summaryrefslogtreecommitdiffstatshomepage
path: root/src/mess/drivers/ip20.c
blob: b03fb978c7883c01d169a433dd10726a166df3c6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
// license:BSD-3-Clause
// copyright-holders:Ryan Holtz
/*********************************************************************\
*
*   SGI IP20 IRIS Indigo workstation
*
*  Skeleton Driver
*
*  Todo: Everything
*
*  Note: Machine uses R4400, not R4600
*
*  Memory map:
*
*  1fa00000 - 1fa02047      Memory Controller
*  1fb80000 - 1fb9a7ff      HPC1 CHIP0
*  1fc00000 - 1fc7ffff      BIOS
*
\*********************************************************************/

#include "emu.h"
#include "cpu/mips/mips3.h"
#include "machine/8530scc.h"
#include "machine/sgi.h"
#include "machine/eepromser.h"
#include "bus/scsi/scsi.h"
#include "bus/scsi/scsicd.h"
#include "machine/wd33c93.h"

struct HPC_t
{
	UINT8 nMiscStatus;
	UINT32 nParBufPtr;
	UINT32 nLocalIOReg0Mask;
	UINT32 nLocalIOReg1Mask;
	UINT32 nVMEIntMask0;
	UINT32 nVMEIntMask1;
	UINT32 nSCSI0Descriptor;
	UINT32 nSCSI0DMACtrl;
};

struct ip20_RTC_t
{
	UINT8 nRAM[32];
	UINT8 nTemp;
};

class ip20_state : public driver_device
{
public:
	enum
	{
		TIMER_RTC
	};

	ip20_state(const machine_config &mconfig, device_type type, const char *tag) :
		driver_device(mconfig, type, tag),
		m_wd33c93(*this, "wd33c93"),
		m_scc(*this, "scc"),
		m_eeprom(*this, "eeprom"),
		m_maincpu(*this, "maincpu")
	{
	}

	HPC_t m_HPC;
	ip20_RTC_t m_RTC;
	DECLARE_READ32_MEMBER(hpc_r);
	DECLARE_WRITE32_MEMBER(hpc_w);
	DECLARE_READ32_MEMBER(int_r);
	DECLARE_WRITE32_MEMBER(int_w);
	DECLARE_WRITE_LINE_MEMBER(scsi_irq);
	DECLARE_DRIVER_INIT(ip204415);
	virtual void machine_start();
	virtual void video_start();
	UINT32 screen_update_ip204415(screen_device &screen, bitmap_ind16 &bitmap, const rectangle &cliprect);
	TIMER_CALLBACK_MEMBER(ip20_timer_rtc);
	required_device<wd33c93_device> m_wd33c93;
	required_device<scc8530_t> m_scc;
	required_device<eeprom_serial_93cxx_device> m_eeprom;
	inline void ATTR_PRINTF(3,4) verboselog(int n_level, const char *s_fmt, ... );
	required_device<cpu_device> m_maincpu;

protected:
	virtual void device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr);
};


#define VERBOSE_LEVEL ( 2 )

inline void ATTR_PRINTF(3,4) ip20_state::verboselog(int n_level, const char *s_fmt, ... )
{
	if( VERBOSE_LEVEL >= n_level )
	{
		va_list v;
		char buf[ 32768 ];
		va_start( v, s_fmt );
		vsprintf( buf, s_fmt, v );
		va_end( v );
		logerror( "%08x: %s", m_maincpu->pc(), buf );
	}
}

void ip20_state::video_start()
{
}

UINT32 ip20_state::screen_update_ip204415(screen_device &screen, bitmap_ind16 &bitmap, const rectangle &cliprect)
{
	return 0;
}



