summaryrefslogtreecommitdiffstats
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/frontend/mame/ui/menu.cpp4
1 files changed, 2 insertions, 2 deletions
diff --git a/src/frontend/mame/ui/menu.cpp b/src/frontend/mame/ui/menu.cpp
index 04a7a271609..0dced188c9d 100644
--- a/src/frontend/mame/ui/menu.cpp
+++ b/src/frontend/mame/ui/menu.cpp
@@ -361,11 +361,11 @@ void menu::item_append(std::string &&text, std::string &&subtext, UINT32 flags,
auto index = item.size();
if (!item.empty())
{
- item.insert(item.end() - 1, pitem);
+ item.emplace(item.end() - 1, std::move(pitem));
--index;
}
else
- item.push_back(pitem);
+ item.emplace_back(std::move(pitem));
// update the selection if we need to
if (resetpos == index || (resetref != nullptr && resetref == ref))
n19' href='#n19'>19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
// license:BSD-3-Clause
// copyright-holders:Sandro Ronco
/**********************************************************************

    NEC uPD65031 'BLINK' emulation

    the uPD65031 manages almost everything in the Z88:
    - memory bankswitch
    - interrupts
    - RTC
    - LCD
    - keyboard
    - serial
    - speaker

    TODO:
    - coma and snooze mode
    - UART Loopback mode

*********************************************************************/


#include "emu.h"
#include "upd65031.h"

#define VERBOSE 0
#include "logmacro.h"


// device type definition
DEFINE_DEVICE_TYPE(UPD65031, upd65031_device, "upd65031", "NEC uPD65031")


//**************************************************************************
//  MACROS / CONSTANTS
//**************************************************************************

namespace {

static constexpr uint32_t SPEAKER_ALARM_FREQ = 3200;

// internal registers
enum
{
	// write registers
	REG_PB0  = 0x70,        // pixel base 0
	REG_PB1  = 0x71,        // pixel base 1
	REG_PB2  = 0x72,        // pixel base 2
	REG_PB3  = 0x73,        // pixel base 3
	REG_SBR  = 0x74,        // screen base register

	REG_COM  = 0xb0,        // command register
	REG_INT  = 0xb1,        // interrupt control
	REG_EPR  = 0xb3,        // EPROM programming
	REG_TACK = 0xb4,        // RTC acknowledge
	REG_TMK  = 0xb5,        // RTC interrupt mask
	REG_ACK  = 0xb6,        // interrupt acknowledge

	REG_SR0  = 0xd0,        // segment register 0
	REG_SR1  = 0xd1,        // segment register 1
	REG_SR2  = 0xd2,        // segment register 2
	REG_SR3  = 0xd3,        // segment register 3

	REG_RXC  = 0xe2,        // UART receiver control
	REG_TXD  = 0xe3,        // UART transmit data
	REG_TXC  = 0xe4,        // UART transmit control
	REG_UMK  = 0xe5,        // UART interrupt mask
	REG_UAK  = 0xe6,        // UART interrupt acknowledge


	// read registers
	REG_STA  = 0xb1,        // interrupt status
	REG_KBD  = 0xb2,        // keyboard read
	REG_TSTA = 0xb5,        // RTC interrupt status

	REG_TIM0 = 0xd0,        // RTC 5ms counter
	REG_TIM1 = 0xd1,        // RTC seconds counter (6 bits)
	REG_TIM2 = 0xd2,        // RTC minutes counter
	REG_TIM3 = 0xd3,        // RTC minutes/256 counter
	REG_TIM4 = 0xd4,        // RTC minutes/65536 counter (5 bits)

	REG_RXD  = 0xe0,        // UART receive data register
	REG_RXE  = 0xe1,        // UART extended receiver data
	REG_UIT  = 0xe5         // UART interrupt status
};

//mode
enum
{
	STATE_AWAKE = 0,
	STATE_SNOOZE,
	STATE_COMA
};

// interrupt status
static constexpr uint8_t STA_FLAPOPEN = 0x80;   // Flap status
static constexpr uint8_t STA_A19      = 0x40;   // High level on A19 occurred during Coma
static constexpr uint8_t STA_FLAP     = 0x20;   // Flap interrupt
static constexpr uint8_t STA_UART     = 0x10;   // UART interrupt
static constexpr uint8_t STA_BTL      = 0x08;   // Battery low interrupt
static constexpr uint8_t STA_KEY      = 0x04;   // Keyboard interrupt
static constexpr uint8_t STA_TIME     = 0x01;   // RTC interrupt

// interrupt control
static constexpr uint8_t INT_KWAIT    = 0x80;   // Reading the keyboard will Snooze
static constexpr uint8_t INT_A19      = 0x40;   // A19 high will exit Coma mode
static constexpr uint8_t INT_FLAP     = 0x20;   // Enable Flap open interrupt
static constexpr uint8_t INT_UART     = 0x10;   // Enable UART interrupt
static constexpr uint8_t INT_BTL      = 0x08;   // Enable Battery low interrupt
static constexpr uint8_t INT_KEY      = 0x04;   // Enable Keyboard interrupt
static constexpr uint8_t INT_TIME     = 0x02;   // Enable RTC interrupt
static constexpr uint8_t INT_GINT     = 0x01;   // Global interrupts mask

// acknowledge interrupts
static constexpr uint8_t ACK_A19     = 0x40;   // Acknowledge A19 interrupt
static constexpr uint8_t ACK_FLAP    = 0x20;   // Acknowledge Flap interrupt
static constexpr uint8_t ACK_BTL     = 0x08;   // Acknowledge battery low interrupt
static constexpr uint8_t ACK_KEY     = 0x04;   // Acknowledge keyboard interrupt

// command register
static constexpr uint8_t COM_SRUN     = 0x80;   // Speaker source (0: manual, 1: auto)
static constexpr uint8_t COM_SBIT     = 0x40;   // Speaker source for SRUN=1 (0: 3200Hz, 1: TxD)
static constexpr uint8_t COM_OVERP    = 0x20;   // Overprogram EPROMs
static constexpr uint8_t COM_RESTIM   = 0x10;   // RTC reset
static constexpr uint8_t COM_PROGRAM  = 0x08;   // EPROM programming
static constexpr uint8_t COM_RAMS     = 0x04;   // Enable boot ROM bank
static constexpr uint8_t COM_VPPON    = 0x02;   // Programming voltage ON
static constexpr uint8_t COM_LCDON    = 0x01;   // LCD ON

// EPROM programming register
static constexpr uint8_t EPR_PD       = 0xc0;   // Two bits representing the length of delay period
static constexpr uint8_t EPR_PGMD     = 0x20;   // State of program pulse during delay period
static constexpr uint8_t EPR_EOED     = 0x10;   // State of EOE during delay period
static constexpr uint8_t EPR_SE3D     = 0x08;   // State of slot 3 select during delay period
static constexpr uint8_t EPR_PGMP     = 0x04;   // State of program pulse during porch period
static constexpr uint8_t EPR_EOEP     = 0x02;   // State of EOE during porch period
static constexpr uint8_t EPR_SE3P     = 0x01;   // State of slot 3 select during porch period

// RTC interrupt status
static constexpr uint8_t TSTA_MIN     = 0x04;   // Minute interrupt has occurred
static constexpr uint8_t TSTA_SEC     = 0x02;   // Second interrupt has occurred
static constexpr uint8_t TSTA_TICK    = 0x01;   // Tick interrupt has occurred

// UART extended receive data
static constexpr uint8_t RXE_FE       = 0x20;   // Frame error
static constexpr uint8_t RXE_RXDB     = 0x10;   // RXD line state
static constexpr uint8_t RXE_TCLK     = 0x08;   // Transmit clock
static constexpr uint8_t RXE_RCLK     = 0x04;   // Receive clock
static constexpr uint8_t RXE_PAR      = 0x02;   // Parity bit
static constexpr uint8_t RXE_START    = 0x01;   // Start bit (should be zero)

