summaryrefslogtreecommitdiffstats
path: root/src/mame/video/turbo.cpp
blob: 2cf22dd9d6ce35fac64066cdf2b406da85f975bb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
// license:BSD-3-Clause
// copyright-holders:Alex Pasadyn, Howie Cohen, Frank Palazzolo, Ernesto Corvi, Aaron Giles
/*************************************************************************

    Sega Z80-3D system

*************************************************************************/

#include "emu.h"
#include "includes/turbo.h"
#include "video/resnet.h"

static constexpr uint32_t sprite_expand[16] =
{
	0x00000000, 0x00000001, 0x00000100, 0x00000101,
	0x00010000, 0x00010001, 0x00010100, 0x00010101,
	0x01000000, 0x01000001, 0x01000100, 0x01000101,
	0x01010000, 0x01010001, 0x01010100, 0x01010101
};




/*************************************
 *
 *  Palette conversion
 *
 *************************************/

void turbo_state::palette(palette_device &palette) const
{
	static constexpr int resistances[3] = { 1000, 470, 220 };

	// compute the color output resistor weights
	double rweights[3], gweights[3], bweights[2];
	compute_resistor_weights(0, 255, -1.0,
			3,  &resistances[0], rweights, 470, 0,
			3,  &resistances[0], gweights, 470, 0,
			2,  &resistances[1], bweights, 470, 0);

	// initialize the palette with these colors
	for (int i = 0; i < 256; i++)
	{
		// red component
		int const r = combine_weights(rweights, BIT(i, 0), BIT(i, 1), BIT(i, 2));

		// green component
		int const g = combine_weights(gweights, BIT(i, 3), BIT(i, 4), BIT(i, 5));

		// blue component
		int const b = combine_weights(bweights, BIT(i, 6), BIT(i, 7));

		palette.set_pen_color(i, rgb_t(r, g, b));
	}
}


void subroc3d_state::palette(palette_device &palette) const
{
	static constexpr int resistances[3] = { 1000, 470, 220 };

	// compute the color output resistor weights
	double rweights[3], gweights[3], bweights[2];
	compute_resistor_weights(0, 255, -1.0,
			3,  &resistances[0], rweights, 470, 0,
			3,  &resistances[0], gweights, 470, 0,
			2,  &resistances[1], bweights, 470, 0);

	// initialize the palette with these colors
	for (int i = 0; i < 256; i++)
	{
		// red component
		int const r = combine_weights(rweights, BIT(i, 0), BIT(i, 1), BIT(i, 2));

		// green component
		int const g = combine_weights(gweights, BIT(i, 3), BIT(i, 4), BIT(i, 5));

		// blue component
		int const b = combine_weights(bweights, BIT(i, 6), BIT(i, 7));

		palette.set_pen_color(i, rgb_t(r, g, b));
	}
}


void buckrog_state::palette(palette_device &palette) const
{
	static constexpr int resistances[4] = { 2200, 1000, 500, 250 };

	// compute the color output resistor weights
	double rweights[3], gweights[3], bweights[4];
	compute_resistor_weights(0, 255, -1.0,
			3,  &resistances[1], rweights, 1000, 0,
			3,  &resistances[1], gweights, 1000, 0,
			4,  &resistances[0], bweights, 1000, 0);

	// initialize the palette with these colors
	for (int i = 0; i < 1024; i++)
	{
		// red component
		int const r = combine_weights(rweights, BIT(i, 0), BIT(i, 1), BIT(i, 2));

		// green component
		int const g = combine_weights(gweights, BIT(i, 3), BIT(i, 4), BIT(i, 5));

		// blue component - note the shuffled bits
		int const b = combine_weights(bweights, BIT(i, 8), BIT(i, 9), BIT(i, 6), BIT(i, 7));

		palette.set_pen_color(i, rgb_t(r, g, b));
	}
}



/*************************************
 *
 *  Video startup
 *
 *************************************/

TILE_GET_INFO_MEMBER(turbo_base_state::get_fg_tile_info)
{
	int code = m_videoram[tile_index];
	tileinfo.set(0, code, code >> 2, 0);
}


void turbo_base_state::video_start()
{
	// initialize the foreground tilemap
	m_fg_tilemap = &machine().tilemap().create(*m_gfxdecode, tilemap_get_info_delegate(*this, FUNC(turbo_base_state::get_fg_tile_info)), TILEMAP_SCAN_ROWS,  8,8, 32,32);

	save_item(NAME(m_sprite_info.ve));
	save_item(NAME(m_sprite_info.lst));
	save_item(NAME(m_sprite_info.latched));
	save_item(NAME(m_sprite_info.plb));
	save_item(NAME(m_sprite_info.offset));
	save_item(NAME(m_sprite_info.frac));
	save_item(NAME(m_sprite_info.step));
}