#define RTC_DAYOFWEEK   m_RTC.nRAM[0x0e]
#define RTC_YEAR        m_RTC.nRAM[0x0b]
#define RTC_MONTH       m_RTC.nRAM[0x0a]
#define RTC_DAY         m_RTC.nRAM[0x09]
#define RTC_HOUR        m_RTC.nRAM[0x08]
#define RTC_MINUTE      m_RTC.nRAM[0x07]
#define RTC_SECOND      m_RTC.nRAM[0x06]
#define RTC_HUNDREDTH   m_RTC.nRAM[0x05]

READ32_MEMBER(ip20_state::hpc_r)
{
	offset <<= 2;
	if( offset >= 0x0e00 && offset <= 0x0e7c )
	{
		verboselog(2, "RTC RAM[0x%02x] Read: %02x\n", ( offset - 0xe00 ) >> 2, m_RTC.nRAM[ ( offset - 0xe00 ) >> 2 ] );
		return m_RTC.nRAM[ ( offset - 0xe00 ) >> 2 ];
	}
	switch( offset )
	{
	case 0x05c:
		verboselog(2, "HPC Unknown Read: %08x (%08x) (returning 0x000000a5 as kludge)\n", 0x1fb80000 + offset, mem_mask );
		return 0x0000a500;
	case 0x00ac:
		verboselog(2, "HPC Parallel Buffer Pointer Read: %08x (%08x)\n", m_HPC.nParBufPtr, mem_mask );
		return m_HPC.nParBufPtr;
	case 0x00c0:
		verboselog(2, "HPC Endianness Read: %08x (%08x)\n", 0x0000001f, mem_mask );
		return 0x0000001f;
	case 0x0120:
		if (ACCESSING_BITS_8_15)
		{
			return ( m_wd33c93->read( space, 0 ) << 8 );
		}
		else
		{
			return 0;
		}
	case 0x0124:
		if (ACCESSING_BITS_8_15)
		{
			return ( m_wd33c93->read( space, 1 ) << 8 );
		}
		else
		{
			return 0;
		}
	case 0x01b0:
		verboselog(2, "HPC Misc. Status Read: %08x (%08x)\n", m_HPC.nMiscStatus, mem_mask );
		return m_HPC.nMiscStatus;
	case 0x01bc:
//      verboselog(machine, 2, "HPC CPU Serial EEPROM Read\n" );
		return m_eeprom->do_read() << 4;
	case 0x01c4:
		verboselog(2, "HPC Local IO Register 0 Mask Read: %08x (%08x)\n", m_HPC.nLocalIOReg0Mask, mem_mask );
		return m_HPC.nLocalIOReg0Mask;
	case 0x01cc:
		verboselog(2, "HPC Local IO Register 1 Mask Read: %08x (%08x)\n", m_HPC.nLocalIOReg0Mask, mem_mask );
		return m_HPC.nLocalIOReg1Mask;
	case 0x01d4:
		verboselog(2, "HPC VME Interrupt Mask 0 Read: %08x (%08x)\n", m_HPC.nLocalIOReg0Mask, mem_mask );
		return m_HPC.nVMEIntMask0;
	case 0x01d8:
		verboselog(2, "HPC VME Interrupt Mask 1 Read: %08x (%08x)\n", m_HPC.nLocalIOReg0Mask, mem_mask );
		return m_HPC.nVMEIntMask1;
	case 0x0d00:
		verboselog(2, "HPC DUART0 Channel B Control Read\n" );
//      return 0x00000004;
		return 0x7c; //m_scc->reg_r(space, 0);
	case 0x0d04:
		verboselog(2, "HPC DUART0 Channel B Data Read\n" );
//      return 0;
		return m_scc->reg_r(space, 2);
	case 0x0d08:
		verboselog(2, "HPC DUART0 Channel A Control Read (%08x)\n", mem_mask  );
//      return 0x40;
		return 0x7c; //m_scc->reg_r(space, 1);
	case 0x0d0c:
		verboselog(2, "HPC DUART0 Channel A Data Read\n" );
//      return 0;
		return m_scc->reg_r(space, 3);
	case 0x0d10:
//      verboselog(machine, 2, "HPC DUART1 Channel B Control Read\n" );
		return 0x00000004;
	case 0x0d14:
		verboselog(2, "HPC DUART1 Channel B Data Read\n" );
		return 0;
	case 0x0d18:
		verboselog(2, "HPC DUART1 Channel A Control Read\n" );
		return 0;
	case 0x0d1c:
		verboselog(2, "HPC DUART1 Channel A Data Read\n" );
		return 0;
	case 0x0d20:
		verboselog(2, "HPC DUART2 Channel B Control Read\n" );
		return 0x00000004;
	case 0x0d24:
		verboselog(2, "HPC DUART2 Channel B Data Read\n" );
		return 0;
	case 0x0d28:
		verboselog(2, "HPC DUART2 Channel A Control Read\n" );
		return 0;
	case 0x0d2c:
		verboselog(2, "HPC DUART2 Channel A Data Read\n" );
		return 0;
	case 0x0d30:
		verboselog(2, "HPC DUART3 Channel B Control Read\n" );
		return 0x00000004;
	case 0x0d34:
		verboselog(2, "HPC DUART3 Channel B Data Read\n" );
		return 0;
	case 0x0d38:
		verboselog(2, "HPC DUART3 Channel A Control Read\n" );
		return 0;
	case 0x0d3c:
		verboselog(2, "HPC DUART3 Channel A Data Read\n" );
		return 0;
	}
	verboselog(0, "Unmapped HPC read: 0x%08x (%08x)\n", 0x1fb80000 + offset, mem_mask );
	return 0;
}

