summaryrefslogtreecommitdiffstatshomepage
path: root/src/mame/video/cloak.cpp
blob: d07397fe1ccb3c038224f8ce8fccd21fab109074 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
// license:BSD-3-Clause
// copyright-holders:Dan Boris, Mirko Buffoni
/***************************************************************************

    Atari Cloak & Dagger hardware

***************************************************************************/

#include "emu.h"
#include "video/resnet.h"
#include "includes/cloak.h"


#define NUM_PENS    (0x40)

/***************************************************************************

  CLOAK & DAGGER uses RAM to dynamically
  create the palette. The resolution is 9 bit (3 bits per gun). The palette
  contains 64 entries, but it is accessed through a memory windows 128 bytes
  long: writing to the first 64 bytes sets the MSB of the red component to 0,
  while writing to the last 64 bytes sets it to 1.

  Colors 0-15  Character mapped graphics
  Colors 16-31 Bitmapped graphics (2 palettes selected by 128H)
  Colors 32-47 Sprites
  Colors 48-63 not used

  These are the exact resistor values from the schematics:

  bit 8 -- diode |< -- pullup 1 kohm -- 2.2 kohm resistor -- pulldown 100 pf -- RED
        -- diode |< -- pullup 1 kohm -- 4.7 kohm resistor -- pulldown 100 pf -- RED
        -- diode |< -- pullup 1 kohm -- 10  kohm resistor -- pulldown 100 pf -- RED
        -- diode |< -- pullup 1 kohm -- 2.2 kohm resistor -- pulldown 100 pf -- GREEN
        -- diode |< -- pullup 1 kohm -- 4.7 kohm resistor -- pulldown 100 pf -- GREEN
        -- diode |< -- pullup 1 kohm -- 10  kohm resistor -- pulldown 100 pf -- GREEN
        -- diode |< -- pullup 1 kohm -- 2.2 kohm resistor -- pulldown 100 pf -- BLUE
        -- diode |< -- pullup 1 kohm -- 4.7 kohm resistor -- pulldown 100 pf -- BLUE
  bit 0 -- diode |< -- pullup 1 kohm -- 10  kohm resistor -- pulldown 100 pf -- BLUE

***************************************************************************/

WRITE8_MEMBER(cloak_state::cloak_paletteram_w)
{
	m_palette_ram[offset & 0x3f] = ((offset & 0x40) << 2) | data;
	set_pen(offset & 0x3f);
}


void cloak_state::set_pen(int i)
{
	uint16_t *palette_ram = m_palette_ram.get();
	static const int resistances[3] = { 10000, 4700, 2200 };
	double weights[3];

	/* compute the color output resistor weights */
	compute_resistor_weights(0, 255, -1.0,
								3, resistances, weights, 0, 1000,
								0, nullptr, nullptr, 0, 0,
								0, nullptr, nullptr, 0, 0);

	int r, g, b;
	int bit0, bit1, bit2;

	/* red component */
	bit0 = (~palette_ram[i] >> 6) & 0x01;
	bit1 = (~palette_ram[i] >> 7) & 0x01;
	bit2 = (~palette_ram[i] >> 8) & 0x01;
	r = combine_weights(weights, bit0, bit1, bit2);

	/* green component */
	bit0 = (~palette_ram[i] >> 3) & 0x01;
	bit1 = (~palette_ram[i] >> 4) & 0x01;
	bit2 = (~palette_ram[i] >> 5) & 0x01;
	g = combine_weights(weights, bit0, bit1, bit2);

	/* blue component */
	bit0 = (~palette_ram[i] >> 0) & 0x01;
	bit1 = (~palette_ram[i] >> 1) & 0x01;
	bit2 = (~palette_ram[i] >> 2) & 0x01;
	b = combine_weights(weights, bit0, bit1, bit2);

	m_palette->set_pen_color(i, rgb_t(r, g, b));
}


void cloak_state::set_current_bitmap_videoram_pointer()
{
	m_current_bitmap_videoram_accessed  = m_bitmap_videoram_selected ? m_bitmap_videoram1.get() : m_bitmap_videoram2.get();
	m_current_bitmap_videoram_displayed = m_bitmap_videoram_selected ? m_bitmap_videoram2.get() : m_bitmap_videoram1.get();
}

