1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
//============================================================
//
// sdlsync.c - SDL core synchronization functions
//
// Copyright (c) 1996-2010, Nicola Salmoria and the MAME Team.
// Visit http://mamedev.org for licensing and usage restrictions.
//
// SDLMAME by Olivier Galibert and R. Belmont
//
//============================================================
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <process.h>
#include <tchar.h>
#ifdef __GNUC__
#include <stdint.h>
#endif
// MAME headers
#include "osdcore.h"
#include "osinline.h"
#include "sdlsync.h"
#include "../windows/winsync.c"
//============================================================
// DEBUGGING
//============================================================
#define USE_SCALABLE_LOCKS (0)
struct _osd_event
{
void * ptr;
};
struct _osd_thread {
HANDLE handle;
osd_thread_callback callback;
void *param;
};
//============================================================
// osd_event_alloc
//============================================================
osd_event *osd_event_alloc(int manualreset, int initialstate)
{
return (osd_event *) CreateEvent(NULL, manualreset, initialstate, NULL);
}
//============================================================
// osd_event_free
//============================================================
void osd_event_free(osd_event *event)
{
CloseHandle((HANDLE) event);
}
//============================================================
// osd_event_set
//============================================================
void osd_event_set(osd_event *event)
{
SetEvent((HANDLE) event);
}
//============================================================
// osd_event_reset
//============================================================
void osd_event_reset(osd_event *event)
{
ResetEvent((HANDLE) event);
}
//============================================================
// osd_event_wait
//============================================================
int osd_event_wait(osd_event *event, osd_ticks_t timeout)
{
int ret = WaitForSingleObject((HANDLE) event, timeout * 1000 / osd_ticks_per_second());
return ( ret == WAIT_OBJECT_0);
}
//============================================================
// Scalable Locks
//============================================================
struct _osd_scalable_lock
{
#if USE_SCALABLE_LOCKS
struct
{
volatile INT32 haslock; // do we have the lock?
INT32 filler[64/4-1]; // assumes a 64-byte cache line
} slot[WORK_MAX_THREADS]; // one slot per thread
volatile INT32 nextindex; // index of next slot to use
#else
CRITICAL_SECTION section;
#endif
};
osd_scalable_lock *osd_scalable_lock_alloc(void)
{
osd_scalable_lock *lock;
lock = (osd_scalable_lock *)calloc(1, sizeof(*lock));
memset(lock, 0, sizeof(*lock));
#if USE_SCALABLE_LOCKS
lock->slot[0].haslock = TRUE;
#else
InitializeCriticalSection(&lock->section);
#endif
return lock;
}
INT32 osd_scalable_lock_acquire(osd_scalable_lock *lock)
{
#if USE_SCALABLE_LOCKS
INT32 myslot = (interlocked_increment(&lock->nextindex) - 1) & (WORK_MAX_THREADS - 1);
INT32 backoff = 1;
while (!lock->slot[myslot].haslock)
{
INT32 backcount;
for (backcount = 0; backcount < backoff; backcount++)
YieldProcessor();
backoff <<= 1;
}
lock->slot[myslot].haslock = FALSE;
return myslot;
#else
EnterCriticalSection(&lock->section);
return 0;
#endif
}
void osd_scalable_lock_release(osd_scalable_lock *lock, INT32 myslot)
{
#if USE_SCALABLE_LOCKS
interlocked_exchange32(&lock->slot[(myslot + 1) & (WORK_MAX_THREADS - 1)].haslock, TRUE);
#else
LeaveCriticalSection(&lock->section);
#endif
}
void osd_scalable_lock_free(osd_scalable_lock *lock)
{
free(lock);
}
//============================================================
// osd_thread_create
//============================================================
static unsigned __stdcall worker_thread_entry(void *param)
{
osd_thread *thread = (osd_thread *) param;
void *res;
res = thread->callback(thread->param);
#ifdef PTR64
return (unsigned) (long long) res;
#else
return (unsigned) res;
#endif
}
osd_thread *osd_thread_create(osd_thread_callback callback, void *cbparam)
{
osd_thread *thread;
uintptr_t handle;
thread = (osd_thread *)calloc(1, sizeof(osd_thread));
thread->callback = callback;
thread->param = cbparam;
handle = _beginthreadex(NULL, 0, worker_thread_entry, thread, 0, NULL);
thread->handle = (HANDLE) handle;
return thread;
}
//============================================================
// osd_thread_wait_free
//============================================================
void osd_thread_wait_free(osd_thread *thread)
{
WaitForSingleObject(thread->handle, INFINITE);
CloseHandle(thread->handle);
free(thread);
}
//============================================================
// osd_thread_adjust_priority
//============================================================
int osd_thread_adjust_priority(osd_thread *thread, int adjust)
{
if (adjust)
SetThreadPriority(thread->handle, THREAD_PRIORITY_ABOVE_NORMAL);
else
SetThreadPriority(thread->handle, GetThreadPriority(GetCurrentThread()));
return TRUE;
}
//============================================================
// osd_thread_cpu_affinity
//============================================================
int osd_thread_cpu_affinity(osd_thread *thread, UINT32 mask)
{
return TRUE;
}
|