summaryrefslogtreecommitdiffstatshomepage
path: root/src/mame/video/vertigo.c
blob: c79231d9cef5dd22d9536b5b0c67e1acd54dfb03 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
/*************************************************************************

 Exidy Vertigo hardware

 The Vertigo vector CPU consists of four AMD 2901 bit slice
 processors, logic to control microcode program flow and a digital
 vector generator. The microcode for the bit slice CPUs is stored in 13
 bipolar proms for a total of 512 52bit wide micro instructions. The
 microcode not only crontrols the 2901s but also loading and storing
 of operands and results, program flow control and vector generation.

 +----+----+----+----+----+----+-------+-----+-----+------+-----+----+---+
 |VUC |VUC |VUC |VUC |VUC |VUC |  VUC  | VUC | VUC | VUC  | VUC |VUC |VUC| labels
 | 10 | 13 | 9  | 8  | 7  | 6  |   5   |  12 |  11 |  2   |  1  | 4  | 3 |
 +----+----+----+----+----+----+-------+-----+-----+------+-----+----+---+
 |    |    |    |    |    |    |       |     |     |      |     |PR5/|R5/| schematics
 |J5/4|G5/1|K5/5|L5/6|M5/7|N5/8| P5/9  |H5/2 |HJ5/3|S5/12 |T5/13| 10 |11 |
 +----+----+----+----+----+----+-------+-----+-----+------+-----+----+---+
 55 44|4444|4444|3333|3333|3322|2 2 2 2|2 222|11 11|1 1 11|110 0|0000|0000
 21 98|7654|3210|9876|5432|1098|7 6 5 4|3 210|98 76|5 4 32|109 8|7654|3210

    xx|xxxx|aaaa|bbbb|iiii|iiii|i c m r|r ooo|ii oo|  j jj|jjj m|mmmm|mmmm
    54|3210|3210|3210|8765|4321|0 n r s|w fff|ff aa|  p 43|210 a|aaaa|aaaa
                                    e e|r 210|10 10|  o   |    8|7654|3210
                                    q l i             s
                                        t
                                        e
 x:    address for 64 words of 16 bit wide SRAM
 a:    A register index
 b:    B register index
 i:    2901 instruction
 cn:   carry bit
 mreq, rsel, rwrite: signals for memory access
 of:   vector generator
 if:   vector RAM/ROM data select
 oa:   vector RAM/ROM address select
 jpos: jump condition inverted
 j:    jump condition and type
 m:    jump address

 Variables, enums and defines are named as in the schematics (pp. 6, 7)
 where possible.

*************************************************************************/

#include "emu.h"
#include "profiler.h"
#include "video/vector.h"
#include "includes/vertigo.h"


/*************************************
 *
 *  Macros and enums
 *
 *************************************/

#define V_ADDPOINT(m,h,v,c,i) \
	vector_add_point (m, ((h) & 0x7ff) << 14, (0x6ff - ((v) & 0x7ff)) << 14, VECTOR_COLOR444(c), (i))

#define ADD(r,s,c)	(((r)  + (s) + (c)) & 0xffff)
#define SUBR(r,s,c) ((~(r) + (s) + (c)) & 0xffff)
#define SUBS(r,s,c) (((r) + ~(s) + (c)) & 0xffff)
#define OR(r,s)		((r) | (s))
#define AND(r,s)	((r) & (s))
#define NOTRS(r,s)	(~(r) & (s))
#define EXOR(r,s)	((r) ^ (s))
#define EXNOR(r,s)	(~((r) ^ (s)))

/* values for MC_DST */
enum {
	QREG = 0,
	NOP,
	RAMA,
	RAMF,
	RAMQD,
	RAMD,
	RAMQU,
	RAMU
};

/* values for MC_IF */
enum {
	S_ROMDE = 0,
	S_RAMDE
};

/* values for MC_OA */
enum {
	S_SREG = 0,
	S_ROMA,
	S_RAMD
};

/* values for MC_JMP */
enum {
	S_JBK = 0,
	S_CALL,
	S_OPT,
	S_RETURN
};

/* values for MC_JCON */
enum {
	S_ALWAYS = 0,
	S_MSB,
	S_FEQ0,
	S_Y10,
	S_VFIN,
	S_FPOS,
	S_INTL4
};


