinfo->dest->free_in_buffer = entropy->free_in_buffer; + + /* Update restart-interval state too */ + if (cinfo->restart_interval) { + if (entropy->restarts_to_go == 0) { + entropy->restarts_to_go = cinfo->restart_interval; + entropy->next_restart_num++; + entropy->next_restart_num &= 7; + } + entropy->restarts_to_go--; + } + + return TRUE; } @@ -627,105 +627,105 @@ encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) METHODDEF(boolean) encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - register int temp, temp2; - register int nbits; - register int r, k; - int Se, Al; - const int * natural_order; - JBLOCKROW block; - - entropy->next_output_byte = cinfo->dest->next_output_byte; - entropy->free_in_buffer = cinfo->dest->free_in_buffer; - - /* Emit restart marker if needed */ - if (cinfo->restart_interval) - if (entropy->restarts_to_go == 0) - emit_restart_e(entropy, entropy->next_restart_num); - - Se = cinfo->Se; - Al = cinfo->Al; - natural_order = cinfo->natural_order; - - /* Encode the MCU data block */ - block = MCU_data[0]; - - /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ - - r = 0; /* r = run length of zeros */ - - for (k = cinfo->Ss; k <= Se; k++) { - if ((temp = (*block)[natural_order[k]]) == 0) { - r++; - continue; - } - /* We must apply the point transform by Al. For AC coefficients this - * is an integer division with rounding towards 0. To do this portably - * in C, we shift after obtaining the absolute value; so the code is - * interwoven with finding the abs value (temp) and output bits (temp2). - */ - if (temp < 0) { - temp = -temp; /* temp is abs value of input */ - temp >>= Al; /* apply the point transform */ - /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ - temp2 = ~temp; - } else { - temp >>= Al; /* apply the point transform */ - temp2 = temp; - } - /* Watch out for case that nonzero coef is zero after point transform */ - if (temp == 0) { - r++; - continue; - } - - /* Emit any pending EOBRUN */ - if (entropy->EOBRUN > 0) - emit_eobrun(entropy); - /* if run length > 15, must emit special run-length-16 codes (0xF0) */ - while (r > 15) { - emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); - r -= 16; - } - - /* Find the number of bits needed for the magnitude of the coefficient */ - nbits = 1; /* there must be at least one 1 bit */ - while ((temp >>= 1)) - nbits++; - /* Check for out-of-range coefficient values */ - if (nbits > MAX_COEF_BITS) - ERREXIT(cinfo, JERR_BAD_DCT_COEF); - - /* Count/emit Huffman symbol for run length / number of bits */ - emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); - - /* Emit that number of bits of the value, if positive, */ - /* or the complement of its magnitude, if negative. */ - emit_bits_e(entropy, (unsigned int) temp2, nbits); - - r = 0; /* reset zero run length */ - } - - if (r > 0) { /* If there are trailing zeroes, */ - entropy->EOBRUN++; /* count an EOB */ - if (entropy->EOBRUN == 0x7FFF) - emit_eobrun(entropy); /* force it out to avoid overflow */ - } - - cinfo->dest->next_output_byte = entropy->next_output_byte; - cinfo->dest->free_in_buffer = entropy->free_in_buffer; - - /* Update restart-interval state too */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) { - entropy->restarts_to_go = cinfo->restart_interval; - entropy->next_restart_num++; - entropy->next_restart_num &= 7; - } - entropy->restarts_to_go--; - } - - return TRUE; + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; + register int temp, temp2; + register int nbits; + register int r, k; + int Se, Al; + const int * natural_order; + JBLOCKROW block; + + entropy->next_output_byte = cinfo->dest->next_output_byte; + entropy->free_in_buffer = cinfo->dest->free_in_buffer; + + /* Emit restart marker if needed */ + if (cinfo->restart_interval) + if (entropy->restarts_to_go == 0) + emit_restart_e(entropy, entropy->next_restart_num); + + Se = cinfo->Se; + Al = cinfo->Al; + natural_order = cinfo->natural_order; + + /* Encode the MCU data block */ + block = MCU_data[0]; + + /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ + + r = 0; /* r = run length of zeros */ + + for (k = cinfo->Ss; k <= Se; k++) { + if ((temp = (*block)[natural_order[k]]) == 0) { + r++; + continue; + } + /* We must apply the point transform by Al. For AC coefficients this + * is an integer division with rounding towards 0. To do this portably + * in C, we shift after obtaining the absolute value; so the code is + * interwoven with finding the abs value (temp) and output bits (temp2). + */ + if (temp < 0) { + temp = -temp; /* temp is abs value of input */ + temp >>= Al; /* apply the point transform */ + /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ + temp2 = ~temp; + } else { + temp >>= Al; /* apply the point transform */ + temp2 = temp; + } + /* Watch out for case that nonzero coef is zero after point transform */ + if (temp == 0) { + r++; + continue; + } + + /* Emit any pending EOBRUN */ + if (entropy->EOBRUN > 0) + emit_eobrun(entropy); + /* if run length > 15, must emit special run-length-16 codes (0xF0) */ + while (r > 15) { + emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); + r -= 16; + } + + /* Find the number of bits needed for the magnitude of the coefficient */ + nbits = 1; /* there must be at least one 1 bit */ + while ((temp >>= 1)) + nbits++; + /* Check for out-of-range coefficient values */ + if (nbits > MAX_COEF_BITS) + ERREXIT(cinfo, JERR_BAD_DCT_COEF); + + /* Count/emit Huffman symbol for run length / number of bits */ + emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); + + /* Emit that number of bits of the value, if positive, */ + /* or the complement of its magnitude, if negative. */ + emit_bits_e(entropy, (unsigned int) temp2, nbits); + + r = 0; /* reset zero run length */ + } + + if (r > 0) { /* If there are trailing zeroes, */ + entropy->EOBRUN++; /* count an EOB */ + if (entropy->EOBRUN == 0x7FFF) + emit_eobrun(entropy); /* force it out to avoid overflow */ + } + + cinfo->dest->next_output_byte = entropy->next_output_byte; + cinfo->dest->free_in_buffer = entropy->free_in_buffer; + + /* Update restart-interval state too */ + if (cinfo->restart_interval) { + if (entropy->restarts_to_go == 0) { + entropy->restarts_to_go = cinfo->restart_interval; + entropy->next_restart_num++; + entropy->next_restart_num &= 7; + } + entropy->restarts_to_go--; + } + + return TRUE; } @@ -738,43 +738,43 @@ encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) METHODDEF(boolean) encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - register int temp; - int blkn; - int Al = cinfo->Al; - JBLOCKROW block; - - entropy->next_output_byte = cinfo->dest->next_output_byte; - entropy->free_in_buffer = cinfo->dest->free_in_buffer; - - /* Emit restart marker if needed */ - if (cinfo->restart_interval) - if (entropy->restarts_to_go == 0) - emit_restart_e(entropy, entropy->next_restart_num); - - /* Encode the MCU data blocks */ - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - block = MCU_data[blkn]; - - /* We simply emit the Al'th bit of the DC coefficient value. */ - temp = (*block)[0]; - emit_bits_e(entropy, (unsigned int) (temp >> Al), 1); - } - - cinfo->dest->next_output_byte = entropy->next_output_byte; - cinfo->dest->free_in_buffer = entropy->free_in_buffer; - - /* Update restart-interval state too */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) { - entropy->restarts_to_go = cinfo->restart_interval; - entropy->next_restart_num++; - entropy->next_restart_num &= 7; - } - entropy->restarts_to_go--; - } - - return TRUE; + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; + register int temp; + int blkn; + int Al = cinfo->Al; + JBLOCKROW block; + + entropy->next_output_byte = cinfo->dest->next_output_byte; + entropy->free_in_buffer = cinfo->dest->free_in_buffer; + + /* Emit restart marker if needed */ + if (cinfo->restart_interval) + if (entropy->restarts_to_go == 0) + emit_restart_e(entropy, entropy->next_restart_num); + + /* Encode the MCU data blocks */ + for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { + block = MCU_data[blkn]; + + /* We simply emit the Al'th bit of the DC coefficient value. */ + temp = (*block)[0]; + emit_bits_e(entropy, (unsigned int) (temp >> Al), 1); + } + + cinfo->dest->next_output_byte = entropy->next_output_byte; + cinfo->dest->free_in_buffer = entropy->free_in_buffer; + + /* Update restart-interval state too */ + if (cinfo->restart_interval) { + if (entropy->restarts_to_go == 0) { + entropy->restarts_to_go = cinfo->restart_interval; + entropy->next_restart_num++; + entropy->next_restart_num &= 7; + } + entropy->restarts_to_go--; + } + + return TRUE; } @@ -785,128 +785,128 @@ encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) METHODDEF(boolean) encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - register int temp; - register int r, k; - int EOB; - char *BR_buffer; - unsigned int BR; - int Se, Al; - const int * natural_order; - JBLOCKROW block; - int absvalues[DCTSIZE2]; - - entropy->next_output_byte = cinfo->dest->next_output_byte; - entropy->free_in_buffer = cinfo->dest->free_in_buffer; - - /* Emit restart marker if needed */ - if (cinfo->restart_interval) - if (entropy->restarts_to_go == 0) - emit_restart_e(entropy, entropy->next_restart_num); - - Se = cinfo->Se; - Al = cinfo->Al; - natural_order = cinfo->natural_order; - - /* Encode the MCU data block */ - block = MCU_data[0]; - - /* It is convenient to make a pre-pass to determine the transformed - * coefficients' absolute values and the EOB position. - */ - EOB = 0; - for (k = cinfo->Ss; k <= Se; k++) { - temp = (*block)[natural_order[k]]; - /* We must apply the point transform by Al. For AC coefficients this - * is an integer division with rounding towards 0. To do this portably - * in C, we shift after obtaining the absolute value. - */ - if (temp < 0) - temp = -temp; /* temp is abs value of input */ - temp >>= Al; /* apply the point transform */ - absvalues[k] = temp; /* save abs value for main pass */ - if (temp == 1) - EOB = k; /* EOB = index of last newly-nonzero coef */ - } - - /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ - - r = 0; /* r = run length of zeros */ - BR = 0; /* BR = count of buffered bits added now */ - BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ - - for (k = cinfo->Ss; k <= Se; k++) { - if ((temp = absvalues[k]) == 0) { - r++; - continue; - } - - /* Emit any required ZRLs, but not if they can be folded into EOB */ - while (r > 15 && k <= EOB) { - /* emit any pending EOBRUN and the BE correction bits */ - emit_eobrun(entropy); - /* Emit ZRL */ - emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); - r -= 16; - /* Emit buffered correction bits that must be associated with ZRL */ - emit_buffered_bits(entropy, BR_buffer, BR); - BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ - BR = 0; - } - - /* If the coef was previously nonzero, it only needs a correction bit. - * NOTE: a straight translation of the spec's figure G.7 would suggest - * that we also need to test r > 15. But if r > 15, we can only get here - * if k > EOB, which implies that this coefficient is not 1. - */ - if (temp > 1) { - /* The correction bit is the next bit of the absolute value. */ - BR_buffer[BR++] = (char) (temp & 1); - continue; - } - - /* Emit any pending EOBRUN and the BE correction bits */ - emit_eobrun(entropy); - - /* Count/emit Huffman symbol for run length / number of bits */ - emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); - - /* Emit output bit for newly-nonzero coef */ - temp = ((*block)[natural_order[k]] < 0) ? 