summaryrefslogtreecommitdiffstatshomepage
path: root/src/mess/machine/cx4fn.inc
blob: 1b51bceccfc783ae63d6dc37e1648e7a0682d169 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
// license:???
// copyright-holders:???
/***************************************************************************

    cx4fn.c

    Code based on original work by zsKnight, anomie and Nach.
    This implementation is based on C++ "cx4*.cpp" by byuu.
    (up to date with source v 0.49).

***************************************************************************/

#include <math.h>
#define CX4_Tan(a) (CX4_CosTable[a] ? ((((INT32)CX4_SinTable[a]) << 16) / CX4_CosTable[a]) : 0x80000000)
#define CX4_sar(b, n) ((b) >> (n))
#ifdef PI
#undef PI
#endif
#define PI 3.1415926535897932384626433832795

//Wireframe Helpers
static void CX4_C4TransfWireFrame(void)
{
	cx4.c4x = (double)cx4.C4WFXVal;
	cx4.c4y = (double)cx4.C4WFYVal;
	cx4.c4z = (double)cx4.C4WFZVal - 0x95;

	//Rotate X
	cx4.tanval = -(double)cx4.C4WFX2Val * PI * 2 / 128;
	cx4.c4y2   = cx4.c4y * cos(cx4.tanval) - cx4.c4z * sin(cx4.tanval);
	cx4.c4z2   = cx4.c4y * sin(cx4.tanval) + cx4.c4z * cos(cx4.tanval);

	//Rotate Y
	cx4.tanval = -(double)cx4.C4WFY2Val * PI * 2 / 128;
	cx4.c4x2   = cx4.c4x * cos(cx4.tanval)  + cx4.c4z2 * sin(cx4.tanval);
	cx4.c4z    = cx4.c4x * -sin(cx4.tanval) + cx4.c4z2 * cos(cx4.tanval);

	//Rotate Z
	cx4.tanval = -(double)cx4.C4WFDist * PI * 2 / 128;
	cx4.c4x    = cx4.c4x2 * cos(cx4.tanval) - cx4.c4y2 * sin(cx4.tanval);
	cx4.c4y    = cx4.c4x2 * sin(cx4.tanval) + cx4.c4y2 * cos(cx4.tanval);

	//Scale
	cx4.C4WFXVal = (INT16)(cx4.c4x * cx4.C4WFScale / (0x90 * (cx4.c4z + 0x95)) * 0x95);
	cx4.C4WFYVal = (INT16)(cx4.c4y * cx4.C4WFScale / (0x90 * (cx4.c4z + 0x95)) * 0x95);
}

static void CX4_C4CalcWireFrame(void)
{
	cx4.C4WFXVal = cx4.C4WFX2Val - cx4.C4WFXVal;
	cx4.C4WFYVal = cx4.C4WFY2Val - cx4.C4WFYVal;

	if(abs(cx4.C4WFXVal) > abs(cx4.C4WFYVal))
	{
		cx4.C4WFDist = abs(cx4.C4WFXVal) + 1;
		cx4.C4WFYVal = (256 * (long)cx4.C4WFYVal) / abs(cx4.C4WFXVal);
		cx4.C4WFXVal = (cx4.C4WFXVal < 0) ? -256 : 256;
	}
	else if(cx4.C4WFYVal != 0)
	{
		cx4.C4WFDist = abs(cx4.C4WFYVal) + 1;
		cx4.C4WFXVal = (256 * (long)cx4.C4WFXVal) / abs(cx4.C4WFYVal);
		cx4.C4WFYVal = (cx4.C4WFYVal < 0) ? -256 : 256;
	}
	else
	{
		cx4.C4WFDist = 0;
	}
}

static void CX4_C4TransfWireFrame2(void)
{
	cx4.c4x = (double)cx4.C4WFXVal;
	cx4.c4y = (double)cx4.C4WFYVal;
	cx4.c4z = (double)cx4.C4WFZVal;

	//Rotate X
	cx4.tanval = -(double)cx4.C4WFX2Val * PI * 2 / 128;
	cx4.c4y2   = cx4.c4y * cos(cx4.tanval) - cx4.c4z * sin(cx4.tanval);
	cx4.c4z2   = cx4.c4y * sin(cx4.tanval) + cx4.c4z * cos(cx4.tanval);

	//Rotate Y
	cx4.tanval = -(double)cx4.C4WFY2Val * PI * 2 / 128;
	cx4.c4x2   = cx4.c4x * cos(cx4.tanval)  + cx4.c4z2 * sin(cx4.tanval);
	cx4.c4z    = cx4.c4x * -sin(cx4.tanval) + cx4.c4z2 * cos(cx4.tanval);