// UART receive control
static constexpr uint8_t RXC_SHTW     = 0x80;   // Short word mode
static constexpr uint8_t RXC_LOOP     = 0x40;   // Loopback mode
static constexpr uint8_t RXC_UART     = 0x20;   // Reset
static constexpr uint8_t RXC_ARTS     = 0x10;   // Auto RTS mode
static constexpr uint8_t RXC_IRTS     = 0x08;   // Invert RTS
static constexpr uint8_t RXC_BAUD     = 0x07;   // Baud rate

// UART transmit control
static constexpr uint8_t TXC_UTEST    = 0x80;   // Fast baud rate
static constexpr uint8_t TXC_IDCD     = 0x40;   // DCD interrupt when low (0 for when high)
static constexpr uint8_t TXC_ICTS     = 0x20;   // CTD interrupt when low (0 for when high)
static constexpr uint8_t TXC_ATX      = 0x10;   // Auto transmit mode
static constexpr uint8_t TXC_ITX      = 0x08;   // Invert Tx
static constexpr uint8_t TXC_BAUD     = 0x07;   // Baud rate

// UART interrupt status
static constexpr uint8_t UIT_RSRD     = 0x80;   // Receive shift register full
static constexpr uint8_t UIT_DCDI     = 0x40;   // DCD interrupt
static constexpr uint8_t UIT_CTSI     = 0x20;   // CTS interrupt
static constexpr uint8_t UIT_TDRE     = 0x10;   // Transmit register empty
static constexpr uint8_t UIT_RDRF     = 0x04;   // Receive register full
static constexpr uint8_t UIT_DCD      = 0x02;   // Inverse of the DCD line level
static constexpr uint8_t UIT_CTS      = 0x01;   // Inverse of the CTS line level

// UART interrupt mask
static constexpr uint8_t UMK_DCD      = 0x40;   // DCD interrupts are enabled
static constexpr uint8_t UMK_CTS      = 0x20;   // CTS interrupts are enabled
static constexpr uint8_t UMK_TDRE     = 0x10;   // Transmit data register empty interrupt enabled
static constexpr uint8_t UMK_RDRF     = 0x04;   // Receive data register full interrupt enabled

// UART interrupt acknowledge register
static constexpr uint8_t UAK_DCD      = 0x40;   // Acknowledge DCD interrupt
static constexpr uint8_t UAK_CTS      = 0x20;   // Acknowledge CTS interrupt

} // anonymous namespace

//**************************************************************************
//  INLINE HELPERS
//**************************************************************************

inline void upd65031_device::interrupt_refresh()
{
	if ((m_int & INT_GINT) && ((m_int & m_sta & 0x7c) || ((m_int & INT_TIME) && (m_sta & STA_TIME))))
	{
		LOG("%s: set int\n", machine().describe_context());

		m_write_int(ASSERT_LINE);
	}
	else
	{
		LOG("%s: clear int\n", machine().describe_context());

		m_write_int(CLEAR_LINE);
	}
}


inline void upd65031_device::update_rtc_interrupt()
{
	// any ints occurred?
	if ((m_int & INT_GINT) && (m_int & INT_TIME) && (m_tsta & (TSTA_MIN | TSTA_SEC | TSTA_TICK)))
		m_sta |= STA_TIME;
	else
		m_sta &= ~STA_TIME;
}

inline void upd65031_device::update_uart_interrupt()
{
	if ((m_int & INT_UART) && (m_uit & m_umk))
		m_sta |= STA_UART;
	else
		m_sta &= ~STA_UART;

	interrupt_refresh();
}

inline void upd65031_device::update_tx(int state)
{
	m_txd_line = state;
	m_write_txd(m_txd_line);

	if ((m_com & COM_SRUN) && (m_com & COM_SBIT))
		m_write_spkr(m_txd_line);
}

inline void upd65031_device::set_mode(int mode)
{
	if (m_mode != mode)
	{
		m_mode = mode;

		switch(mode)
		{
		case STATE_AWAKE:
			//TODO
			break;
		case STATE_SNOOZE:
			//TODO
			break;
		case STATE_COMA:
			//TODO
			break;
		}
	}
}


//**************************************************************************
//  LIVE DEVICE
//**************************************************************************