0 : 1; - emit_bits_e(entropy, (unsigned int) temp, 1); - - /* Emit buffered correction bits that must be associated with this code */ - emit_buffered_bits(entropy, BR_buffer, BR); - BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ - BR = 0; - r = 0; /* reset zero run length */ - } - - if (r > 0 || BR > 0) { /* If there are trailing zeroes, */ - entropy->EOBRUN++; /* count an EOB */ - entropy->BE += BR; /* concat my correction bits to older ones */ - /* We force out the EOB if we risk either: - * 1. overflow of the EOB counter; - * 2. overflow of the correction bit buffer during the next MCU. - */ - if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) - emit_eobrun(entropy); - } - - cinfo->dest->next_output_byte = entropy->next_output_byte; - cinfo->dest->free_in_buffer = entropy->free_in_buffer; - - /* Update restart-interval state too */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) { - entropy->restarts_to_go = cinfo->restart_interval; - entropy->next_restart_num++; - entropy->next_restart_num &= 7; - } - entropy->restarts_to_go--; - } - - return TRUE; + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; + register int temp; + register int r, k; + int EOB; + char *BR_buffer; + unsigned int BR; + int Se, Al; + const int * natural_order; + JBLOCKROW block; + int absvalues[DCTSIZE2]; + + entropy->next_output_byte = cinfo->dest->next_output_byte; + entropy->free_in_buffer = cinfo->dest->free_in_buffer; + + /* Emit restart marker if needed */ + if (cinfo->restart_interval) + if (entropy->restarts_to_go == 0) + emit_restart_e(entropy, entropy->next_restart_num); + + Se = cinfo->Se; + Al = cinfo->Al; + natural_order = cinfo->natural_order; + + /* Encode the MCU data block */ + block = MCU_data[0]; + + /* It is convenient to make a pre-pass to determine the transformed + * coefficients' absolute values and the EOB position. + */ + EOB = 0; + for (k = cinfo->Ss; k <= Se; k++) { + temp = (*block)[natural_order[k]]; + /* We must apply the point transform by Al. For AC coefficients this + * is an integer division with rounding towards 0. To do this portably + * in C, we shift after obtaining the absolute value. + */ + if (temp < 0) + temp = -temp; /* temp is abs value of input */ + temp >>= Al; /* apply the point transform */ + absvalues[k] = temp; /* save abs value for main pass */ + if (temp == 1) + EOB = k; /* EOB = index of last newly-nonzero coef */ + } + + /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ + + r = 0; /* r = run length of zeros */ + BR = 0; /* BR = count of buffered bits added now */ + BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ + + for (k = cinfo->Ss; k <= Se; k++) { + if ((temp = absvalues[k]) == 0) { + r++; + continue; + } + + /* Emit any required ZRLs, but not if they can be folded into EOB */ + while (r > 15 && k <= EOB) { + /* emit any pending EOBRUN and the BE correction bits */ + emit_eobrun(entropy); + /* Emit ZRL */ + emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); + r -= 16; + /* Emit buffered correction bits that must be associated with ZRL */ + emit_buffered_bits(entropy, BR_buffer, BR); + BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ + BR = 0; + } + + /* If the coef was previously nonzero, it only needs a correction bit. + * NOTE: a straight translation of the spec's figure G.7 would suggest + * that we also need to test r > 15. But if r > 15, we can only get here + * if k > EOB, which implies that this coefficient is not 1. + */ + if (temp > 1) { + /* The correction bit is the next bit of the absolute value. */ + BR_buffer[BR++] = (char) (temp & 1); + continue; + } + + /* Emit any pending EOBRUN and the BE correction bits */ + emit_eobrun(entropy); + + /* Count/emit Huffman symbol for run length / number of bits */ + emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); + + /* Emit output bit for newly-nonzero coef */ + temp = ((*block)[natural_order[k]] < 0) ? 0 : 1; + emit_bits_e(entropy, (unsigned int) temp, 1); + + /* Emit buffered correction bits that must be associated with this code */ + emit_buffered_bits(entropy, BR_buffer, BR); + BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ + BR = 0; + r = 0; /* reset zero run length */ + } + + if (r > 0 || BR > 0) { /* If there are trailing zeroes, */ + entropy->EOBRUN++; /* count an EOB */ + entropy->BE += BR; /* concat my correction bits to older ones */ + /* We force out the EOB if we risk either: + * 1. overflow of the EOB counter; + * 2. overflow of the correction bit buffer during the next MCU. + */ + if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) + emit_eobrun(entropy); + } + + cinfo->dest->next_output_byte = entropy->next_output_byte; + cinfo->dest->free_in_buffer = entropy->free_in_buffer; + + /* Update restart-interval state too */ + if (cinfo->restart_interval) { + if (entropy->restarts_to_go == 0) { + entropy->restarts_to_go = cinfo->restart_interval; + entropy->next_restart_num++; + entropy->next_restart_num &= 7; + } + entropy->restarts_to_go--; + } + + return TRUE; } @@ -914,97 +914,97 @@ encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) LOCAL(boolean) encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, - c_derived_tbl *dctbl, c_derived_tbl *actbl) + c_derived_tbl *dctbl, c_derived_tbl *actbl) { - register int temp, temp2; - register int nbits; - register int k, r, i; - int Se = state->cinfo->lim_Se; - const int * natural_order = state->cinfo->natural_order; - - /* Encode the DC coefficient difference per section F.1.2.1 */ - - temp = temp2 = block[0] - last_dc_val; - - if (temp < 0) { - temp = -temp; /* temp is abs value of input */ - /* For a negative input, want temp2 = bitwise complement of abs(input) */ - /* This code assumes we are on a two's complement machine */ - temp2--; - } - - /* Find the number of bits needed for the magnitude of the coefficient */ - nbits = 0; - while (temp) { - nbits++; - temp >>= 1; - } - /* Check for out-of-range coefficient values. - * Since we're encoding a difference, the range limit is twice as much. - */ - if (nbits > MAX_COEF_BITS+1) - ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); - - /* Emit the Huffman-coded symbol for the number of bits */ - if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits])) - return FALSE; - - /* Emit that number of bits of the value, if positive, */ - /* or the complement of its magnitude, if negative. */ - if (nbits) /* emit_bits rejects calls with size 0 */ - if (! emit_bits_s(state, (unsigned int) temp2, nbits)) - return FALSE; - - /* Encode the AC coefficients per section F.1.2.2 */ - - r = 0; /* r = run length of zeros */ - - for (k = 1; k <= Se; k++) { - if ((temp = block[natural_order[k]]) == 0) { - r++; - } else { - /* if run length > 15, must emit special run-length-16 codes (0xF0) */ - while (r > 15) { + register int temp, temp2; + register int nbits; + register int k, r, i; + int Se = state->cinfo->lim_Se; + const int * natural_order = state->cinfo->natural_order; + + /* Encode the DC coefficient difference per section F.1.2.1 */ + + temp = temp2 = block[0] - last_dc_val; + + if (temp < 0) { + temp = -temp; /* temp is abs value of input */ + /* For a negative input, want temp2 = bitwise complement of abs(input) */ + /* This code assumes we are on a two's complement machine */ + temp2--; + } + + /* Find the number of bits needed for the magnitude of the coefficient */ + nbits = 0; + while (temp) { + nbits++; + temp >>= 1; + } + /* Check for out-of-range coefficient values. + * Since we're encoding a difference, the range limit is twice as much. + */ + if (nbits > MAX_COEF_BITS+1) + ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); + + /* Emit the Huffman-coded symbol for the number of bits */ + if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits])) + return FALSE; + + /* Emit that number of bits of the value, if positive, */ + /* or the complement of its magnitude, if negative. */ + if (nbits) /* emit_bits rejects calls with size 0 */ + if (! emit_bits_s(state, (unsigned int) temp2, nbits)) + return FALSE; + + /* Encode the AC coefficients per section F.1.2.2 */ + + r = 0; /* r = run length of zeros */ + + for (k = 1; k <= Se; k++) { + if ((temp = block[natural_order[k]]) == 0) { + r++; + } else { + /* if run length > 15, must emit special run-length-16 codes (0xF0) */ + while (r > 15) { if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0])) - return FALSE; + return FALSE; r -= 16; - } + } - temp2 = temp; - if (temp < 0) { - temp = -temp; /* temp is abs value of input */ + temp2 = temp; + if (temp < 0) { + temp = -temp; /* temp is abs value of input */ /* This code assumes we are on a two's complement machine */ temp2--; - } + } - /* Find the number of bits needed for the magnitude of the coefficient */ - nbits = 1; /* there must be at least one 1 bit */ - while ((temp >>= 1)) + /* Find the number of bits needed for the magnitude of the coefficient */ + nbits = 1; /* there must be at least one 1 bit */ + while ((temp >>= 1)) nbits++; - /* Check for out-of-range coefficient values */ - if (nbits > MAX_COEF_BITS) + /* Check for out-of-range coefficient values */ + if (nbits > MAX_COEF_BITS) ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); - /* Emit Huffman symbol for run length / number of bits */ - i = (r << 4) + nbits; - if (! emit_bits_s(state, actbl->ehufco[i], actbl->ehufsi[i])) + /* Emit Huffman symbol for run length / number of bits */ + i = (r << 4) + nbits; + if (! emit_bits_s(state, actbl->ehufco[i], actbl->ehufsi[i])) return FALSE; - /* Emit that number of bits of the value, if positive, */ - /* or the complement of its magnitude, if negative. */ - if (! emit_bits_s(state, (unsigned int) temp2, nbits)) + /* Emit that number of bits of the value, if positive, */ + /* or the complement of its magnitude, if negative. */ + if (! emit_bits_s(state, (unsigned int) temp2, nbits)) return FALSE; - r = 0; - } - } + r = 0; + } + } - /* If the last coef(s) were zero, emit an end-of-block code */ - if (r > 0) - if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0])) - return FALSE; + /* If the last coef(s) were zero, emit an end-of-block code */ + if (r > 0) + if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0])) + return FALSE; - return TRUE; + return TRUE; } @@ -1015,53 +1015,53 @@ encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, METHODDEF(boolean) encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - working_state state; - int blkn, ci; - jpeg_component_info * compptr; - - /* Load up working state */ - state.next_output_byte = cinfo->dest->next_output_byte; - state.free_in_buffer = cinfo->dest->free_in_buffer; - ASSIGN_STATE(state.cur, entropy->saved); - state.cinfo = cinfo; - - /* Emit restart marker if needed */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) - if (! emit_restart_s(&state, entropy->next_restart_num)) + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; + working_state state; + int blkn, ci; + jpeg_component_info * compptr; + + /* Load up working state */ + state.next_output_byte = cinfo->dest->next_output_byte; + state.free_in_buffer = cinfo->dest->free_in_buffer; + ASSIGN_STATE(state.cur, entropy->saved); + state.cinfo = cinfo; + + /* Emit restart marker if needed */ + if (cinfo->restart_interval) { + if (entropy->restarts_to_go == 0) + if (! emit_restart_s(&state, entropy->next_restart_num)) return FALSE; - } - - /* Encode the MCU data blocks */ - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - ci = cinfo->MCU_membership[blkn]; - compptr = cinfo->cur_comp_info[ci]; - if (! encode_one_block(&state, - MCU_data[blkn][0], state.cur.last_dc_val[ci], - entropy->dc_derived_tbls[compptr->dc_tbl_no], - entropy->ac_derived_tbls[compptr->ac_tbl_no])) - return FALSE; - /* Update last_dc_val */ - state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; - } - - /* Completed MCU, so update state */ - cinfo->dest->next_output_byte = state.next_output_byte; - cinfo->dest->free_in_buffer = state.free_in_buffer; - ASSIGN_STATE(entropy->saved, state.cur); - - /* Update restart-interval state too */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) { - entropy->restarts_to_go = cinfo->restart_interval; - entropy->next_restart_num++; - entropy->next_restart_num &= 7; - } - entropy->restarts_to_go--; - } - - return TRUE; + } + + /* Encode the MCU data blocks */ + for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { + ci = cinfo->MCU_membership[blkn]; + compptr = cinfo->cur_comp_info[ci]; + if (! encode_one_block(&state, + MCU_data[blkn][0], state.cur.last_dc_val[ci], + entropy->dc_derived_tbls[compptr->dc_tbl_no], + entropy->ac_derived_tbls[compptr->ac_tbl_no])) + return