	//Rotate Z
	cx4.tanval = -(double)cx4.C4WFDist * PI * 2 / 128;
	cx4.c4x    = cx4.c4x2 * cos(cx4.tanval) - cx4.c4y2 * sin(cx4.tanval);
	cx4.c4y    = cx4.c4x2 * sin(cx4.tanval) + cx4.c4y2 * cos(cx4.tanval);

	//Scale
	cx4.C4WFXVal = (INT16)(cx4.c4x * cx4.C4WFScale / 0x100);
	cx4.C4WFYVal = (INT16)(cx4.c4y * cx4.C4WFScale / 0x100);
}

static void CX4_C4DrawWireFrame(running_machine &machine)
{
	UINT32 line = CX4_readl(0x1f80);
	UINT32 point1, point2;
	INT16 X1, Y1, Z1;
	INT16 X2, Y2, Z2;
	UINT8 Color;
	INT32 i;

	address_space &space = machine.device<cpu_device>("maincpu")->space(AS_PROGRAM);
	for(i = cx4.ram[0x0295]; i > 0; i--, line += 5)
	{
		if(space.read_byte(line) == 0xff &&
			space.read_byte(line + 1) == 0xff)
		{
			INT32 tmp = line - 5;
			while(space.read_byte(tmp + 2) == 0xff &&
					space.read_byte(tmp + 3) == 0xff &&
					(tmp + 2) >= 0)
			{
				tmp -= 5;
			}
			point1 = (CX4_read(0x1f82) << 16) |
						(space.read_byte(tmp + 2) << 8) |
						space.read_byte(tmp + 3);
		}
		else
		{
			point1 = (CX4_read(0x1f82) << 16) |
						(space.read_byte(line) << 8) |
						space.read_byte(line + 1);
		}
		point2 = (CX4_read(0x1f82) << 16) |
					(space.read_byte(line + 2) << 8) |
					space.read_byte(line + 3);

		X1=(space.read_byte(point1 + 0) << 8) |
			space.read_byte(point1 + 1);
		Y1=(space.read_byte(point1 + 2) << 8) |
			space.read_byte(point1 + 3);
		Z1=(space.read_byte(point1 + 4) << 8) |
			space.read_byte(point1 + 5);
		X2=(space.read_byte(point2 + 0) << 8) |
			space.read_byte(point2 + 1);
		Y2=(space.read_byte(point2 + 2) << 8) |
			space.read_byte(point2 + 3);
		Z2=(space.read_byte(point2 + 4) << 8) |
			space.read_byte(point2 + 5);
		Color = space.read_byte(line + 4);
		CX4_C4DrawLine(X1, Y1, Z1, X2, Y2, Z2, Color);
	}
}

static void CX4_C4DrawLine(INT32 X1, INT32 Y1, INT16 Z1, INT32 X2, INT32 Y2, INT16 Z2, UINT8 Color)
{
	INT32 i;

	//Transform coordinates
	cx4.C4WFXVal  = (INT16)X1;
	cx4.C4WFYVal  = (INT16)Y1;
	cx4.C4WFZVal  = Z1;
	cx4.C4WFScale = CX4_read(0x1f90);
	cx4.C4WFX2Val = CX4_read(0x1f86);
	cx4.C4WFY2Val = CX4_read(0x1f87);
	cx4.C4WFDist  = CX4_read(0x1f88);
	CX4_C4TransfWireFrame2();
	X1 = (cx4.C4WFXVal + 48) << 8;
	Y1 = (cx4.C4WFYVal + 48) << 8;

	cx4.C4WFXVal = (INT16)X2;
	cx4.C4WFYVal = (INT16)Y2;
	cx4.C4WFZVal = Z2;
	CX4_C4TransfWireFrame2();
	X2 = (cx4.C4WFXVal + 48) << 8;
	Y2 = (cx4.C4WFYVal + 48) << 8;

	//Get line info
	cx4.C4WFXVal  = (INT16)(X1 >> 8);
	cx4.C4WFYVal  = (INT16)(Y1 >> 8);
	cx4.C4WFX2Val = (INT16)(X2 >> 8);
	cx4.C4WFY2Val = (INT16)(Y2 >> 8);
	CX4_C4CalcWireFrame();
	X2 = (INT16)cx4.C4WFXVal;
	Y2 = (INT16)cx4.C4WFYVal;