WRITE32_MEMBER(ip20_state::hpc_w)
{
	offset <<= 2;
	if( offset >= 0x0e00 && offset <= 0x0e7c )
	{
		verboselog(2, "RTC RAM[0x%02x] Write: %02x\n", ( offset - 0xe00 ) >> 2, data & 0x000000ff );
		m_RTC.nRAM[ ( offset - 0xe00 ) >> 2 ] = data & 0x000000ff;
		switch( ( offset - 0xe00 ) >> 2 )
		{
		case 0:
			break;
		case 4:
			if( !( m_RTC.nRAM[0x00] & 0x80 ) )
			{
				if( data & 0x80 )
				{
					m_RTC.nRAM[0x19] = m_RTC.nRAM[0x06]; //RTC_SECOND;
					m_RTC.nRAM[0x1a] = m_RTC.nRAM[0x07]; //RTC_MINUTE;
					m_RTC.nRAM[0x1b] = m_RTC.nRAM[0x08]; //RTC_HOUR;
					m_RTC.nRAM[0x1c] = m_RTC.nRAM[0x09]; //RTC_DAY;
					m_RTC.nRAM[0x1d] = m_RTC.nRAM[0x0a]; //RTC_MONTH;
				}
			}
			break;
		}
		return;
	}
	switch( offset )
	{
	case 0x0090:    // SCSI0 next descriptor pointer
		m_HPC.nSCSI0Descriptor = data;
		break;

	case 0x0094:    // SCSI0 control flags
		m_HPC.nSCSI0DMACtrl = data;
		#if 0
		if (data & 0x80)
		{
			UINT32 next;

			osd_printf_info("DMA activated for SCSI0\n");
			osd_printf_info("Descriptor block:\n");
			osd_printf_info("CTL: %08x BUFPTR: %08x DESCPTR %08x\n",
				program_read_dword(m_HPC.nSCSI0Descriptor), program_read_dword(m_HPC.nSCSI0Descriptor+4),
				program_read_dword(m_HPC.nSCSI0Descriptor+8));

			next = program_read_dword(m_HPC.nSCSI0Descriptor+8);
			osd_printf_info("CTL: %08x BUFPTR: %08x DESCPTR %08x\n",
				program_read_dword(next), program_read_dword(next+4),
				program_read_dword(next+8));
		}
		#endif
		break;