FALSE; + /* Update last_dc_val */ + state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; + } + + /* Completed MCU, so update state */ + cinfo->dest->next_output_byte = state.next_output_byte; + cinfo->dest->free_in_buffer = state.free_in_buffer; + ASSIGN_STATE(entropy->saved, state.cur); + + /* Update restart-interval state too */ + if (cinfo->restart_interval) { + if (entropy->restarts_to_go == 0) { + entropy->restarts_to_go = cinfo->restart_interval; + entropy->next_restart_num++; + entropy->next_restart_num &= 7; + } + entropy->restarts_to_go--; + } + + return TRUE; } @@ -1072,35 +1072,35 @@ encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data) METHODDEF(void) finish_pass_huff (j_compress_ptr cinfo) { - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - working_state state; - - if (cinfo->progressive_mode) { - entropy->next_output_byte = cinfo->dest->next_output_byte; - entropy->free_in_buffer = cinfo->dest->free_in_buffer; - - /* Flush out any buffered data */ - emit_eobrun(entropy); - flush_bits_e(entropy); - - cinfo->dest->next_output_byte = entropy->next_output_byte; - cinfo->dest->free_in_buffer = entropy->free_in_buffer; - } else { - /* Load up working state ... flush_bits needs it */ - state.next_output_byte = cinfo->dest->next_output_byte; - state.free_in_buffer = cinfo->dest->free_in_buffer; - ASSIGN_STATE(state.cur, entropy->saved); - state.cinfo = cinfo; - - /* Flush out the last data */ - if (! flush_bits_s(&state)) - ERREXIT(cinfo, JERR_CANT_SUSPEND); - - /* Update state */ - cinfo->dest->next_output_byte = state.next_output_byte; - cinfo->dest->free_in_buffer = state.free_in_buffer; - ASSIGN_STATE(entropy->saved, state.cur); - } + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; + working_state state; + + if (cinfo->progressive_mode) { + entropy->next_output_byte = cinfo->dest->next_output_byte; + entropy->free_in_buffer = cinfo->dest->free_in_buffer; + + /* Flush out any buffered data */ + emit_eobrun(entropy); + flush_bits_e(entropy); + + cinfo->dest->next_output_byte = entropy->next_output_byte; + cinfo->dest->free_in_buffer = entropy->free_in_buffer; + } else { + /* Load up working state ... flush_bits needs it */ + state.next_output_byte = cinfo->dest->next_output_byte; + state.free_in_buffer = cinfo->dest->free_in_buffer; + ASSIGN_STATE(state.cur, entropy->saved); + state.cinfo = cinfo; + + /* Flush out the last data */ + if (! flush_bits_s(&state)) + ERREXIT(cinfo, JERR_CANT_SUSPEND); + + /* Update state */ + cinfo->dest->next_output_byte = state.next_output_byte; + cinfo->dest->free_in_buffer = state.free_in_buffer; + ASSIGN_STATE(entropy->saved, state.cur); + } } @@ -1120,71 +1120,71 @@ finish_pass_huff (j_compress_ptr cinfo) LOCAL(void) htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, - long dc_counts[], long ac_counts[]) + long dc_counts[], long ac_counts[]) { - register int temp; - register int nbits; - register int k, r; - int Se = cinfo->lim_Se; - const int * natural_order = cinfo->natural_order; - - /* Encode the DC coefficient difference per section F.1.2.1 */ - - temp = block[0] - last_dc_val; - if (temp < 0) - temp = -temp; - - /* Find the number of bits needed for the magnitude of the coefficient */ - nbits = 0; - while (temp) { - nbits++; - temp >>= 1; - } - /* Check for out-of-range coefficient values. - * Since we're encoding a difference, the range limit is twice as much. - */ - if (nbits > MAX_COEF_BITS+1) - ERREXIT(cinfo, JERR_BAD_DCT_COEF); - - /* Count the Huffman symbol for the number of bits */ - dc_counts[nbits]++; - - /* Encode the AC coefficients per section F.1.2.2 */ - - r = 0; /* r = run length of zeros */ - - for (k = 1; k <= Se; k++) { - if ((temp = block[natural_order[k]]) == 0) { - r++; - } else { - /* if run length > 15, must emit special run-length-16 codes (0xF0) */ - while (r > 15) { + register int temp; + register int nbits; + register int k, r; + int Se = cinfo->lim_Se; + const int * natural_order = cinfo->natural_order; + + /* Encode the DC coefficient difference per section F.1.2.1 */ + + temp = block[0] - last_dc_val; + if (temp < 0) + temp = -temp; + + /* Find the number of bits needed for the magnitude of the coefficient */ + nbits = 0; + while (temp) { + nbits++; + temp >>= 1; + } + /* Check for out-of-range coefficient values. + * Since we're encoding a difference, the range limit is twice as much. + */ + if (nbits > MAX_COEF_BITS+1) + ERREXIT(cinfo, JERR_BAD_DCT_COEF); + + /* Count the Huffman symbol for the number of bits */ + dc_counts[nbits]++; + + /* Encode the AC coefficients per section F.1.2.2 */ + + r = 0; /* r = run length of zeros */ + + for (k = 1; k <= Se; k++) { + if ((temp = block[natural_order[k]]) == 0) { + r++; + } else { + /* if run length > 15, must emit special run-length-16 codes (0xF0) */ + while (r > 15) { ac_counts[0xF0]++; r -= 16; - } + } - /* Find the number of bits needed for the magnitude of the coefficient */ - if (temp < 0) + /* Find the number of bits needed for the magnitude of the coefficient */ + if (temp < 0) temp = -temp; - /* Find the number of bits needed for the magnitude of the coefficient */ - nbits = 1; /* there must be at least one 1 bit */ - while ((temp >>= 1)) + /* Find the number of bits needed for the magnitude of the coefficient */ + nbits = 1; /* there must be at least one 1 bit */ + while ((temp >>= 1)) nbits++; - /* Check for out-of-range coefficient values */ - if (nbits > MAX_COEF_BITS) + /* Check for out-of-range coefficient values */ + if (nbits > MAX_COEF_BITS) ERREXIT(cinfo, JERR_BAD_DCT_COEF); - /* Count Huffman symbol for run length / number of bits */ - ac_counts[(r << 4) + nbits]++; + /* Count Huffman symbol for run length / number of bits */ + ac_counts[(r << 4) + nbits]++; - r = 0; - } - } + r = 0; + } + } - /* If the last coef(s) were zero, emit an end-of-block code */ - if (r > 0) - ac_counts[0]++; + /* If the last coef(s) were zero, emit an end-of-block code */ + if (r > 0) + ac_counts[0]++; } @@ -1196,32 +1196,32 @@ htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, METHODDEF(boolean) encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - int blkn, ci; - jpeg_component_info * compptr; - - /* Take care of restart intervals if needed */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) { - /* Re-initialize DC predictions to 0 */ - for (ci = 0; ci < cinfo->comps_in_scan; ci++) + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; + int blkn, ci; + jpeg_component_info * compptr; + + /* Take care of restart intervals if needed */ + if (cinfo->restart_interval) { + if (entropy->restarts_to_go == 0) { + /* Re-initialize DC predictions to 0 */ + for (ci = 0; ci < cinfo->comps_in_scan; ci++) entropy->saved.last_dc_val[ci] = 0; - /* Update restart state */ - entropy->restarts_to_go = cinfo->restart_interval; - } - entropy->restarts_to_go--; - } - - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - ci = cinfo->MCU_membership[blkn]; - compptr = cinfo->cur_comp_info[ci]; - htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], - entropy->dc_count_ptrs[compptr->dc_tbl_no], - entropy->ac_count_ptrs[compptr->ac_tbl_no]); - entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; - } - - return TRUE; + /* Update restart state */ + entropy->restarts_to_go = cinfo->restart_interval; + } + entropy->restarts_to_go--; + } + + for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { + ci = cinfo->MCU_membership[blkn]; + compptr = cinfo->cur_comp_info[ci]; + htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], + entropy->dc_count_ptrs[compptr->dc_tbl_no], + entropy->ac_count_ptrs[compptr->ac_tbl_no]); + entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; + } + + return TRUE; } @@ -1255,137 +1255,137 @@ encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data) LOCAL(void) jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]) { -#define MAX_CLEN 32 /* assumed maximum initial code length */ - UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */ - int codesize[257]; /* codesize[k] = code length of symbol k */ - int others[257]; /* next symbol in current branch of tree */ - int c1, c2; - int p, i, j; - long v; - - /* This algorithm is explained in section K.2 of the JPEG standard */ - - MEMZERO(bits, SIZEOF(bits)); - MEMZERO(codesize, SIZEOF(codesize)); - for (i = 0; i < 257; i++) - others[i] = -1; /* init links to empty */ - - freq[256] = 1; /* make sure 256 has a nonzero count */ - /* Including the pseudo-symbol 256 in the Huffman procedure guarantees - * that no real symbol is given code-value of all ones, because 256 - * will be placed last in the largest codeword category. - */ - - /* Huffman's basic algorithm to assign optimal code lengths to symbols */ - - for (;;) { - /* Find the smallest nonzero frequency, set c1 = its symbol */ - /* In case of ties, take the larger symbol number */ - c1 = -1; - v = 1000000000L; - for (i = 0; i <= 256; i++) { - if (freq[i] && freq[i] <= v) { +#define MAX_CLEN 32 /* assumed maximum initial code length */ + UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */ + int codesize[257]; /* codesize[k] = code length of symbol k */ + int others[257]; /* next symbol in current branch of tree */ + int c1, c2; + int p, i, j; + long v; + + /* This algorithm is explained in section K.2 of the JPEG standard */ + + MEMZERO(bits, SIZEOF(bits)); + MEMZERO(codesize, SIZEOF(codesize)); + for (i = 0; i < 257; i++) + others[i] = -1; /* init links to empty */ + + freq[256] = 1; /* make sure 256 has a nonzero count */ + /* Including the pseudo-symbol 256 in the Huffman procedure guarantees + * that no real symbol is given code-value of all ones, because 256 + * will be placed last in the largest codeword category. + */ + + /* Huffman's basic algorithm to assign optimal code lengths to symbols */ + + for (;;) { + /* Find the smallest nonzero frequency, set c1 = its symbol */ + /* In case of ties, take the larger symbol number */ + c1 = -1; + v = 1000000000L; + for (i = 0; i <= 256; i++) { + if (freq[i] && freq[i] <= v) { v = freq[i]; c1 = i; - } - } - - /* Find the next smallest nonzero frequency, set c2 = its symbol */ - /* In case of ties, take the larger symbol number */ - c2 = -1; - v = 1000000000L; - for (i = 0; i <= 256; i++) { - if (freq[i] && freq[i] <= v && i != c1) { + } + } + + /* Find the next smallest nonzero frequency, set c2 = its symbol */ + /* In case of ties, take the larger symbol number */ + c2 = -1; + v = 1000000000L; + for (i = 0; i <= 256; i++) { + if (freq[i] && freq[i] <= v && i != c1) { v = freq[i]; c2 = i; - } - } - - /* Done if we've merged everything into one frequency */ - if (c2 < 0) - break; - - /* Else merge the two counts/trees */ - freq[c1] += freq[c2]; - freq[c2] = 0; - - /* Increment the codesize of everything in c1's tree branch */ - codesize[c1]++; - while (others[c1] >= 0) { - c1 = others[c1]; - codesize[c1]++; - } - - others[c1] = c2; /* chain c2 onto c1's tree branch */ - - /* Increment the codesize of everything in c2's tree branch */ - codesize[c2]++; - while (others[c2] >= 0) { - c2 = others[c2]; - codesize[c2]++; - } - } - - /* Now count the number of symbols of each code length */ - for (i = 0; i <= 256; i++) { - if (codesize[i]) { - /* The JPEG standard seems to think that this can't happen, */ - /* but I'm paranoid... */ - if (codesize[i] > MAX_CLEN) + } + } + + /* Done if we've merged everything into one frequency */ + if (c2 < 0) + break; + + /* Else merge the two counts/trees */ + freq[c1] += freq[c2]; + freq[c2] = 0; + + /* Increment the codesize of everything in c1's tree branch */ + codesize[c1]++; + while (others[c1] >= 0) { + c1 = others[c1]; + codesize[c1]++; + } + + others[c1] = c2; /* chain c2 onto c1's tree branch */ + + /* Increment the codesize of everything in c2's tree branch */ + codesize[c2]++; + while (others[c2] >= 0) { + c2 = others[c2]; + codesize[c2]++; + } + } + + /* Now count the number of symbols of each code length */ + for (i = 0; i <= 256; i++) { + if (codesize[i]) { + /* The JPEG standard seems to think that this can't