WRITE8_MEMBER(cloak_state::cloak_clearbmp_w)
{
//  m_screen->update_now();
	m_screen->update_partial(m_screen->vpos());

	m_bitmap_videoram_selected = data & 0x01;
	set_current_bitmap_videoram_pointer();

	if (data & 0x02)    /* clear */
		memset(m_current_bitmap_videoram_accessed, 0, 256*256);
}

void cloak_state::adjust_xy(int offset)
{
	switch (offset)
	{
		case 0x00:  m_bitmap_videoram_address_x--; m_bitmap_videoram_address_y++; break;
		case 0x01:                       m_bitmap_videoram_address_y--; break;
		case 0x02:  m_bitmap_videoram_address_x--;                            break;
		case 0x04:  m_bitmap_videoram_address_x++; m_bitmap_videoram_address_y++; break;
		case 0x05:                       m_bitmap_videoram_address_y++; break;
		case 0x06:  m_bitmap_videoram_address_x++;                            break;
	}
}

READ8_MEMBER(cloak_state::graph_processor_r)
{
	uint8_t ret = m_current_bitmap_videoram_displayed[(m_bitmap_videoram_address_y << 8) | m_bitmap_videoram_address_x];

	adjust_xy(offset);

	return ret;
}

WRITE8_MEMBER(cloak_state::graph_processor_w)
{
	switch (offset)
	{
		case 0x03: m_bitmap_videoram_address_x = data; break;
		case 0x07: m_bitmap_videoram_address_y = data; break;
		default:
			m_current_bitmap_videoram_accessed[(m_bitmap_videoram_address_y << 8) | m_bitmap_videoram_address_x] = data & 0x0f;

			adjust_xy(offset);
			break;
	}
}

WRITE8_MEMBER(cloak_state::cloak_videoram_w)
{
	uint8_t *videoram = m_videoram;

	videoram[offset] = data;
	m_bg_tilemap->mark_tile_dirty(offset);
}

WRITE_LINE_MEMBER(cloak_state::cocktail_w)
{
	flip_screen_set(state);
}

TILE_GET_INFO_MEMBER(cloak_state::get_bg_tile_info)
{
	uint8_t *videoram = m_videoram;
	int code = videoram[tile_index];

	SET_TILE_INFO_MEMBER(0, code, 0, 0);
}

void cloak_state::video_start()
{
	m_bg_tilemap = &machine().tilemap().create(*m_gfxdecode, tilemap_get_info_delegate(*this, FUNC(cloak_state::get_bg_tile_info)), TILEMAP_SCAN_ROWS, 8, 8, 32, 32);

	m_bitmap_videoram1 = std::make_unique<uint8_t[]>(256*256);
	m_bitmap_videoram2 = std::make_unique<uint8_t[]>(256*256);
	m_palette_ram = std::make_unique<uint16_t[]>(NUM_PENS);

	set_current_bitmap_videoram_pointer();

	save_item(NAME(m_bitmap_videoram_address_x));
	save_item(NAME(m_bitmap_videoram_address_y));
	save_item(NAME(m_bitmap_videoram_selected));
	save_pointer(NAME(m_bitmap_videoram1), 256*256);
	save_pointer(NAME(m_bitmap_videoram2), 256*256);
	save_pointer(NAME(m_palette_ram), NUM_PENS);
	machine().save().register_postload(save_prepost_delegate(FUNC(cloak_state::set_current_bitmap_videoram_pointer), this));
}

void cloak_state::draw_bitmap(bitmap_ind16 &bitmap, const rectangle &cliprect)
{
	int x, y;

	for (y = cliprect.top(); y <= cliprect.bottom(); y++)
		for (x = cliprect.left(); x <= cliprect.right(); x++)
		{
			pen_t pen = m_current_bitmap_videoram_displayed[(y << 8) | x] & 0x07;

			if (pen)
				bitmap.pix16(y, (x - 6) & 0xff) = 0x10 | ((x & 0x80) >> 4) | pen;
		}
}

void cloak_state::draw_sprites(bitmap_ind16 &bitmap, const rectangle &cliprect)
{
	uint8_t *spriteram = m_spriteram;
	int offs;

	for (offs = (0x100 / 4) - 1; offs >= 0; offs--)
	{
		int code = spriteram[offs + 64] & 0x7f;
		int flipx = spriteram[offs + 64] & 0x80;
		int flipy = 0;
		int sx = spriteram[offs + 192];
		int sy = 240 - spriteram[offs];

		if (flip_screen())
		{
			sx -= 9;
			sy = 240 - sy;
			flipx = !flipx;
			flipy = !flipy;
		}

		m_gfxdecode->gfx(1)->transpen(bitmap,cliprect, code, 0, flipx, flipy,   sx, sy, 0);
	}
}

uint32_t cloak_state::screen_update_cloak(screen_device &screen, bitmap_ind16 &bitmap, const rectangle &cliprect)
{
	m_bg_tilemap->draw(screen, bitmap, cliprect, 0, 0);
	draw_bitmap(bitmap, cliprect);
	draw_sprites(bitmap, cliprect);
	return 0;
}