/*************************************
 *
 *  Vector processor initialization
 *
 *************************************/

void vertigo_vproc_init(running_machine &machine)
{
	vertigo_state *state = machine.driver_data<vertigo_state>();
	state_save_register_item_array(machine, "vector_proc", NULL, 0, state->m_vs.sram);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_vs.ramlatch);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_vs.rom_adr);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_vs.pc);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_vs.ret);

	state_save_register_item_array(machine, "vector_proc", NULL, 0, state->m_bsp.ram);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_bsp.d);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_bsp.q);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_bsp.f);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_bsp.y);

	state->m_vgen.set_machine(machine);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_vgen.sreg);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_vgen.l1);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_vgen.l2);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_vgen.c_v);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_vgen.c_h);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_vgen.c_l);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_vgen.adder_s);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_vgen.adder_a);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_vgen.color);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_vgen.intensity);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_vgen.brez);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_vgen.vfin);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_vgen.hud1);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_vgen.hud2);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_vgen.vud1);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_vgen.vud2);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_vgen.hc1);
	state_save_register_item(machine, "vector_proc", NULL, 0, state->m_vgen.ven);
}


void vertigo_vproc_reset(running_machine &machine)
{
	vertigo_state *state = machine.driver_data<vertigo_state>();
	int i;
	UINT64 *mcode;

	state->m_vectorrom = (UINT16 *)machine.region("user1")->base();
	mcode = (UINT64 *)machine.region("proms")->base();

	/* Decode microcode */
	for (i = 0; i < MC_LENGTH; i++)
	{
		state->m_mc[i].x = (mcode[i] >> 44) & 0x3f;
		state->m_mc[i].a = (mcode[i] >> 40) & 0xf;
		state->m_mc[i].b = (mcode[i] >> 36) & 0xf;
		state->m_mc[i].inst = (mcode[i] >> 27) & 077;
		state->m_mc[i].dest = (mcode[i] >> 33) & 07;
		state->m_mc[i].cn = (mcode[i] >> 26) & 0x1;
		state->m_mc[i].mreq = (mcode[i] >> 25) & 0x1;
		state->m_mc[i].rwrite = (mcode[i] >> 23) & 0x1;
		state->m_mc[i].rsel = state->m_mc[i].rwrite & ((mcode[i] >> 24) & 0x1);
		state->m_mc[i].of =  (mcode[i] >> 20) & 0x7;
		state->m_mc[i].iif = (mcode[i] >> 18) & 0x3;
		state->m_mc[i].oa = (mcode[i] >> 16) & 0x3;
		state->m_mc[i].jpos = (mcode[i] >> 14) & 0x1;
		state->m_mc[i].jmp = (mcode[i] >> 12) & 0x3;
		state->m_mc[i].jcon = (mcode[i] >> 9) & 0x7;
		state->m_mc[i].ma = mcode[i] & 0x1ff;
	}

	memset(&state->m_vs, 0, sizeof(state->m_vs));
	memset(&state->m_bsp, 0, sizeof(state->m_bsp));
	memset(&state->m_vgen, 0, sizeof(state->m_vgen));
}


/********************************************
 *
 *  4 x AM2901 bit slice processors
 *  Q3 and IN3 are hardwired
 *
 ********************************************/

static void am2901x4 (am2901 *bsp, microcode *mc)
{
	switch (mc->inst)
	{
	case 000: bsp->f = ADD(bsp->ram[mc->a], bsp->q, mc->cn); break;
	case 001: bsp->f = ADD(bsp->ram[mc->a], bsp->ram[mc->b], mc->cn); break;
	case 002: bsp->f = ADD(0, bsp->q, mc->cn); break;
	case 003: bsp->f = ADD(0, bsp->ram[mc->b], mc->cn); break;
	case 004: bsp->f = ADD(0, bsp->ram[mc->a], mc->cn); break;
	case 005: bsp->f = ADD(bsp->d, bsp->ram[mc->a], mc->cn); break;
	case 006: bsp->f = ADD(bsp->d, bsp->q, mc->cn); break;
	case 007: bsp->f = ADD(bsp->d, 0, mc->cn); break;

	case 010: bsp->f = SUBR(bsp->ram[mc->a], bsp->q, mc->cn); break;
	case 011: bsp->f = SUBR(bsp->ram[mc->a], bsp->ram[mc->b], mc->cn); break;
	case 012: bsp->f = SUBR(0, bsp->q, mc->cn); break;
	case 013: bsp->f = SUBR(0, bsp->ram[mc->b], mc->cn); break;
	case 014: bsp->f = SUBR(0, bsp->ram[mc->a], mc->cn); break;
	case 015: bsp->f = SUBR(bsp->d, bsp->ram[mc->a], mc->cn); break;
	case 016: bsp->f = SUBR(bsp->d, bsp->q, mc->cn); break;
	case 017: bsp->f = SUBR(bsp->d, 0, mc->cn); break;