happen, */ + /* but I'm paranoid... */ + if (codesize[i] > MAX_CLEN) ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW); - bits[codesize[i]]++; - } - } - - /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure - * Huffman procedure assigned any such lengths, we must adjust the coding. - * Here is what the JPEG spec says about how this next bit works: - * Since symbols are paired for the longest Huffman code, the symbols are - * removed from this length category two at a time. The prefix for the pair - * (which is one bit shorter) is allocated to one of the pair; then, - * skipping the BITS entry for that prefix length, a code word from the next - * shortest nonzero BITS entry is converted into a prefix for two code words - * one bit longer. - */ - - for (i = MAX_CLEN; i > 16; i--) { - while (bits[i] > 0) { - j = i - 2; /* find length of new prefix to be used */ - while (bits[j] == 0) + bits[codesize[i]]++; + } + } + + /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure + * Huffman procedure assigned any such lengths, we must adjust the coding. + * Here is what the JPEG spec says about how this next bit works: + * Since symbols are paired for the longest Huffman code, the symbols are + * removed from this length category two at a time. The prefix for the pair + * (which is one bit shorter) is allocated to one of the pair; then, + * skipping the BITS entry for that prefix length, a code word from the next + * shortest nonzero BITS entry is converted into a prefix for two code words + * one bit longer. + */ + + for (i = MAX_CLEN; i > 16; i--) { + while (bits[i] > 0) { + j = i - 2; /* find length of new prefix to be used */ + while (bits[j] == 0) j--; - bits[i] -= 2; /* remove two symbols */ - bits[i-1]++; /* one goes in this length */ - bits[j+1] += 2; /* two new symbols in this length */ - bits[j]--; /* symbol of this length is now a prefix */ - } - } - - /* Remove the count for the pseudo-symbol 256 from the largest codelength */ - while (bits[i] == 0) /* find largest codelength still in use */ - i--; - bits[i]--; - - /* Return final symbol counts (only for lengths 0..16) */ - MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); - - /* Return a list of the symbols sorted by code length */ - /* It's not real clear to me why we don't need to consider the codelength - * changes made above, but the JPEG spec seems to think this works. - */ - p = 0; - for (i = 1; i <= MAX_CLEN; i++) { - for (j = 0; j <= 255; j++) { - if (codesize[j] == i) { + bits[i] -= 2; /* remove two symbols */ + bits[i-1]++; /* one goes in this length */ + bits[j+1] += 2; /* two new symbols in this length */ + bits[j]--; /* symbol of this length is now a prefix */ + } + } + + /* Remove the count for the pseudo-symbol 256 from the largest codelength */ + while (bits[i] == 0) /* find largest codelength still in use */ + i--; + bits[i]--; + + /* Return final symbol counts (only for lengths 0..16) */ + MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); + + /* Return a list of the symbols sorted by code length */ + /* It's not real clear to me why we don't need to consider the codelength + * changes made above, but the JPEG spec seems to think this works. + */ + p = 0; + for (i = 1; i <= MAX_CLEN; i++) { + for (j = 0; j <= 255; j++) { + if (codesize[j] == i) { htbl->huffval[p] = (UINT8) j; p++; - } - } - } + } + } + } - /* Set sent_table FALSE so updated table will be written to JPEG file. */ - htbl->sent_table = FALSE; + /* Set sent_table FALSE so updated table will be written to JPEG file. */ + htbl->sent_table = FALSE; } @@ -1396,48 +1396,48 @@ jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]) METHODDEF(void) finish_pass_gather (j_compress_ptr cinfo) { - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - int ci, tbl; - jpeg_component_info * compptr; - JHUFF_TBL **htblptr; - boolean did_dc[NUM_HUFF_TBLS]; - boolean did_ac[NUM_HUFF_TBLS]; - - /* It's important not to apply jpeg_gen_optimal_table more than once - * per table, because it clobbers the input frequency counts! - */ - if (cinfo->progressive_mode) - /* Flush out buffered data (all we care about is counting the EOB symbol) */ - emit_eobrun(entropy); - - MEMZERO(did_dc, SIZEOF(did_dc)); - MEMZERO(did_ac, SIZEOF(did_ac)); - - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - /* DC needs no table for refinement scan */ - if (cinfo->Ss == 0 && cinfo->Ah == 0) { - tbl = compptr->dc_tbl_no; - if (! did_dc[tbl]) { + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; + int ci, tbl; + jpeg_component_info * compptr; + JHUFF_TBL **htblptr; + boolean did_dc[NUM_HUFF_TBLS]; + boolean did_ac[NUM_HUFF_TBLS]; + + /* It's important not to apply jpeg_gen_optimal_table more than once + * per table, because it clobbers the input frequency counts! + */ + if (cinfo->progressive_mode) + /* Flush out buffered data (all we care about is counting the EOB symbol) */ + emit_eobrun(entropy); + + MEMZERO(did_dc, SIZEOF(did_dc)); + MEMZERO(did_ac, SIZEOF(did_ac)); + + for (ci = 0; ci < cinfo->comps_in_scan; ci++) { + compptr = cinfo->cur_comp_info[ci]; + /* DC needs no table for refinement scan */ + if (cinfo->Ss == 0 && cinfo->Ah == 0) { + tbl = compptr->dc_tbl_no; + if (! did_dc[tbl]) { htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; if (*htblptr == NULL) - *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); + *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]); did_dc[tbl] = TRUE; - } - } - /* AC needs no table when not present */ - if (cinfo->Se) { - tbl = compptr->ac_tbl_no; - if (! did_ac[tbl]) { + } + } + /* AC needs no table when not present */ + if (cinfo->Se) { + tbl = compptr->ac_tbl_no; + if (! did_ac[tbl]) { htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; if (*htblptr == NULL) - *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); + *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]); did_ac[tbl] = TRUE; - } - } - } + } + } + } } @@ -1450,102 +1450,102 @@ finish_pass_gather (j_compress_ptr