/*************************************
 *
 *  Videoram access
 *
 *************************************/

void turbo_base_state::videoram_w(offs_t offset, uint8_t data)
{
	m_videoram[offset] = data;
	if (offset < 0x400)
	{
		m_screen->update_partial(m_screen->vpos());
		m_fg_tilemap->mark_tile_dirty(offset);
	}
}


void buckrog_state::bitmap_w(offs_t offset, uint8_t data)
{
	m_bitmap_ram[offset] = data & 1;
}



/*************************************
 *
 *  Sprite X scaling
 *
 *************************************/

inline uint32_t turbo_base_state::sprite_xscale(uint8_t dacinput, double vr1, double vr2, double cext)
{
	// compute the effective pixel clock for this sprite
	// thanks to Frank Palazzolo for figuring out this logic

	// compute the control voltage to the VCO
	// VR1 and VR2 are variable resistors on Turbo, fixed on other boards
	double iref = 5.0 / (1.5e3 + vr2);
	double iout = iref * ((double)dacinput / 256.0);
	double vref = 5.0 * 1e3 / (3.8e3 + 1e3 + vr1);
	double vco_cv = (2.2e3 * iout) + vref;

	// based on the control voltage, compute the frequency assuming a 50pF
	// external capacitor; this is the graph in the datasheet. Some attempt
	// to simulate the non-linearity at the edges has been made, but it is
	// admittedly cheesy.
	double vco_freq;
	if (vco_cv > 5.0)
		vco_cv = 5.0;
	if (vco_cv < 0.0)
		vco_cv = 0.0;
	if (cext < 1e-11)
	{
		if (vco_cv < 1.33)
			vco_freq = (0.68129 + pow(vco_cv + 0.6, 1.285)) * 1e6;
		else if (vco_cv < 4.3)
			vco_freq = (3 + (8 - 3) * ((vco_cv - 1.33) / (4.3 - 1.33))) * 1e6;
		else
			vco_freq = (-1.560279 + pow(vco_cv - 4.3 + 6, 1.26)) * 1e6;

		// now scale based on the actual external capacitor; the frequency goes
		// up by a factor of 10 for every factor of 10 the capacitance is reduced
		// approximately
		vco_freq *= 50e-12 / cext;
	}
	else
	{
		// based on figure 6 of datasheet
		vco_freq = -0.9892942 * log10(cext) - 0.0309697 * vco_cv * vco_cv
						+   0.344079975 * vco_cv - 4.086395841;
		vco_freq = pow(10.0, vco_freq);
	}

	// finally, convert to a fraction (8.24) of 5MHz, which is the pixel clock
	return (uint32_t)((vco_freq / (5e6 * TURBO_X_SCALE)) * 16777216.0);
}



/*************************************
 *
 *  Turbo sprite handling
 *
 *************************************/

void turbo_state::prepare_sprites(uint8_t y)
{
	const uint8_t *pr1119 = &m_proms[0x200];

	// initialize the line enable signals to 0
	m_sprite_info.ve = 0;
	m_sprite_info.lst = 0;

	// compute the sprite information, which was done on the previous scanline during HBLANK
	for (int sprnum = 0; sprnum < 16; sprnum++)
	{
		uint8_t *rambase = &m_alt_spriteram[sprnum * 8];
		int level = sprnum & 7;
		uint8_t clo, chi;
		uint32_t sum;

		// perform the first ALU to see if we are within the scanline
		sum = y + (rambase[0] ^ 0xff);
		clo = (sum >> 8) & 1;
		sum += (y << 8) + ((rambase[1] ^ 0xff) << 8);
		chi = (sum >> 16) & 1;

		// the AND of the low carry and the inverse of the high carry clocks an enable bit
		// for this sprite; note that the logic in the Turbo schematics is reversed here
		if (clo & (chi ^ 1))
		{
			int xscale = rambase[2] ^ 0xff;
			int yscale = rambase[3];// ^ 0xff;
			uint16_t offset = rambase[6] + (rambase[7] << 8);
			int offs;

			// mark this entry enabled
			m_sprite_info.ve |= 1 << sprnum;

			// look up the low byte of the sum plus the yscale value in
			// IC50/PR1119 to determine if we write back the sum of the
			// offset and the rowbytes this scanline (p. 138)
			offs = (sum & 0xff) |           // A0-A7 = AL0-AL7
					((yscale & 0x08) << 5); // A8-A9 = /RO11-/RO12

			// one of the bits is selected based on the low 7 bits of yscale
			if (!((pr1119[offs] >> (yscale & 0x07)) & 1))
			{
				offset += rambase[4] + (rambase[5] << 8);
				rambase[6] = offset;
				rambase[7] = offset >> 8;
			}

			// the output of the ALU here goes to the individual level counter
			m_sprite_info.latched[level] = 0;
			m_sprite_info.plb[level] = 0;
			m_sprite_info.offset[level] = offset;
			m_sprite_info.frac[level] = 0;

			/*
			    actual pots read from one board:
			        VR1 = 310 Ohm
			        VR2 = 910 Ohm
			*/
			m_sprite_info.step[level] = sprite_xscale(xscale, 1.0e3 * m_vr[0]->read() / 100.0, 1.0e3 * m_vr[1]->read() / 100.0, 100e-12);
		}
	}
}


uint32_t turbo_state::get_sprite_bits(uint8_t road)
{
	uint8_t sprlive = m_sprite_info.lst;
	uint32_t sprdata = 0;

	// if we haven't left the road yet, sprites 3-7 are disabled
	if (!road)
		sprlive &= 0x07;

	// loop over all live levels
	for (int level = 0; level < 8; level++)
		if (sprlive & (1 << level))
		{
			// latch the data and advance the offset
			sprdata |= m_sprite_info.latched[level];
			m_sprite_info.frac[level] += m_sprite_info.step[level];

			// if we're live and we've clocked more data, advance
			while (m_sprite_info.frac[level] >= 0x1000000)
			{
				uint16_t offs = m_sprite_info.offset[level];
				uint8_t pixdata;

				// bit 0 controls which half of the byte to use
				// bits 1-13 go to address lines
				// bit 14 selects which of the two ROMs to read from
				pixdata = m_spriteroms[(level << 14) | ((offs >> 1) & 0x3fff)] >> ((~offs & 1) * 4);
				m_sprite_info.latched[level] = sprite_expand[pixdata & 0x0f] << level;

				// if bit 3 is 0 and bit 2 is 1, the enable flip/flip is reset
				if ((pixdata & 0x0c) == 0x04)
				{
					m_sprite_info.lst &= ~(1 << level);
					sprlive &= ~(1 << level);
				}

				// if bit 15 is set, we decrement instead of increment
				m_sprite_info.offset[level] += (offs & 0x8000) ? -1 : 1;
				m_sprite_info.frac[level] -= 0x1000000;
			}
		}

	return sprdata;
}



/*************************************
 *
 *  Turbo video update
 *
 *************************************/

uint32_t turbo_state::screen_update(screen_device &screen, bitmap_ind16 &bitmap, const rectangle &cliprect)
{
	bitmap_ind16 &fgpixmap = m_fg_tilemap->pixmap();
	uint8_t const *const pr1114 = &m_proms[0x000];
	uint8_t const *const pr1115 = &m_proms[0x020];
	uint8_t const *const pr1116 = &m_proms[0x040];
	uint8_t const *const pr1117 = &m_proms[0x060];
	uint8_t const *const pr1118 = &m_proms[0x100];
	uint8_t const *const pr1121 = &m_proms[0x600];
	uint8_t const *const pr1122 = &m_proms[0x800];
	uint8_t const *const pr1123 = &m_proms[0xc00];

	// loop over rows
	for (int y = cliprect.min_y; y <= cliprect.max_y; y++)
	{
		uint16_t const *const fore = &fgpixmap.pix(y);
		uint16_t *const dest = &bitmap.pix(y);
		int road = 0;

		// compute the Y sum between opa and the current scanline (p. 141)
		int va = (y + m_opa) & 0xff;

		// the upper bit of OPC inverts the road (p. 141)
		if (!(m_opc & 0x80))
			va ^= 0xff;

		// compute the sprite information; we use y-1 since this info was computed during HBLANK
		// on the previous scanline
		prepare_sprites(y);

		// loop over columns
		for (int x = 0; x <= cliprect.max_x; x += TURBO_X_SCALE)
		{
			int xx = x / TURBO_X_SCALE;

			// load the bitmask from the sprite position for both halves of the sprites (p. 139)
			uint16_t he = m_sprite_position[xx] | (m_sprite_position[xx + 0x100] << 8);

			// the AND of the line enable and horizontal enable is clocked and held in LST0-7 (p. 143)
			he &= m_sprite_info.ve;
			m_sprite_info.lst |= he | (he >> 8);

			// compute the X sum between opb and the current column; only the carry matters (p. 141)
			uint8_t carry = (xx + m_opb) >> 8;

			// the carry selects which inputs to use (p. 141)
			int sel, coch;
			if (carry)
			{
				sel  = m_ipb;
				coch = m_ipc >> 4;
			}
			else
			{
				sel  = m_ipa;
				coch = m_ipc & 15;
			}

			// look up AREA1 and AREA2 (p. 142)
			int area, offs, areatmp;
			offs = va |                         //  A0- A7 = VA0-VA7
					((sel & 0x0f) << 8);            //  A8-A11 = SEL0-3

			areatmp = m_roadroms[0x0000 | offs];
			areatmp = ((areatmp + xx) >> 8) & 0x01;
			area = areatmp << 0;

			areatmp = m_roadroms[0x1000 | offs];
			areatmp = ((areatmp + xx) >> 8) & 0x01;
			area |= areatmp << 1;