//-------------------------------------------------
//  upd65031_device - constructor
//-------------------------------------------------

upd65031_device::upd65031_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) :
	device_t(mconfig, UPD65031, tag, owner, clock),
	device_serial_interface(mconfig, *this),
	m_read_kb(*this),
	m_write_int(*this),
	m_write_nmi(*this),
	m_write_spkr(*this),
	m_write_txd(*this),
	m_write_rts(*this),
	m_write_dtr(*this),
	m_write_vpp(*this),
	m_screen_update_cb(*this),
	m_out_mem_cb(*this),
	m_sta(0),
	m_int(0)
{
}


//-------------------------------------------------
//  device_start - device-specific startup
//-------------------------------------------------

void upd65031_device::device_start()
{
	// resolve callbacks
	m_read_kb.resolve_safe(0);
	m_write_int.resolve_safe();
	m_write_nmi.resolve_safe();
	m_write_spkr.resolve_safe();
	m_write_txd.resolve_safe();
	m_write_rts.resolve_safe();
	m_write_dtr.resolve_safe();
	m_write_vpp.resolve_safe();

	// bind delegates
	m_screen_update_cb.resolve();
	m_out_mem_cb.resolve();

	// allocate timers
	m_rtc_timer = timer_alloc(FUNC(upd65031_device::rtc_tick), this);
	m_flash_timer = timer_alloc(FUNC(upd65031_device::flash_tick), this);
	m_speaker_timer = timer_alloc(FUNC(upd65031_device::speaker_tick), this);
	m_rtc_timer->adjust(attotime::from_msec(5), 0, attotime::from_msec(5));
	m_flash_timer->adjust(attotime::from_hz(2), 0, attotime::from_hz(2));
	m_speaker_timer->reset();

	// state saving
	save_item(NAME(m_mode));
	save_item(NAME(m_lcd_regs));
	save_item(NAME(m_tim));
	save_item(NAME(m_sr));
	save_item(NAME(m_sta));
	save_item(NAME(m_int));
	save_item(NAME(m_ack));
	save_item(NAME(m_tsta));
	save_item(NAME(m_tmk));
	save_item(NAME(m_tack));
	save_item(NAME(m_com));
	save_item(NAME(m_uit));
	save_item(NAME(m_umk));
	save_item(NAME(m_txc));
	save_item(NAME(m_rxe));
	save_item(NAME(m_rxc));
	save_item(NAME(m_txd_line));
	save_item(NAME(m_flash));
}


//-------------------------------------------------
//  device_reset - device-specific reset
//-------------------------------------------------

void upd65031_device::device_reset()
{
	memset(m_lcd_regs, 0, sizeof(m_lcd_regs));
	memset(m_tim, 0, sizeof(m_tim));
	memset(m_sr, 0, sizeof(m_sr));
	m_sta = 0;
	m_int = 0;
	m_ack = 0;
	m_tsta = 0;
	m_tmk = TSTA_TICK | TSTA_SEC | TSTA_MIN;
	m_tack = 0;
	m_com = 0;
	m_flash = 0;
	m_mode = 0;
	m_uit = UIT_TDRE;   // Transmit register empty
	m_umk = 0x00;
	m_rxe = 0x00;
	m_rxc = RXC_SHTW | 0x05;            // 9600 baud, 1 Stop Bit
	m_txc = TXC_IDCD | TXC_ICTS | 0x05; // 9600 baud
	m_txd_line = 0;
	set_mode(STATE_AWAKE);

	if (!m_out_mem_cb.isnull())
	{
		// reset bankswitch
		m_out_mem_cb(0, 0, 0);
		m_out_mem_cb(1, 0, 0);
		m_out_mem_cb(2, 0, 0);
		m_out_mem_cb(3, 0, 0);
	}

	set_data_frame(1, 8, PARITY_NONE, STOP_BITS_1);
	set_rate(9600);
	transmit_register_reset();
	receive_register_reset();
	m_write_rts(1);
	m_write_dtr(1);
	m_write_vpp(0);
}


//-------------------------------------------------
//  timer events
//-------------------------------------------------