cinfo) METHODDEF(void) start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) { - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - int ci, tbl; - jpeg_component_info * compptr; + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; + int ci, tbl; + jpeg_component_info * compptr; - if (gather_statistics) - entropy->pub.finish_pass = finish_pass_gather; - else - entropy->pub.finish_pass = finish_pass_huff; + if (gather_statistics) + entropy->pub.finish_pass = finish_pass_gather; + else + entropy->pub.finish_pass = finish_pass_huff; - if (cinfo->progressive_mode) { - entropy->cinfo = cinfo; - entropy->gather_statistics = gather_statistics; + if (cinfo->progressive_mode) { + entropy->cinfo = cinfo; + entropy->gather_statistics = gather_statistics; - /* We assume jcmaster.c already validated the scan parameters. */ + /* We assume jcmaster.c already validated the scan parameters. */ - /* Select execution routine */ - if (cinfo->Ah == 0) { - if (cinfo->Ss == 0) + /* Select execution routine */ + if (cinfo->Ah == 0) { + if (cinfo->Ss == 0) entropy->pub.encode_mcu = encode_mcu_DC_first; - else + else entropy->pub.encode_mcu = encode_mcu_AC_first; - } else { - if (cinfo->Ss == 0) + } else { + if (cinfo->Ss == 0) entropy->pub.encode_mcu = encode_mcu_DC_refine; - else { + else { entropy->pub.encode_mcu = encode_mcu_AC_refine; /* AC refinement needs a correction bit buffer */ if (entropy->bit_buffer == NULL) - entropy->bit_buffer = (char *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, + entropy->bit_buffer = (char *) + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, MAX_CORR_BITS * SIZEOF(char)); - } - } - - /* Initialize AC stuff */ - entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no; - entropy->EOBRUN = 0; - entropy->BE = 0; - } else { - if (gather_statistics) - entropy->pub.encode_mcu = encode_mcu_gather; - else - entropy->pub.encode_mcu = encode_mcu_huff; - } - - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - /* DC needs no table for refinement scan */ - if (cinfo->Ss == 0 && cinfo->Ah == 0) { - tbl = compptr->dc_tbl_no; - if (gather_statistics) { + } + } + + /* Initialize AC stuff */ + entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no; + entropy->EOBRUN = 0; + entropy->BE = 0; + } else { + if (gather_statistics) + entropy->pub.encode_mcu = encode_mcu_gather; + else + entropy->pub.encode_mcu = encode_mcu_huff; + } + + for (ci = 0; ci < cinfo->comps_in_scan; ci++) { + compptr = cinfo->cur_comp_info[ci]; + /* DC needs no table for refinement scan */ + if (cinfo->Ss == 0 && cinfo->Ah == 0) { + tbl = compptr->dc_tbl_no; + if (gather_statistics) { /* Check for invalid table index */ /* (make_c_derived_tbl does this in the other path) */ if (tbl < 0 || tbl >= NUM_HUFF_TBLS) - ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); + ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); /* Allocate and zero the statistics tables */ /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ if (entropy->dc_count_ptrs[tbl] == NULL) - entropy->dc_count_ptrs[tbl] = (long *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, + entropy->dc_count_ptrs[tbl] = (long *) + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long)); MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long)); - } else { + } else { /* Compute derived values for Huffman tables */ /* We may do this more than once for a table, but it's not expensive */ jpeg_make_c_derived_tbl(cinfo, TRUE, tbl, & entropy->dc_derived_tbls[tbl]); - } - /* Initialize DC predictions to 0 */ - entropy->saved.last_dc_val[ci] = 0; - } - /* AC needs no table when not present */ - if (cinfo->Se) { - tbl = compptr->ac_tbl_no; - if (gather_statistics) { + } + /* Initialize DC predictions to 0 */ + entropy->saved.last_dc_val[ci] = 0; + } + /* AC needs no table when not present */ + if (cinfo->Se) { + tbl = compptr->ac_tbl_no; + if (gather_statistics) { if (tbl < 0 || tbl >= NUM_HUFF_TBLS) - ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); + ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); if (entropy->ac_count_ptrs[tbl] == NULL) - entropy->ac_count_ptrs[tbl] = (long *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, + entropy->ac_count_ptrs[tbl] = (long *) + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long)); MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long)); - } else { + } else { jpeg_make_c_derived_tbl(cinfo, FALSE, tbl, & entropy->ac_derived_tbls[tbl]); - } - } - } + } + } + } - /* Initialize bit buffer to empty */ - entropy->saved.put_buffer = 0; - entropy->saved.put_bits = 0; + /* Initialize bit buffer to empty */ + entropy->saved.put_buffer = 0; + entropy->saved.put_bits = 0; - /* Initialize restart stuff */ - entropy->restarts_to_go = cinfo->restart_interval; - entropy->next_restart_num = 0; + /* Initialize restart stuff */ + entropy->restarts_to_go = cinfo->restart_interval; + entropy->next_restart_num = 0; } @@ -1556,21 +1556,21 @@ start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) GLOBAL(void) jinit_huff_encoder (j_compress_ptr cinfo) { - huff_entropy_ptr entropy; - int i; + huff_entropy_ptr entropy; + int i; - entropy = (huff_entropy_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, + entropy = (huff_entropy_ptr) + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(huff_entropy_encoder)); - cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; - entropy->pub.start_pass = start_pass_huff; + cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; + entropy->pub.start_pass = start_pass_huff; - /* Mark tables unallocated */ - for (i = 0; i < NUM_HUFF_TBLS; i++) { - entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; - entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; - } + /* Mark tables unallocated */ + for (i = 0; i < NUM_HUFF_TBLS; i++) { + entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; + entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; + } - if (cinfo->progressive_mode) - entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ + if (cinfo->progressive_mode) + entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ } |