1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
|
/* CRT shader
*
* Copyright (C) 2010-2012 cgwg, Themaister and DOLLS
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* Conversion for MAME/MAMEUIFX done by Hunter K. and U-MAN.
*/
varying float CRTgamma;
varying float monitorgamma;
varying vec2 overscan;
varying vec2 aspect;
varying float d;
varying float R;
varying float cornersize;
varying float cornersmooth;
varying float halation;
varying vec3 stretch;
varying vec2 sinangle;
varying vec2 cosangle;
uniform vec2 color_texture_sz; // = rubyInputSize
uniform vec2 color_texture_pow2_sz; // = rubyTextureSize
varying vec2 texCoord;
varying vec2 one;
#define FIX(c) max(abs(c), 1e-5);
float intersect(vec2 xy)
{
float A = dot(xy,xy)+d*d;
float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y)-d*d);
float C = d*d + 2.0*R*d*cosangle.x*cosangle.y;
return (-B-sqrt(B*B-4.0*A*C))/(2.0*A);
}
vec2 bkwtrans(vec2 xy)
{
float c = intersect(xy);
vec2 point = vec2(c)*xy;
point -= vec2(-R)*sinangle;
point /= vec2(R);
vec2 tang = sinangle/cosangle;
vec2 poc = point/cosangle;
float A = dot(tang,tang)+1.0;
float B = -2.0*dot(poc,tang);
float C = dot(poc,poc)-1.0;
float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A);
vec2 uv = (point-a*sinangle)/cosangle;
float r = R*acos(a);
return uv*r/sin(r/R);
}
vec2 fwtrans(vec2 uv)
{
float r = FIX(sqrt(dot(uv,uv)));
uv *= sin(r/R)/r;
float x = 1.0-cos(r/R);
float D = d/R + x*cosangle.x*cosangle.y+dot(uv,sinangle);
return d*(uv*cosangle-x*sinangle)/D;
}
vec3 maxscale()
{
vec2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y));
vec2 a = vec2(0.5,0.5)*aspect;
vec2 lo = vec2(fwtrans(vec2(-a.x,c.y)).x,
fwtrans(vec2(c.x,-a.y)).y)/aspect;
vec2 hi = vec2(fwtrans(vec2(+a.x,c.y)).x,
fwtrans(vec2(c.x,+a.y)).y)/aspect;
return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x,hi.y-lo.y));
}
void main()
{
// START of parameters
// gamma of simulated CRT
CRTgamma = 2.4;
// gamma of display monitor (typically 2.2 is correct)
monitorgamma = 2.2;
// overscan (e.g. 1.02 for 2% overscan)
overscan = vec2(0.98,0.98);
// aspect ratio
aspect = vec2(1.0, 0.75);
// lengths are measured in units of (approximately) the width of the monitor
// simulated distance from viewer to monitor
d = 2.0;
// radius of curvature
R = 3.5;
// tilt angle in radians
// (behavior might be a bit wrong if both components are nonzero)
const vec2 angle = vec2(0.0,0.001);
// size of curved corners
cornersize = 0.01;
// border smoothness parameter
// decrease if borders are too aliased
cornersmooth = 100.0;
// strength of halation or "bloom" effect - e.g. 0.1 for 10%
halation = 0.1;
// END of parameters
// Do the standard vertex processing.
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
// Precalculate a bunch of useful values we'll need in the fragment
// shader.
sinangle = sin(angle);
cosangle = cos(angle);
stretch = maxscale();
// Texture coords.
texCoord = gl_MultiTexCoord0.xy;
// The size of one texel, in texture-coordinates.
one = 1.0 / color_texture_pow2_sz;
}
|