			// look up AREA3 and AREA4 (p. 142)
			offs = va |                         //  A0- A7 = VA0-VA7
					((sel & 0xf0) << 4);            //  A8-A11 = SEL4-7

			areatmp = m_roadroms[0x2000 | offs];
			areatmp = ((areatmp + xx) >> 8) & 0x01;
			area |= areatmp << 2;

			areatmp = m_roadroms[0x3000 | offs];
			areatmp = ((areatmp + xx) >> 8) & 0x01;
			area |= areatmp << 3;

			// look up AREA5 (p. 141)
			offs = (xx >> 3) |                          //  A0- A4 = H3-H7
					((m_opc & 0x3f) << 5);    //  A5-A10 = OPC0-5

			areatmp = m_roadroms[0x4000 | offs];
			areatmp = (areatmp << (xx & 7)) & 0x80;
			area |= areatmp >> 3;

			// compute the final area value and look it up in IC18/PR1115 (p. 144)
			// note: SLIPAR is 0 on the road surface only
			//       ACCIAR is 0 on the road surface and the striped edges only
			int babit = pr1115[area];
			int slipar_acciar = babit & 0x30;
			if (!road && (slipar_acciar & 0x20))
				road = 1;

			// also use the coch value to look up color info in IC13/PR1114 and IC21/PR1117 (p. 144)
			offs = (coch & 0x0f) |                      // A0-A3: CONT0-3 = COCH0-3
					((m_fbcol & 0x01) << 4);  //    A4: COL0
			int bacol = pr1114[offs] | (pr1117[offs] << 8);

			// at this point, do the character lookup; due to the shift register loading in
			// the sync PROM, we latch character 0 during pixel 6 and start clocking in pixel
			// 8, effectively shifting the display by 8; at pixel 0x108, the color latch is
			// forced clear and isn't touched until the next shift register load
			int foreraw = (xx < 8 || xx >= 0x108) ? 0 : fore[xx - 8];

			// perform the foreground color table lookup in IC99/PR1118 (p. 137)
			int forebits = pr1118[foreraw];

			// now that we have done all the per-5MHz pixel work, mix the sprites at the scale factor
			for (int ix = 0; ix < TURBO_X_SCALE; ix++)
			{
				// iterate over live sprites and update them
				// the final 32-bit value is:
				//    CDB0-7 = D0 -D7
				//    CDG0-7 = D8 -D15
				//    CDR0-7 = D16-D23
				//    PLB0-7 = D24-D31
				uint32_t sprbits = get_sprite_bits(road);

				// perform collision detection here via lookup in IC20/PR1116 (p. 144)
				m_collision |= pr1116[((sprbits >> 24) & 7) | (slipar_acciar >> 1)];

				// look up the sprite priority in IC11/PR1122 (p. 144)
				int priority = ((sprbits & 0xfe000000) >> 25) |     // A0-A6: PLB1-7
							((m_fbpla & 0x07) << 7);  // A7-A9: PLA0-2
				priority = pr1122[priority];

				// use that to look up the overall priority in IC12/PR1123 (p. 144)
				int mx = (priority & 7) |                       // A0-A2: PR-1122 output, bits 0-2
						((sprbits & 0x01000000) >> 21) |        //    A3: PLB0
						((foreraw & 0x80) >> 3) |               //    A4: PLBE
						((forebits & 0x08) << 2) |          //    A5: PLBF
						((babit & 0x07) << 6) |             // A6-A8: BABIT1-3
						((m_fbpla & 0x08) << 6);  //    A9: PLA3
				mx = pr1123[mx];

				// the MX output selects one of 16 inputs; build up a 16-bit pattern to match
				// these in red, green, and blue (p. 144)
				int red = ((sprbits & 0x0000ff) >> 0) |     //  D0- D7: CDR0-CDR7
						((forebits & 0x01) << 8) |      //      D8: CDRF
						((bacol & 0x001f) << 9) |           //  D9-D13: BAR0-BAR4
						(1 << 14) |                     //     D14: 1
						(0 << 15);                      //     D15: 0

				int grn = ((sprbits & 0x00ff00) >> 8) |     //  D0- D7: CDG0-CDG7
						((forebits & 0x02) << 7) |      //      D8: CDGF
						((bacol & 0x03e0) << 4) |           //  D9-D13: BAG0-BAG4
						(1 << 14) |                     //     D14: 1
						(0 << 15);                      //     D15: 0

				int blu = ((sprbits & 0xff0000) >> 16) |    //  D0- D7: CDB0-CDB7
						((forebits & 0x04) << 6) |      //      D8: CDBF
						((bacol & 0x7c00) >> 1) |           //  D9-D13: BAB0-BAB4
						(1 << 14) |                     //     D14: 1
						(0 << 15);                      //     D15: 0

				// we then go through a muxer to select one of the 16 outputs computed above (p. 144)
				offs = mx |                             // A0-A3: MX0-MX3
						(((~red >> mx) & 1) << 4) |     //    A4: CDR
						(((~grn >> mx) & 1) << 5) |     //    A5: CDG
						(((~blu >> mx) & 1) << 6) |     //    A6: CDB
						((m_fbcol & 6) << 6); // A7-A8: COL1-2
				dest[x + ix] = pr1121[offs];
			}
		}
	}
	return 0;
}



/*************************************
 *
 *  Subroc 3D sprite handling
 *
 *************************************/

/*
    Sprite state machine:

    1LINE = 0 (V & 0x108 == 0x108)
    ---------
           0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
           20 21 21 20 20 21 21 20 20 05 25 2c 07 e7 37 22
               _____       _____       _____    ________
    RAD0 = ___|     |_____|     |_____|     |__|        |___
                                                ___________
    RAD7 = ____________________________________|           |
                                       _________________
    YCULL= ___________________________|                 |___
                                             __
    AX   = _________________________________|  |____________
                                                      __
    D/A  = __________________________________________|  |___
           ___________________________    _____    _________
    /CLK1=                            |__|     |__|
                                                   __
    WRPL = _______________________________________|  |______
                                                   __
    /CLK2= _______________________________________|  |______



    1LINE = 1 (V & 0x108 != 0x108)
    ---------
           0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
           2c 2c 2c 2f 2f 2f 2f 20 2d 2d 2d 2d 0f 6f 2f 20
                     ___________    ____________________
    RAD0 = _________|           |__|                    |___
                     ___________                ________
    RAD7 = _________|           |______________|        |___
           _____________________    ____________________
    YCULL=                      |__|                    |___
           _____________________    ____________________
    AX   =                      |__|                    |___

    D/A  = _________________________________________________
           ____________________________________    _________
    /CLK1=                                     |__|
                                                   __
    WRPL = _______________________________________|  |______

    /CLK2= _________________________________________________

*/

void subroc3d_state::prepare_sprites(uint8_t y)
{
	const uint8_t *pr1449 = &m_proms[0x300];

	// initialize the line enable signals to 0
	m_sprite_info.ve = 0;
	m_sprite_info.lst = 0;

	// compute the sprite information, which was done on the previous scanline during HBLANK
	for (int sprnum = 0; sprnum < 16; sprnum++)
	{
		uint8_t *rambase = &m_spriteram[sprnum * 8];
		int level = sprnum & 7;
		uint8_t clo, chi;
		uint32_t sum;

		// perform the first ALU to see if we are within the scanline
		sum = y + (rambase[0]/* ^ 0xff*/);
		clo = (sum >> 8) & 1;
		sum += (y << 8) + ((rambase[1]/* ^ 0xff*/) << 8);
		chi = (sum >> 16) & 1;

		// the AND of the low carry and the inverse of the high carry clocks an enable bit
		// for this sprite; note that the logic in the Turbo schematics is reversed here
		if (clo & (chi ^ 1))
		{
			int xscale = rambase[2] ^ 0xff;
			int yscale = rambase[3];// ^ 0xff;
			uint16_t offset = rambase[6] + (rambase[7] << 8);
			int offs;

			// mark this entry enabled
			m_sprite_info.ve |= 1 << sprnum;

			// look up the low byte of the sum plus the yscale value in
			// IC50/PR1119 to determine if we write back the sum of the */
			// offset and the rowbytes this scanline (p. 138)
			offs = (sum & 0xff) |           // A0-A7 = AL0-AL7
					((yscale & 0x08) << 5); // A8-A9 = /RO11-/RO12

			// one of the bits is selected based on the low 7 bits of yscale
			if (!((pr1449[offs] >> (yscale & 0x07)) & 1))
			{
				offset += rambase[4] + (rambase[5] << 8);
				rambase[6] = offset;
				rambase[7] = offset >> 8;
			}

			// the output of the ALU here goes to the individual level counter
			m_sprite_info.latched[level] = 0;
			m_sprite_info.plb[level] = 0;
			m_sprite_info.offset[level] = offset << 1;
			m_sprite_info.frac[level] = 0;
			m_sprite_info.step[level] = sprite_xscale(xscale, 1.2e3, 1.2e3, 220e-12);
		}
	}
}


uint32_t subroc3d_state::get_sprite_bits(uint8_t *plb)
{
	/* see logic on each sprite:
	    END = (CDA == 1 && (CDA ^ CDB) == 0 && (CDC ^ CDD) == 0)
	    PLB = END ^ (CDA == 1 && (CDC ^ CDD) == 0)
	   end is in bit 1, plb in bit 0
	*/
	static const uint8_t plb_end[16] = { 0,1,1,2, 1,1,1,1, 1,1,1,1, 0,1,1,2 };
	uint32_t sprdata = 0;

	*plb = 0;

	// loop over all live levels
	for (int level = 0; level < 8; level++)
		if (m_sprite_info.lst & (1 << level))
		{
			// latch the data and advance the offset
			sprdata |= m_sprite_info.latched[level];
			*plb |= m_sprite_info.plb[level];
			m_sprite_info.frac[level] += m_sprite_info.step[level];

			// if we're live and we've clocked more data, advance
			while (m_sprite_info.frac[level] >= 0x800000)
			{
				uint32_t offs = m_sprite_info.offset[level];
				uint8_t pixdata;

				// bit 0 controls which half of the byte to use
				// bits 1-13 go to address lines
				// bit 14 selects which of the two ROMs to read from
				pixdata = m_spriteroms[(level << 15) | ((offs >> 1) & 0x7fff)] >> ((~offs & 1) * 4);
				m_sprite_info.latched[level] = sprite_expand[pixdata & 0x0f] << level;
				m_sprite_info.plb[level] = (plb_end[pixdata & 0x0f] & 1) << level;

				// if bit 3 is 0 and bit 2 is 1, the enable flip/flip is reset
				if (plb_end[pixdata & 0x0f] & 2)
					m_sprite_info.lst &= ~(1 << level);

				// if bit 15 is set, we decrement instead of increment
				m_sprite_info.offset[level] += (offs & 0x10000) ? -1 : 1;
				m_sprite_info.frac[level] -= 0x800000;
			}
		}

	return sprdata;
}



/*************************************
 *
 *  Subroc 3D video update
 *
 *************************************/

uint32_t subroc3d_state::screen_update(screen_device &screen, bitmap_ind16 &bitmap, const rectangle &cliprect)
{
	bitmap_ind16 &fgpixmap = m_fg_tilemap->pixmap();
	uint8_t const *const pr1419 = &m_proms[0x000];
	uint8_t const *const pr1620 = &m_proms[0x200];
	uint8_t const *const pr1450 = &m_proms[0x500];
	uint8_t const *const pr1454 = &m_proms[0x920];

	// loop over rows
	for (int y = cliprect.min_y; y <= cliprect.max_y; y++)
	{
		uint16_t const *const fore = &fgpixmap.pix(y);
		uint16_t *const dest = &bitmap.pix(y);

		// compute the sprite information; we use y-1 since this info was computed during HBLANK
		// on the previous scanline
		prepare_sprites(y);

		// loop over columns
		for (int x = 0; x <= cliprect.max_x; x += TURBO_X_SCALE)
		{
			uint8_t xx = x / TURBO_X_SCALE;

			// load the bitmask from the sprite position for both halves of the sprites (p. 143)
			uint16_t he = m_sprite_position[xx * 2] | (m_sprite_position[xx * 2 + 1] << 8);

			// the AND of the line enable and horizontal enable is clocked and held in LST0-7 (p. 143)
			he &= m_sprite_info.ve;
			m_sprite_info.lst |= he | (he >> 8);

			// at this point, do the character lookup
			uint8_t foreraw;
			if (!m_flip)
				foreraw = fore[xx];
			else
				foreraw = fore[(pr1454[(xx >> 3) & 0x1f] << 3) | (xx & 0x07)];

			// perform the foreground color table lookup in IC62/PR1620 (p. 141)
			uint8_t forebits = pr1620[foreraw];

			// MPLB is set based on the high bit of the raw foreground data, as an OR over the output
			// of the foreground color PROM
			uint8_t mplb = (foreraw & 0x80) || ((forebits & 0x0f) == 0);

			// now that we have done all the per-5MHz pixel work, mix the sprites at the scale factor
			for (int ix = 0; ix < TURBO_X_SCALE; ix++)
			{
				int offs;

				// iterate over live sprites and update them
				// the final 32-bit value is:
				//    CDA0-7 = D0 -D7
				//    CDB0-7 = D8 -D15
				//    CDC0-7 = D16-D23
				//    CDD0-7 = D24-D31
				uint8_t plb;
				uint32_t sprbits = get_sprite_bits(&plb);

				// MUX0-3 is selected by PLY0-3 and the sprite enable bits, and is the output
				// of IC21/PR1450 (p. 141), unless MPLB = 0, in which case the values are grounded (p. 141)
				uint8_t mux;
				if (mplb)
				{
					offs = (plb ^ 0xff) |                       // A0-A7: /PLB0-7
							((m_ply & 0x02) << 7); //    A8: PLY1
					mux = pr1450[offs] >> ((m_ply & 0x01) * 4);
				}
				else
					mux = 0;

				// CD0-3 are selected from the sprite bits and MUX0-2 (p. 141)
				sprbits = (sprbits >> (mux & 0x07)) & 0x01010101;
				uint8_t cd = (sprbits >> (24-3)) | (sprbits >> (16-2)) | (sprbits >> (8-1)) | sprbits;

				// MUX3 selects either CD0-3 or the foreground output (p. 141)
				int finalbits;
				if (mux & 0x08)
					finalbits = cd;
				else
					finalbits = forebits;

				// we then go through a muxer to select one of the 16 outputs computed above (p. 141)
				offs = (finalbits & 0x0f) |                 // A0-A3: CD0-CD3
						((mux & 0x08) << 1) |               //    A4: MUX3
						(m_col << 5);          // A5-A8: COL0-COL3
				dest[x + ix] = pr1419[offs];
			}
		}
	}
	return 0;
}



/*************************************
 *
 *  Buck Rogers sprite handling
 *
 *************************************/

void buckrog_state::prepare_sprites(uint8_t y)
{
	uint8_t const *const pr5196 = &m_proms[0x100];

	// initialize the line enable signals to 0
	m_sprite_info.ve = 0;
	m_sprite_info.lst = 0;

	// compute the sprite information, which was done on the previous scanline during HBLANK
	for (int sprnum = 0; sprnum < 16; sprnum++)
	{
		uint8_t *const rambase = &m_spriteram[sprnum * 8];
		int level = sprnum & 7;

		// perform the first ALU to see if we are within the scanline
		uint32_t sum = y + (rambase[0]/* ^ 0xff*/);
		uint8_t clo = (sum >> 8) & 1;
		sum += (y << 8) + ((rambase[1]/* ^ 0xff*/) << 8);
		uint8_t chi = (sum >> 16) & 1;

		// the AND of the low carry and the inverse of the high carry clocks an enable bit
		// for this sprite; note that the logic in the Turbo schematics is reversed here
		if (clo & (chi ^ 1))
		{
			int xscale = rambase[2] ^ 0xff;
			int yscale = rambase[3];// ^ 0xff;
			uint16_t offset = rambase[6] + (rambase[7] << 8);

			// mark this entry enabled
			m_sprite_info.ve |= 1 << sprnum;

			// look up the low byte of the sum plus the yscale value in
			// IC50/PR1119 to determine if we write back the sum of the
			// offset and the rowbytes this scanline (p. 138)
			int offs = (sum & 0xff) |       // A0-A7 = AL0-AL7
					((yscale & 0x08) << 5); // A8-A9 = /RO11-/RO12

			// one of the bits is selected based on the low 7 bits of yscale
			if (!((pr5196[offs] >> (yscale & 0x07)) & 1))
			{
				offset += rambase[4] + (rambase[5] << 8);
				rambase[6] = offset;
				rambase[7] = offset >> 8;
			}

			// the output of the ALU here goes to the individual level counter
			m_sprite_info.latched[level] = 0;
			m_sprite_info.plb[level] = 0;
			m_sprite_info.offset[level] = offset << 1;
			m_sprite_info.frac[level] = 0;
			// 820 verified in schematics
			m_sprite_info.step[level] = sprite_xscale(xscale, 1.2e3, 820, 220e-12);
		}
	}
}


uint32_t buckrog_state::get_sprite_bits(uint8_t *plb)
{
	/* see logic on each sprite:
	    END = (CDA == 1 && (CDA ^ CDB) == 0 && (CDC ^ CDD) == 0)
	    PLB = END ^ (CDA == 1 && (CDC ^ CDD) == 0)
	   end is in bit 1, plb in bit 0
	*/
	static const uint8_t plb_end[16] = { 0,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,2 };
	uint32_t sprdata = 0;

	*plb = 0;

	// loop over all live levels
	for (int level = 0; level < 8; level++)
		if (m_sprite_info.lst & (1 << level))
		{
			// latch the data and advance the offset
			sprdata |= m_sprite_info.latched[level];
			*plb |= m_sprite_info.plb[level];
			m_sprite_info.frac[level] += m_sprite_info.step[level];

			// if we're live and we've clocked more data, advance
			while (m_sprite_info.frac[level] >= 0x800000)
			{
				uint32_t offs = m_sprite_info.offset[level];

				// bit 0 controls which half of the byte to use
				// bits 1-13 go to address lines
				// bit 14 selects which of the two ROMs to read from
				uint8_t pixdata = m_spriteroms[(level << 15) | ((offs >> 1) & 0x7fff)] >> ((~offs & 1) * 4);
				m_sprite_info.latched[level] = sprite_expand[pixdata & 0x0f] << level;
				m_sprite_info.plb[level] = (plb_end[pixdata & 0x0f] & 1) << level;

				// if bit 3 is 0 and bit 2 is 1, the enable flip/flip is reset
				if (plb_end[pixdata & 0x0f] & 2)
					m_sprite_info.lst &= ~(1 << level);