TIMER_CALLBACK_MEMBER(upd65031_device::rtc_tick)
{
	// if a key is pressed sets the interrupt
	if ((m_int & INT_GINT) && (m_int & INT_KEY) && m_read_kb(0) != 0xff)
	{
		LOG("%s: Keyboard interrupt!\n", machine().describe_context());

		// awakes CPU from snooze on key down
		if (m_mode == STATE_SNOOZE)
			set_mode(STATE_AWAKE);

		m_sta |= STA_KEY;
	}
	else
	{
		m_sta &= ~STA_KEY;
	}

	// hold clock at reset? - in this mode it doesn't update
	if (!(m_com & COM_RESTIM))
	{
		bool irq_change = false;

		// update 5 millisecond counter
		m_tim[0]++;

		// tick
		if (m_tim[0] & 1)
		{
			// set tick int has occurred
			if (m_tmk & TSTA_TICK)
			{
				m_tsta |= TSTA_TICK;
				irq_change = true;
			}
		}

		if (m_tim[0] == 200)
		{
			m_tim[0] = 0;
			m_tim[1]++;

			if (m_tim[1] == 32) // on the rising edge of TIM1 bit 5
			{
				// set minutes int has occurred
				if (m_tmk & TSTA_MIN)
				{
					m_tsta |= TSTA_MIN;
					irq_change = true;
				}
			}

			if (m_tim[1] == 60)
			{
				m_tim[1] = 0;
				m_tim[2]++;

				if (m_tim[2] == 0) // overflowed from 255
				{
					m_tim[3]++;

					if (m_tim[3] == 0) // overflowed from 255
					{
						m_tim[4]++;

						if (m_tim[4] == 32)
							m_tim[4] = 0;
					}
				}
			}
		}

		if ((m_int & INT_GINT) && (m_int & INT_TIME) && irq_change && !(m_sta & STA_FLAPOPEN))
		{
			set_mode(STATE_AWAKE);

			update_rtc_interrupt();
		}

		// refresh interrupt
		interrupt_refresh();
	}
}

TIMER_CALLBACK_MEMBER(upd65031_device::flash_tick)
{
	m_flash = !m_flash;
}

TIMER_CALLBACK_MEMBER(upd65031_device::speaker_tick)
{
	m_speaker_state = !m_speaker_state;
	m_write_spkr(m_speaker_state ? 1 : 0);
}


//-------------------------------------------------
//  screen_update
//-------------------------------------------------

uint32_t upd65031_device::screen_update(screen_device &screen, bitmap_ind16 &bitmap, const rectangle &cliprect)
{
	if (!m_screen_update_cb.isnull() && (m_com & COM_LCDON))
		m_screen_update_cb(bitmap, m_lcd_regs[4], m_lcd_regs[2], m_lcd_regs[3], m_lcd_regs[0], m_lcd_regs[1], m_flash);
	else
		bitmap.fill(0, cliprect);

	return 0;
}

//-------------------------------------------------
//  read -
//-------------------------------------------------

uint8_t upd65031_device::read(offs_t offset)
{
	uint8_t port = offset & 0xff;

	switch (port)
	{
		case REG_STA:   // read interrupt status
			return m_sta;

		case REG_KBD:
		{
			// if set, reading the keyboard will put into snooze
			if (m_int & INT_KWAIT)
			{
				set_mode(STATE_SNOOZE);

				LOG("%s: entering snooze!\n", machine().describe_context());
			}

			uint8_t data = m_read_kb(offset>>8);

			LOG("%s: key r %02x %02x\n", machine().describe_context(), offset>>8, data);

			return data;
		}

		// read real time clock status
		case REG_TSTA:
			LOG("%s: tsta r %02x\n", machine().describe_context(), m_tsta);
			return m_tsta & 0x07;

		// read real time clock counters
		case REG_TIM0:
			LOG("%s: TIM0 r %02x\n", machine().describe_context(), m_tim[0]);
			return m_tim[0];
		case REG_TIM1:
			LOG("%s: TIM1 r %02x\n", machine().describe_context(), m_tim[1]);
			return m_tim[1];
		case REG_TIM2:
			LOG("%s: TIM2 r %02x\n", machine().describe_context(), m_tim[2]);
			return m_tim[2];
		case REG_TIM3:
			LOG("%s: TIM3 r %02x\n", machine().describe_context(), m_tim[3]);
			return m_tim[3];
		case REG_TIM4:
			LOG("%s: TIM4 r %02x\n", machine().describe_context(), m_tim[4]);
			return m_tim[4];

		// UART
		case REG_RXD:   // UART receive data register
			m_uit &= ~UIT_RDRF;
			update_uart_interrupt();
			if (m_rxc & RXC_ARTS)  // Auto RTS mode
				m_write_rts(1);
			return get_received_char();

		case REG_RXE:   // UART extended receive data
			return m_rxe;

		case REG_UIT:   // UART interrupt status
			return m_uit;

		default:
			logerror("%s: blink r %04x\n", machine().describe_context(), offset);
			return 0;
	}
}


//-------------------------------------------------
//  write -
//-------------------------------------------------

void upd65031_device::write(offs_t offset, uint8_t data)
{
	static const int uart_div[] = { 1 << 17, 1 << 15, 1 << 14, 1 << 13, 1 << 12, 1 << 10, 1 << 9, 1 << 8 };
	uint8_t port = offset & 0xff;

	switch (port)
	{
		// gfx registers
		case REG_PB0:
		case REG_PB1:
		case REG_PB2:
		case REG_PB3:
		case REG_SBR:
			m_lcd_regs[port - REG_PB0] = ((offset & 0xff00) | data);
			break;

		case REG_COM:   // command register
			LOG("%s: com w %02x\n", machine().describe_context(), data);

			// reset clock?
			if (data & COM_RESTIM)
				m_tim[0] = m_tim[1] = m_tim[2] = m_tim[3] = m_tim[4] = 0;

			if ((data & COM_SRUN) && !(data & COM_SBIT))
			{
				// constant tone used for keyclick and alarm
				m_speaker_timer->adjust(attotime::from_hz(SPEAKER_ALARM_FREQ), 0, attotime::from_hz(SPEAKER_ALARM_FREQ));
			}
			else
			{
				if (!(data & COM_SRUN))
				{
					// speaker controlled by SBIT
					m_speaker_state = BIT(data, 6);
					m_write_spkr(m_speaker_state);
				}
				else
				{
					// speaker controlled by txd line
					m_write_spkr(m_txd_line);
				}

				m_speaker_timer->reset();
			}

			// bit 2 controls the lower 8kb of memory
			if (BIT(m_com^data, 2) && !m_out_mem_cb.isnull())
				m_out_mem_cb(0, m_sr[0], BIT(data, 2));

			m_write_vpp(BIT(data, 1));

			m_com = data;
			break;

		case REG_INT:   // interrupt control
			LOG("%s: int w %02x\n", machine().describe_context(), data);

			m_int = data;

			// refresh ints
			update_rtc_interrupt();
			interrupt_refresh();
			break;

		case REG_EPR:   // EPROM programming register
			LOG("%s: epr w %02x\n", machine().describe_context(), data);
			break;

		case REG_TACK:  // rtc interrupt acknowledge
			LOG("%s: tack w %02x\n", machine().describe_context(), data);

			// clear ints that have occurred
			m_tsta &= ~(data & 0x07);
			m_tack = data;

			// refresh ints
			update_rtc_interrupt();
			interrupt_refresh();
			break;

		case REG_TMK:   // write rtc interrupt mask
			LOG("%s: tmk w %02x\n", machine().describe_context(), data);

			m_tmk = data & 0x07;
			break;

		case REG_ACK:   // acknowledge ints
			LOG("%s: ack w %02x\n", machine().describe_context(), data);

			m_ack = data;
			m_sta &= ~(data & 0x7f);

			// refresh ints
			interrupt_refresh();
			break;

		// Segment registers
		case REG_SR0:
		case REG_SR1:
		case REG_SR2:
		case REG_SR3:
			if (!m_out_mem_cb.isnull() && m_sr[port & 3] != data)
				m_out_mem_cb(port & 3, data, BIT(m_com, 2));

			m_sr[port & 3] = data;
			break;