	//Render line
	for(i = cx4.C4WFDist ? cx4.C4WFDist : 1; i > 0; i--)
	{
		if(X1 > 0xff && Y1 > 0xff && X1 < 0x6000 && Y1 < 0x6000)
		{
			UINT16 addr = (((Y1 >> 8) >> 3) << 8) - (((Y1 >> 8) >> 3) << 6) + (((X1 >> 8) >> 3) << 4) + ((Y1 >> 8) & 7) * 2;
			UINT8 bit = 0x80 >> ((X1 >> 8) & 7);
			cx4.ram[addr + 0x300] &= ~bit;
			cx4.ram[addr + 0x301] &= ~bit;
			if(Color & 1)
			{
				cx4.ram[addr + 0x300] |= bit;
			}
			if(Color & 2)
			{
				cx4.ram[addr + 0x301] |= bit;
			}
		}
		X1 += X2;
		Y1 += Y2;
	}
}

static void CX4_C4DoScaleRotate(int row_padding)
{
	INT16 A, B, C, D;
	INT32 x, y;

	//Calculate Pixel Resolution
	UINT8 w = CX4_read(0x1f89) & ~7;
	UINT8 h = CX4_read(0x1f8c) & ~7;

	INT32 Cx = (INT16)CX4_readw(0x1f83);
	INT32 Cy = (INT16)CX4_readw(0x1f86);

	INT32 LineX, LineY;
	UINT32 X, Y;
	UINT8 byte;
	INT32 outidx = 0;
	UINT8 bit    = 0x80;

	//Calculate matrix
	INT32 XScale = CX4_readw(0x1f8f);
	INT32 YScale = CX4_readw(0x1f92);

	if(XScale & 0x8000)
	{
		XScale = 0x7fff;
	}
	if(YScale & 0x8000)
	{
		YScale = 0x7fff;
	}

	if(CX4_readw(0x1f80) == 0)
	{ //no rotation
		A = (INT16)XScale;
		B = 0;
		C = 0;
		D = (INT16)YScale;
	}
	else if(CX4_readw(0x1f80) == 128)
	{ //90 degree rotation
		A = 0;
		B = (INT16)(-YScale);
		C = (INT16)XScale;
		D = 0;
	}
	else if(CX4_readw(0x1f80) == 256)
	{ //180 degree rotation
		A = (INT16)(-XScale);
		B = 0;
		C = 0;
		D = (INT16)(-YScale);
	}
	else if(CX4_readw(0x1f80) == 384)
	{ //270 degree rotation
		A = 0;
		B = (INT16)YScale;
		C = (INT16)(-XScale);
		D = 0;
	}
	else
	{
		A = (INT16)  CX4_sar(CX4_CosTable[CX4_readw(0x1f80) & 0x1ff] * XScale, 15);
		B = (INT16)(-CX4_sar(CX4_SinTable[CX4_readw(0x1f80) & 0x1ff] * YScale, 15));
		C = (INT16)  CX4_sar(CX4_SinTable[CX4_readw(0x1f80) & 0x1ff] * XScale, 15);
		D = (INT16)  CX4_sar(CX4_CosTable[CX4_readw(0x1f80) & 0x1ff] * YScale, 15);
	}

	//Clear the output RAM
	memset(cx4.ram, 0, (w + row_padding / 4) * h / 2);

	//Calculate start position (i.e. (Ox, Oy) = (0, 0))
	//The low 12 bits are fractional, so (Cx<<12) gives us the Cx we want in
	//the function. We do Cx*A etc normally because the matrix parameters
	//already have the fractional parts.
	LineX = (Cx << 12) - Cx * A - Cx * B;
	LineY = (Cy << 12) - Cy * C - Cy * D;

	//Start loop
	for(y = 0; y < h; y++)
	{
		X = LineX;
		Y = LineY;
		for(x = 0; x < w; x++)
		{
			if((X >> 12) >= w || (Y >> 12) >= h)
			{
				byte = 0;
			}
			else
			{
				UINT32 addr = (Y >> 12) * w + (X >> 12);
				byte = CX4_read(0x600 + (addr >> 1));
				if(addr & 1)
				{
					byte >>= 4;
				}
			}

			//De-bitplanify
			if(byte & 1) { cx4.ram[outidx     ] |= bit; }
			if(byte & 2) { cx4.ram[outidx +  1] |= bit; }
			if(byte & 4) { cx4.ram[outidx + 16] |= bit; }
			if(byte & 8) { cx4.ram[outidx + 17] |= bit; }

			bit >>= 1;
			if(!bit)
			{
				bit     = 0x80;
				outidx += 32;
			}

			X += A; //Add 1 to output x => add an A and a C
			Y += C;
		}
		outidx += 2 + row_padding;
		if(outidx & 0x10)
		{
			outidx &= ~0x10;
		}
		else
		{
			outidx -= w * 4 + row_padding;
		}
		LineX += B; //Add 1 to output y => add a B and a D
		LineY += D;
	}
}