	case 020: bsp->f = SUBS(bsp->ram[mc->a], bsp->q, mc->cn); break;
	case 021: bsp->f = SUBS(bsp->ram[mc->a], bsp->ram[mc->b], mc->cn); break;
	case 022: bsp->f = SUBS(0, bsp->q, mc->cn); break;
	case 023: bsp->f = SUBS(0, bsp->ram[mc->b], mc->cn); break;
	case 024: bsp->f = SUBS(0, bsp->ram[mc->a], mc->cn); break;
	case 025: bsp->f = SUBS(bsp->d, bsp->ram[mc->a], mc->cn); break;
	case 026: bsp->f = SUBS(bsp->d, bsp->q, mc->cn); break;
	case 027: bsp->f = SUBS(bsp->d, 0, mc->cn); break;

	case 030: bsp->f = OR(bsp->ram[mc->a], bsp->q); break;
	case 031: bsp->f = OR(bsp->ram[mc->a], bsp->ram[mc->b]); break;
	case 032: bsp->f = OR(0, bsp->q); break;
	case 033: bsp->f = OR(0, bsp->ram[mc->b]); break;
	case 034: bsp->f = OR(0, bsp->ram[mc->a]); break;
	case 035: bsp->f = OR(bsp->d, bsp->ram[mc->a]); break;
	case 036: bsp->f = OR(bsp->d, bsp->q); break;
	case 037: bsp->f = OR(bsp->d, 0); break;

	case 040: bsp->f = AND(bsp->ram[mc->a], bsp->q); break;
	case 041: bsp->f = AND(bsp->ram[mc->a], bsp->ram[mc->b]); break;
	case 042: bsp->f = AND(0, bsp->q); break;
	case 043: bsp->f = AND(0, bsp->ram[mc->b]); break;
	case 044: bsp->f = AND(0, bsp->ram[mc->a]); break;
	case 045: bsp->f = AND(bsp->d, bsp->ram[mc->a]); break;
	case 046: bsp->f = AND(bsp->d, bsp->q); break;
	case 047: bsp->f = AND(bsp->d, 0); break;

	case 050: bsp->f = NOTRS(bsp->ram[mc->a], bsp->q); break;
	case 051: bsp->f = NOTRS(bsp->ram[mc->a], bsp->ram[mc->b]); break;
	case 052: bsp->f = NOTRS(0, bsp->q); break;
	case 053: bsp->f = NOTRS(0, bsp->ram[mc->b]); break;
	case 054: bsp->f = NOTRS(0, bsp->ram[mc->a]); break;
	case 055: bsp->f = NOTRS(bsp->d, bsp->ram[mc->a]); break;
	case 056: bsp->f = NOTRS(bsp->d, bsp->q); break;
	case 057: bsp->f = NOTRS(bsp->d, 0); break;

	case 060: bsp->f = EXOR(bsp->ram[mc->a], bsp->q); break;
	case 061: bsp->f = EXOR(bsp->ram[mc->a], bsp->ram[mc->b]); break;
	case 062: bsp->f = EXOR(0, bsp->q); break;
	case 063: bsp->f = EXOR(0, bsp->ram[mc->b]); break;
	case 064: bsp->f = EXOR(0, bsp->ram[mc->a]); break;
	case 065: bsp->f = EXOR(bsp->d, bsp->ram[mc->a]); break;
	case 066: bsp->f = EXOR(bsp->d, bsp->q); break;
	case 067: bsp->f = EXOR(bsp->d, 0); break;

	case 070: bsp->f = EXNOR(bsp->ram[mc->a], bsp->q); break;
	case 071: bsp->f = EXNOR(bsp->ram[mc->a], bsp->ram[mc->b]); break;
	case 072: bsp->f = EXNOR(0, bsp->q); break;
	case 073: bsp->f = EXNOR(0, bsp->ram[mc->b]); break;
	case 074: bsp->f = EXNOR(0, bsp->ram[mc->a]); break;
	case 075: bsp->f = EXNOR(bsp->d, bsp->ram[mc->a]); break;
	case 076: bsp->f = EXNOR(bsp->d, bsp->q); break;
	case 077: bsp->f = EXNOR(bsp->d, 0); break;
	}

	switch (mc->dest)
	{
	case QREG:
		bsp->q = bsp->f;
		bsp->y = bsp->f;
		break;
	case NOP:
		bsp->y = bsp->f;
		break;
	case RAMA:
		bsp->y = bsp->ram[mc->a];
		bsp->ram[mc->b] = bsp->f;
		break;
	case RAMF:
		bsp->y = bsp->f;
		bsp->ram[mc->b] = bsp->f;
		break;
	case RAMQD:
		bsp->y = bsp->f;
		bsp->q = (bsp->q >> 1) & 0x7fff;		  /* Q3 is low */
		bsp->ram[mc->b] = (bsp->f >> 1) | 0x8000; /* IN3 is high! */
		break;
	case RAMD:
		bsp->y = bsp->f;
		bsp->ram[mc->b] = (bsp->f >> 1) | 0x8000; /* IN3 is high! */
		break;
	case RAMQU:
		bsp->y = bsp->f;
		bsp->ram[mc->b] = (bsp->f << 1) & 0xffff;
		bsp->q = (bsp->q << 1) & 0xffff;
		break;
	case RAMU:
		bsp->y = bsp->f;
		bsp->ram[mc->b] = (bsp->f << 1) & 0xffff;
		break;
	}
}


/********************************************
 *
 *  Vector Generator
 *
 *  This part of the hardware draws vectors
 *  under control of the bit slice processors.
 *  It is just a bunch of counters, latches
 *  and DACs.
 *
 ********************************************/

static void vertigo_vgen (vector_generator *vg)
{
	if (vg->c_l & 0x800)
	{
		vg->vfin = 1;
		vg->c_l = (vg->c_l+1) & 0xfff;

		if ((vg->c_l & 0x800) == 0)
		{
			vg->brez = 0;
			vg->vfin = 0;
		}

		if (vg->brez) /* H/V counter enabled */
		{
			/* Depending on MSB of adder only one or both
               counters are de-/incremented. This is all
               defined by the shift register which is
               latched in bits 12-15 of L1/L2.
            */
			if (vg->adder_s & 0x800)
			{
				if (vg->hc1)
					vg->c_h += vg->hud1? -1: 1;
				else
					vg->c_v += vg->vud1? -1: 1;
				vg->adder_a = vg->l1;
			}
			else
			{
				vg->c_h += vg->hud2? -1: 1;
				vg->c_v += vg->vud2? -1: 1;
				vg->adder_a = vg->l2;
			}

			/* H/V counters are 12 bit */
			vg->c_v &= 0xfff;
			vg->c_h &= 0xfff;
		}

		vg->adder_s = (vg->adder_s + vg->adder_a) & 0xfff;
	}

	if (vg->brez ^ vg->ven)
	{
		if (vg->brez)
		V_ADDPOINT (vg->machine(), vg->c_h, vg->c_v, 0, 0);
		else
			V_ADDPOINT (vg->machine(), vg->c_h, vg->c_v, vg->color, vg->intensity);
		vg->ven = vg->brez;
	}
}

/*************************************
 *
 *  Vector processor
 *
 *************************************/

void vertigo_vproc(running_machine &machine, int cycles, int irq4)
{
	vertigo_state *state = machine.driver_data<vertigo_state>();
	int jcond;
	microcode *cmc;

	if (irq4) vector_clear_list();

	g_profiler.start(PROFILER_USER1);

	while (cycles--)
	{
		/* Microcode at current PC */
		cmc = &state->m_mc[state->m_vs.pc];

		/* Load data */
		if (cmc->iif == S_RAMDE)
		{
			state->m_bsp.d = state->m_vs.ramlatch;
		}
		else if (cmc->iif == S_ROMDE)
		{
			if (state->m_vs.rom_adr < 0x2000)
			{
				state->m_bsp.d = state->m_vectorram[state->m_vs.rom_adr & 0xfff];
			}
			else
			{
				state->m_bsp.d = state->m_vectorrom[state->m_vs.rom_adr & 0x7fff];
			}
		}

		/* SRAM selected ? */
		if (cmc->rsel == 0)
		{
			if (cmc->rwrite)
			{
				state->m_bsp.d = state->m_vs.sram[cmc->x];
			}
			else
			{
				/* Data can be transferred between vector ROM/RAM
                   and SRAM without going through the 2901 */
				state->m_vs.sram[cmc->x] = state->m_bsp.d;
			}
		}

		am2901x4 (&state->m_bsp, cmc);

		/* Store data */
		switch (cmc->oa)
		{
		case S_RAMD:
			state->m_vs.ramlatch = state->m_bsp.y;
			if (cmc->iif==S_RAMDE && (cmc->rsel == 0) && (cmc->rwrite == 0))
				state->m_vs.sram[cmc->x] = state->m_vs.ramlatch;
			break;
		case S_ROMA:
			state->m_vs.rom_adr = state->m_bsp.y;
			break;
		case S_SREG:
			/* FPOS is shifted into sreg */
			state->m_vgen.sreg = (state->m_vgen.sreg >> 1) | ((state->m_bsp.f >> 9) & 4);
			break;
		default:
			break;
		}

		/* Vector generator setup */
		switch (cmc->of)
		{
		case 0:
			state->m_vgen.color = state->m_bsp.y & 0xfff;
			break;
		case 1:
			state->m_vgen.intensity = state->m_bsp.y & 0xff;
			break;
		case 2:
			state->m_vgen.l1 = state->m_bsp.y & 0xfff;
			state->m_vgen.adder_s = 0;
			state->m_vgen.adder_a = state->m_vgen.l2;
			state->m_vgen.hud1 = state->m_vgen.sreg & 1;
			state->m_vgen.vud1 = state->m_vgen.sreg & 2;
			state->m_vgen.hc1  = state->m_vgen.sreg & 4;
			state->m_vgen.brez = 1;
			break;
		case 3:
			state->m_vgen.l2 = state->m_bsp.y & 0xfff;
			state->m_vgen.adder_s = (state->m_vgen.adder_s + state->m_vgen.adder_a) & 0xfff;
			if (state->m_vgen.adder_s & 0x800)
				state->m_vgen.adder_a = state->m_vgen.l1;
			else
				state->m_vgen.adder_a = state->m_vgen.l2;
			state->m_vgen.hud2 = state->m_vgen.sreg & 1;
			state->m_vgen.vud2 = state->m_vgen.sreg & 2;
			break;
		case 4:
			state->m_vgen.c_v = state->m_bsp.y & 0xfff;
			break;
		case 5:
			state->m_vgen.c_h = state->m_bsp.y & 0xfff;
			break;
		case 6:
			/* Loading the c_l counter starts
             * the vector counters if MSB is set
             */
			state->m_vgen.c_l = state->m_bsp.y & 0xfff;
			break;
		}

		vertigo_vgen (&state->m_vgen);

		/* Microcode program flow */
		switch (cmc->jcon)
		{
		case S_MSB:
			/* ALU most significant bit */
			jcond = (state->m_bsp.f >> 15) & 1;
			break;
		case S_FEQ0:
			/* ALU is 0 */
			jcond = (state->m_bsp.f == 0)? 1 : 0;
			break;
		case S_Y10:
			jcond = (state->m_bsp.y >> 10) & 1;
			break;
		case S_VFIN:
			jcond = state->m_vgen.vfin;
			break;
		case S_FPOS:
			/* FPOS is bit 11 */
			jcond = (state->m_bsp.f >> 11) & 1;
			break;
		case S_INTL4:
			jcond = irq4;
			/* Detect idle loop. If the code takes a jump
             on irq4 or !irq4 the destination is a idle loop
             waiting for irq4 state change. We then take a short
             cut and run for just 100 cycles to make sure the
             loop is actually entered.
            */
			if ((cmc->jpos != irq4) && cycles > 100)
			{
				cycles=100;
			}
			break;
		default:
			jcond = 1;
			break;
		}

		if (jcond ^ cmc->jpos)
		{
			/* Except for JBK, address bit 8 isn't changed
               in program flow. */
			switch (cmc->jmp)
			{
			case S_JBK:
				/* JBK is the only jump where MA8 is used */
				state->m_vs.pc = cmc->ma;
				break;
			case S_CALL:
				/* call and store return address */
				state->m_vs.ret = (state->m_vs.pc + 1) & 0xff;
				state->m_vs.pc = (state->m_vs.pc & 0x100) | (cmc->ma & 0xff);
				break;
			case S_OPT:
				/* OPT is used for microcode jump tables. The first
                   four address bits are defined by bits 12-15
                   of 2901 input (D) */
				state->m_vs.pc = (state->m_vs.pc & 0x100) | (cmc->ma & 0xf0) | ((state->m_bsp.d >> 12) & 0xf);
				break;
			case S_RETURN:
				/* return from call */
				state->m_vs.pc = (state->m_vs.pc & 0x100) | state->m_vs.ret;
				break;
			}
		}
		else
		{
			state->m_vs.pc = (state->m_vs.pc & 0x100) | ((state->m_vs.pc + 1) & 0xff);
		}
	}

	g_profiler.stop();
}