		// UART
		case REG_RXC:   // UART receive control
			LOG("%s: UART receive control %02x\n", machine().describe_context(), data);

			if ((m_rxc & RXC_BAUD) != (data & RXC_BAUD))
				set_rcv_rate(clock() / uart_div[data & RXC_BAUD]);

			if ((m_rxc ^ data) & RXC_SHTW)
				set_data_frame(1, 8, PARITY_NONE, (data & RXC_SHTW) ? STOP_BITS_1 : STOP_BITS_2);

			if (data & RXC_LOOP)
				logerror("%s: Unsupported UART Loopback mode\n", machine().describe_context());

			if (!(data & RXC_ARTS))
				m_write_rts((data & RXC_IRTS) ? 0 : 1);

			m_rxc = data;
			break;

		case REG_TXD:   // UART transmit data
			transmit_register_setup(data);
			m_uit &= ~UIT_TDRE;
			update_uart_interrupt();
			break;

		case REG_TXC:   // UART transmit control
			LOG("%s: UART transmit control %02x\n", machine().describe_context(), data);

			if ((m_txc & TXC_BAUD) != (data & TXC_BAUD))
				set_tra_rate(clock() / uart_div[data & TXC_BAUD]);

			if (!(data & TXC_ATX) && ((m_txc ^ data) & TXC_ITX))
				update_tx((data & TXC_ITX) ? 0 : 1);

			m_txc = data;
			break;

		case REG_UMK:   // UART interrupt mask
			LOG("%s: UART interrupt mask %02x\n", machine().describe_context(), data);

			m_umk = data;
			update_uart_interrupt();
			break;

		case REG_UAK:   // UART interrupt acknowledge
			LOG("%s: UART interrupt acknowledge %02x\n", machine().describe_context(), data);

			m_uit &= ~(data & m_umk & (UAK_CTS | UAK_DCD));
			update_uart_interrupt();
			break;

		default:
			logerror("%s: blink w %04x = %02x\n", machine().describe_context(), offset, data);
			break;
	}
}

void upd65031_device::tra_callback()
{
	update_tx(transmit_register_get_data_bit() ^ BIT(m_txc, 3));
}

void upd65031_device::tra_complete()
{
	m_uit |= UIT_TDRE;
	update_uart_interrupt();
}

void upd65031_device::rcv_complete()
{
	receive_register_extract();

	m_uit |= UIT_RDRF;

	if (m_rxc & RXC_ARTS)  // Auto RTS mode
		m_write_rts(0);

	// Frame error
	if (is_receive_framing_error())
		m_rxe |= RXE_FE;
	else
		m_rxe &= ~RXE_FE;

	update_uart_interrupt();
}

void upd65031_device::cts_w(int state)
{
	if (state == BIT(m_uit, 0))
	{
		m_uit = (m_uit & ~UIT_CTS) | (state ? 0 : UIT_CTS);
		if (state != BIT(m_txc, 5))
		{
			m_uit |= UIT_CTSI;
			update_uart_interrupt();
		}
	}
}

void upd65031_device::dcd_w(int state)
{
	if (state == BIT(m_uit, 1))
	{
		m_uit = (m_uit & ~UIT_DCD) | (state ? 0 : UIT_DCD);
		if (state != BIT(m_txc, 6))
		{
			m_uit |= UIT_DCDI;
			update_uart_interrupt();
		}
	}
}

//-------------------------------------------------
//  flp line
//-------------------------------------------------

void upd65031_device::flp_w(int state)
{
	if (!(m_sta & STA_FLAPOPEN) && state)
	{
		// set interrupt on rising edge
		m_sta |= STA_FLAP;

		interrupt_refresh();
	}

	if (state)
		m_sta |= STA_FLAPOPEN;
	else
		m_sta &= ~STA_FLAPOPEN;
}

//-------------------------------------------------
//  battery low line
//-------------------------------------------------

void upd65031_device::btl_w(int state)
{
	if (state)
		m_sta |= STA_BTL;
	else
		m_sta &= ~STA_BTL;
}