	case 0x00ac:
		verboselog(2, "HPC Parallel Buffer Pointer Write: %08x (%08x)\n", data, mem_mask );
		m_HPC.nParBufPtr = data;
		break;
	case 0x0120:
		if (ACCESSING_BITS_8_15)
		{
			verboselog(2, "HPC SCSI Controller Register Write: %08x\n", ( data >> 8 ) & 0x000000ff );
			m_wd33c93->write( space, 0, ( data >> 8 ) & 0x000000ff );
		}
		else
		{
			return;
		}
		break;
	case 0x0124:
		if (ACCESSING_BITS_8_15)
		{
			verboselog(2, "HPC SCSI Controller Data Write: %08x\n", ( data >> 8 ) & 0x000000ff );
			m_wd33c93->write( space, 1, ( data >> 8 ) & 0x000000ff );
		}
		else
		{
			return;
		}
		break;
	case 0x01b0:
		verboselog(2, "HPC Misc. Status Write: %08x (%08x)\n", data, mem_mask );
		if( data & 0x00000001 )
		{
			verboselog(2, "  Force DSP hard reset\n" );
		}
		if( data & 0x00000002 )
		{
			verboselog(2, "  Force IRQA\n" );
		}
		if( data & 0x00000004 )
		{
			verboselog(2, "  Set IRQA polarity high\n" );
		}
		else
		{
			verboselog(2, "  Set IRQA polarity low\n" );
		}
		if( data & 0x00000008 )
		{
			verboselog(2, "  SRAM size: 32K\n" );
		}
		else
		{
			verboselog(2, "  SRAM size:  8K\n" );
		}
		m_HPC.nMiscStatus = data;
		break;
	case 0x01bc:
//      verboselog(machine, 2, "HPC CPU Serial EEPROM Write: %08x (%08x)\n", data, mem_mask );
		if( data & 0x00000001 )
		{
			verboselog(2, "    CPU board LED on\n" );
		}
		m_eeprom->di_write((data & 0x00000008) ? 1 : 0 );
		m_eeprom->cs_write((data & 0x00000002) ? CLEAR_LINE : ASSERT_LINE );
		m_eeprom->clk_write((data & 0x00000004) ? CLEAR_LINE : ASSERT_LINE );
		break;
	case 0x01c4:
		verboselog(2, "HPC Local IO Register 0 Mask Write: %08x (%08x)\n", data, mem_mask );
		m_HPC.nLocalIOReg0Mask = data;
		break;
	case 0x01cc:
		verboselog(2, "HPC Local IO Register 1 Mask Write: %08x (%08x)\n", data, mem_mask );
		m_HPC.nLocalIOReg1Mask = data;
		break;
	case 0x01d4:
		verboselog(2, "HPC VME Interrupt Mask 0 Write: %08x (%08x)\n", data, mem_mask );
		m_HPC.nVMEIntMask0 = data;
		break;
	case 0x01d8:
		verboselog(2, "HPC VME Interrupt Mask 1 Write: %08x (%08x)\n", data, mem_mask );
		m_HPC.nVMEIntMask1 = data;
		break;
	case 0x0d00:
		verboselog(2, "HPC DUART0 Channel B Control Write: %08x (%08x)\n", data, mem_mask );
		m_scc->reg_w(space, 0, data);
		break;
	case 0x0d04:
		verboselog(2, "HPC DUART0 Channel B Data Write: %08x (%08x)\n", data, mem_mask );
		m_scc->reg_w(space, 2, data);
		break;
	case 0x0d08:
		verboselog(2, "HPC DUART0 Channel A Control Write: %08x (%08x)\n", data, mem_mask );
		m_scc->reg_w(space, 1, data);
		break;
	case 0x0d0c:
		verboselog(2, "HPC DUART0 Channel A Data Write: %08x (%08x)\n", data, mem_mask );
		m_scc->reg_w(space, 3, data);
		break;
	case 0x0d10:
		if( ( data & 0x000000ff ) >= 0x00000020 )
		{
//          verboselog(2, "HPC DUART1 Channel B Control Write: %08x (%08x) %c\n", data, mem_mask, data & 0x000000ff );
			//osd_printf_info( "%c", data & 0x000000ff );
		}
		else
		{
//          verboselog(2, "HPC DUART1 Channel B Control Write: %08x (%08x)\n", data, mem_mask );
		}
		break;
	case 0x0d14:
		if( ( data & 0x000000ff ) >= 0x00000020 || ( data & 0x000000ff ) == 0x0d || ( data & 0x000000ff ) == 0x0a )
		{
			verboselog(2, "HPC DUART1 Channel B Data Write: %08x (%08x) %c\n", data, mem_mask, data & 0x000000ff );
			osd_printf_info( "%c", data & 0x000000ff );
		}
		else
		{
			verboselog(2, "HPC DUART1 Channel B Data Write: %08x (%08x)\n", data, mem_mask );
		}
		break;
	case 0x0d18:
		osd_printf_info("HPC DUART1 Channel A Control Write: %08x (%08x)\n", data, mem_mask );
		break;
	case 0x0d1c:
		verboselog(2, "HPC DUART1 Channel A Data Write: %08x (%08x)\n", data, mem_mask );
		break;
	case 0x0d20:
		osd_printf_info("HPC DUART2 Channel B Control Write: %08x (%08x)\n", data, mem_mask );
		break;
	case 0x0d24:
		verboselog(2, "HPC DUART2 Channel B Data Write: %08x (%08x)\n", data, mem_mask );
		break;
	case 0x0d28:
		osd_printf_info("HPC DUART2 Channel A Control Write: %08x (%08x)\n", data, mem_mask );
		break;
	case 0x0d2c:
		verboselog(2, "HPC DUART2 Channel A Data Write: %08x (%08x)\n", data, mem_mask );
		break;
	case 0x0d30:
		osd_printf_info("HPC DUART3 Channel B Control Write: %08x (%08x)\n", data, mem_mask );
		break;
	case 0x0d34:
		verboselog(2, "HPC DUART3 Channel B Data Write: %08x (%08x)\n", data, mem_mask );
		break;
	case 0x0d38:
		osd_printf_info("HPC DUART3 Channel A Control Write: %08x (%08x)\n", data, mem_mask );
		break;
	case 0x0d3c:
		verboselog(2, "HPC DUART3 Channel A Data Write: %08x (%08x)\n", data, mem_mask );
		break;
	default:
		osd_printf_info("Unmapped HPC write: 0x%08x (%08x): %08x\n", 0x1fb80000 + offset, mem_mask, data);
		break;
	}
}