				// if bit 15 is set, we decrement instead of increment
				m_sprite_info.offset[level] += (offs & 0x10000) ? -1 : 1;
				m_sprite_info.frac[level] -= 0x800000;
			}
		}

	return sprdata;
}



/*************************************
 *
 *  Buck Rogers video update
 *
 *************************************/

uint32_t buckrog_state::screen_update(screen_device &screen, bitmap_ind16 &bitmap, const rectangle &cliprect)
{
	bitmap_ind16 &fgpixmap = m_fg_tilemap->pixmap();
	uint8_t const *const pr5194 = &m_proms[0x000];
	uint8_t const *const pr5198 = &m_proms[0x500];
	uint8_t const *const pr5199 = &m_proms[0x700];

	// loop over rows
	for (int y = cliprect.min_y; y <= cliprect.max_y; y++)
	{
		uint16_t const *const fore = &fgpixmap.pix(y);
		uint16_t *const dest = &bitmap.pix(y);

		// compute the sprite information; we use y-1 since this info was computed during HBLANK
		// on the previous scanline
		prepare_sprites(y);

		// loop over columns
		for (int x = 0; x <= cliprect.max_x; x += TURBO_X_SCALE)
		{
			uint8_t xx = x / TURBO_X_SCALE;
			int offs;

			// load the bitmask from the sprite position for both halves of the sprites (p. 143)
			uint16_t he = m_sprite_position[xx * 2] | (m_sprite_position[xx * 2 + 1] << 8);

			// the AND of the line enable and horizontal enable is clocked and held in LST0-7 (p. 143)
			he &= m_sprite_info.ve;
			m_sprite_info.lst |= he | (he >> 8);

			// at this point, do the character lookup and the foreground color table lookup in IC93/PR1598 (SH 5/5)
			uint8_t foreraw = fore[(pr5194[((xx >> 3) - 1) & 0x1f] << 3) | (xx & 0x07)];
			offs = ((foreraw & 0x03) << 0) |            // A0-A1: BIT0-1
					((foreraw & 0xf8) >> 1) |           // A2-A6: BANK3-7
					((m_fchg & 0x03) << 7); // A7-A9: FCHG0-2
			uint8_t forebits = pr5198[offs];

			// fetch the STAR bit
			uint8_t star = m_bitmap_ram[y * 256 + xx];

			// now that we have done all the per-5MHz pixel work, mix the sprites at the scale factor
			for (int ix = 0; ix < TURBO_X_SCALE; ix++)
			{
				// iterate over live sprites and update them
				// the final 32-bit value is:
				//    CDA0-7 = D0 -D7
				//    CDB0-7 = D8 -D15
				//    CDC0-7 = D16-D23
				//    CDD0-7 = D24-D31
				uint8_t plb;
				uint32_t sprbits = get_sprite_bits(&plb);

				// the PLB bits go into an LS148 8-to-1 decoder and become MUX0-3 (PROM board SH 2/10)
				uint8_t mux;
				if (plb == 0)
					mux = 8;
				else
				{
					mux = 7;
					while (!(plb & 0x80))
					{
						mux--;
						plb <<= 1;
					}
				}

				// MUX then selects one of the sprites and selects CD0-3
				sprbits = (sprbits >> (mux & 0x07)) & 0x01010101;
				uint8_t cd = (sprbits >> (24-3)) | (sprbits >> (16-2)) | (sprbits >> (8-1)) | sprbits;

				// this info goes into an LS148 8-to-3 decoder to determine the priorities (SH 5/5)

				// priority 7 is if bit 0x80 of the foreground color is 0; CHNG = 0
				int palbits;
				if (!(forebits & 0x80))
				{
					palbits = ((forebits & 0x3c) << 2) |
								((forebits & 0x06) << 1) |
								((forebits & 0x01) << 0);
				}

				// priority 6 is if MUX3 is 0; CHNG = 1
				else if (!(mux & 0x08))
				{
					offs = (cd & 0x0f) |                        // A0-A3: CD0-3
							((mux & 0x07) << 4) |               // A4-A6: MUX0-2
							((m_obch & 0x07) << 7); // A7-A9: OBCH0-2
					palbits = pr5199[offs];
				}

				// priority 3 is if bit 0x40 of the foreground color is 0; CHNG = 0
				else if (!(forebits & 0x40))
				{
					palbits = ((forebits & 0x3c) << 2) |
								((forebits & 0x06) << 1) |
								((forebits & 0x01) << 0);
				}

				// priority 1 is if the star is set; CHNG = 2
				else if (star)
				{
					palbits = 0xff;
				}

				// otherwise, CHNG = 3
				else
				{
					palbits = m_bgcolorrom[y | ((m_mov & 0x1f) << 8)];
					palbits = (palbits & 0xc0) | ((palbits & 0x30) << 4) | ((palbits & 0x0f) << 2);
				}

				// store the final bits for this pixel
				dest[x + ix] = palbits;
			}
		}
	}
	return 0;
}