// INT/INT2/INT3 interrupt controllers
READ32_MEMBER(ip20_state::int_r)
{
	osd_printf_info("INT: read @ ofs %x (mask %x) (PC=%x)\n", offset, mem_mask, space.device().safe_pc());
	return 0;
}

WRITE32_MEMBER(ip20_state::int_w)
{
	osd_printf_info("INT: write %x to ofs %x (mask %x) (PC=%x)\n", data, offset, mem_mask, space.device().safe_pc());
}

static ADDRESS_MAP_START( ip204415_map, AS_PROGRAM, 32, ip20_state )
	AM_RANGE( 0x00000000, 0x001fffff ) AM_RAM AM_SHARE("share10")
	AM_RANGE( 0x08000000, 0x08ffffff ) AM_RAM AM_SHARE("share5")
	AM_RANGE( 0x09000000, 0x097fffff ) AM_RAM AM_SHARE("share6")
	AM_RANGE( 0x0a000000, 0x0a7fffff ) AM_RAM AM_SHARE("share7")
	AM_RANGE( 0x0c000000, 0x0c7fffff ) AM_RAM AM_SHARE("share8")
	AM_RANGE( 0x10000000, 0x107fffff ) AM_RAM AM_SHARE("share9")
	AM_RANGE( 0x18000000, 0x187fffff ) AM_RAM AM_SHARE("share1")
	AM_RANGE( 0x1fa00000, 0x1fa1ffff ) AM_DEVREADWRITE("sgi_mc", sgi_mc_device, read, write )
	AM_RANGE( 0x1fb80000, 0x1fb8ffff ) AM_READWRITE(hpc_r, hpc_w )
	AM_RANGE( 0x1fbd9000, 0x1fbd903f ) AM_READWRITE(int_r, int_w )
	AM_RANGE( 0x1fc00000, 0x1fc7ffff ) AM_ROM AM_SHARE("share2") AM_REGION( "user1", 0 )
	AM_RANGE( 0x80000000, 0x801fffff ) AM_RAM AM_SHARE("share10")
	AM_RANGE( 0x88000000, 0x88ffffff ) AM_RAM AM_SHARE("share5")
	AM_RANGE( 0xa0000000, 0xa01fffff ) AM_RAM AM_SHARE("share10")
	AM_RANGE( 0xa8000000, 0xa8ffffff ) AM_RAM AM_SHARE("share5")
	AM_RANGE( 0xa9000000, 0xa97fffff ) AM_RAM AM_SHARE("share6")
	AM_RANGE( 0xaa000000, 0xaa7fffff ) AM_RAM AM_SHARE("share7")
	AM_RANGE( 0xac000000, 0xac7fffff ) AM_RAM AM_SHARE("share8")
	AM_RANGE( 0xb0000000, 0xb07fffff ) AM_RAM AM_SHARE("share9")
	AM_RANGE( 0xb8000000, 0xb87fffff ) AM_RAM AM_SHARE("share1")
	AM_RANGE( 0xbfa00000, 0xbfa1ffff ) AM_DEVREADWRITE("sgi_mc", sgi_mc_device, read, write )
	AM_RANGE( 0xbfb80000, 0xbfb8ffff ) AM_READWRITE(hpc_r, hpc_w )
	AM_RANGE( 0xbfbd9000, 0xbfbd903f ) AM_READWRITE(int_r, int_w )
	AM_RANGE( 0xbfc00000, 0xbfc7ffff ) AM_ROM AM_SHARE("share2") /* BIOS Mirror */
ADDRESS_MAP_END

WRITE_LINE_MEMBER(ip20_state::scsi_irq)
{
}

DRIVER_INIT_MEMBER(ip20_state,ip204415)
{
}

void ip20_state::device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr)
{
	switch (id)
	{
	case TIMER_RTC:
		ip20_timer_rtc(ptr, param);
		break;
	default:
		assert_always(FALSE, "Unknown id in ip20_state::device_timer");
	}
}

TIMER_CALLBACK_MEMBER(ip20_state::ip20_timer_rtc)
{
	// update RTC every 10 milliseconds
	m_RTC.nTemp++;
	if (m_RTC.nTemp >= 10)
	{
		m_RTC.nTemp = 0;
		RTC_HUNDREDTH++;

		if( ( RTC_HUNDREDTH & 0x0f ) == 0x0a )
		{
			RTC_HUNDREDTH -= 0x0a;
			RTC_HUNDREDTH += 0x10;
			if( ( RTC_HUNDREDTH & 0xa0 ) == 0xa0 )
			{
				RTC_HUNDREDTH = 0;
				RTC_SECOND++;

				if( ( RTC_SECOND & 0x0f ) == 0x0a )
				{
					RTC_SECOND -= 0x0a;
					RTC_SECOND += 0x10;
					if( RTC_SECOND == 0x60 )
					{
						RTC_SECOND = 0;
						RTC_MINUTE++;

						if( ( RTC_MINUTE & 0x0f ) == 0x0a )
						{
							RTC_MINUTE -= 0x0a;
							RTC_MINUTE += 0x10;
							if( RTC_MINUTE == 0x60 )
							{
								RTC_MINUTE = 0;
								RTC_HOUR++;

								if( ( RTC_HOUR & 0x0f ) == 0x0a )
								{
									RTC_HOUR -= 0x0a;
									RTC_HOUR += 0x10;
									if( RTC_HOUR == 0x24 )
									{
										RTC_HOUR = 0;
										RTC_DAY++;
									}
								}
							}
						}
					}
				}
			}
		}
	}

	timer_set(attotime::from_msec(1), TIMER_RTC);
}

void ip20_state::machine_start()
{
	m_HPC.nMiscStatus = 0;
	m_HPC.nParBufPtr = 0;
	m_HPC.nLocalIOReg0Mask = 0;
	m_HPC.nLocalIOReg1Mask = 0;
	m_HPC.nVMEIntMask0 = 0;
	m_HPC.nVMEIntMask1 = 0;

	m_RTC.nTemp = 0;

	timer_set(attotime::from_msec(1), TIMER_RTC);
}

static INPUT_PORTS_START( ip204415 )
	PORT_START("unused")
	PORT_BIT ( 0xff, IP_ACTIVE_HIGH, IPT_UNUSED )
INPUT_PORTS_END

#if 0
static const mips3_config config =
{
	32768,  /* code cache size */
	32768   /* data cache size */
};
#endif

static MACHINE_CONFIG_FRAGMENT( cdrom_config )
	MCFG_DEVICE_MODIFY( "cdda" )
	MCFG_SOUND_ROUTE(ALL_OUTPUTS, "^^^^mono", 1.0)
MACHINE_CONFIG_END

static MACHINE_CONFIG_START( ip204415, ip20_state )
	MCFG_CPU_ADD( "maincpu", R4600BE, 50000000*3 )
	MCFG_CPU_CONFIG( config )
	MCFG_CPU_PROGRAM_MAP( ip204415_map)


	/* video hardware */
	MCFG_SCREEN_ADD("screen", RASTER)
	MCFG_SCREEN_REFRESH_RATE( 60 )
	MCFG_SCREEN_VBLANK_TIME(ATTOSECONDS_IN_USEC(2500)) /* not accurate */
	MCFG_SCREEN_SIZE(800, 600)
	MCFG_SCREEN_VISIBLE_AREA(0, 799, 0, 599)
	MCFG_SCREEN_UPDATE_DRIVER(ip20_state, screen_update_ip204415)
	MCFG_SCREEN_PALETTE("palette")

	MCFG_PALETTE_ADD("palette", 65536)


	MCFG_SPEAKER_STANDARD_MONO("mono")

	MCFG_DEVICE_ADD("scc", SCC8530, 7000000)

	MCFG_DEVICE_ADD("sgi_mc", SGI_MC, 0)

	MCFG_DEVICE_ADD("scsi", SCSI_PORT, 0)
	MCFG_SCSIDEV_ADD("scsi:" SCSI_PORT_DEVICE1, "cdrom", SCSICD, SCSI_ID_6)
	MCFG_SLOT_OPTION_MACHINE_CONFIG("cdrom", cdrom_config)

	MCFG_DEVICE_ADD("wd33c93", WD33C93, 0)
	MCFG_LEGACY_SCSI_PORT("scsi")
	MCFG_WD33C93_IRQ_CB(WRITELINE(ip20_state, scsi_irq))      /* command completion IRQ */

	MCFG_EEPROM_SERIAL_93C56_ADD("eeprom")
MACHINE_CONFIG_END

ROM_START( ip204415 )
	ROM_REGION( 0x80000, "user1", 0 )
	ROM_LOAD( "ip204415.bin", 0x000000, 0x080000, CRC(940d960e) SHA1(596aba530b53a147985ff3f6f853471ce48c866c) )
ROM_END

/*    YEAR  NAME      PARENT    COMPAT    MACHINE   INPUT     INIT      COMPANY   FULLNAME */
COMP( 1993, ip204415, 0,        0,        ip204415, ip204415, ip20_state, ip204415, "Silicon Graphics Inc", "IRIS Indigo (R4400, 150MHz)", MACHINE_NOT_WORKING | MACHINE_NO_SOUND )