summaryrefslogtreecommitdiffstatshomepage
path: root/src/mame/machine/snesdsp1.c
blob: 68d2bc7c40fac18ee69f8816ef06f54f78a755a7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
/***************************************************************************

  snesdsp1.c

  File to handle emulation of the SNES "DSP-1" add-on chip.

  Original C++ "dsp1emul.cpp" by Andreas Naive
  Based on research by Overload, The Dumper, Neviksti and Andreas Naive
  MAME/MESS C conversion by R. Belmont 

  This is up to date with the source version dated June 2006.

***************************************************************************/

#define DSP1_VERSION 0x0102

// The DSP-1 status register has 16 bits, but only
// the upper 8 bits can be accessed from an external device, so all these
// positions are referred to the upper byte (bits D8 to D15)

enum SrFlags {DRC=0x04, DRS=0x10, RQM=0x80};

// According to Overload's docs, these are the meanings of the flags:
// DRC: The Data Register Control (DRC) bit specifies the data transfer length to and from the host CPU.
//   0: Data transfer to and from the DSP-1 is 16 bits.
//   1: Data transfer to and from the DSP-1 is 8 bits.
// DRS: The Data Register Status (DRS) bit indicates the data transfer status in the case of transfering 16-bit data.
//   0: Data transfer has terminated.
//   1: Data transfer in progress.
// RQM: The Request for Master (RQM) indicates that the DSP1 is requesting host CPU for data read/write.
//   0: Internal Data Register Transfer.
//   1: External Data Register Transfer.

enum FsmMajorState {WAIT_COMMAND, READ_DATA, WRITE_DATA};
enum MaxDataAccesses {MAX_READS=7, MAX_WRITES=1024};

struct DSP1_Command {
        void (*callback)(INT16 *, INT16 *);
        unsigned int reads;
        unsigned int writes;
};

static const struct DSP1_Command mCommandTable[0x40];
static const INT16 DSP1_MaxAZS_Exp[16];
static const INT16 DSP1_SinTable[256];
static const INT16 DSP1_MulTable[256];
static UINT16 DSP1_DataRom[1024];

static struct SharedData { // some RAM variables shared between commands
        INT16 MatrixA[3][3];          // attitude matrix A
        INT16 MatrixB[3][3];
        INT16 MatrixC[3][3];
        INT16 CentreX, CentreY, CentreZ;   // center of projection
        INT16 CentreZ_C, CentreZ_E;
        INT16 VOffset;                     // vertical offset of the screen with regard to the centre of projection
        INT16 Les, C_Les, E_Les;
        INT16 SinAas, CosAas;
        INT16 SinAzs, CosAzs;
        INT16 SinAZS, CosAZS;
        INT16 SecAZS_C1, SecAZS_E1;
        INT16 SecAZS_C2, SecAZS_E2;
        INT16 Nx, Ny, Nz;    // normal vector to the screen (norm 1, points toward the center of projection)
        INT16 Gx, Gy, Gz;    // center of the screen (global coordinates)
        INT16 Hx, Hy;        // horizontal vector of the screen (Hz=0, norm 1, points toward the right of the screen)
        INT16 Vx, Vy, Vz;    // vertical vector of the screen (norm 1, points toward the top of the screen) 

} shared;

static UINT8 mSr;            // status register
static int mSrLowByteAccess;
static UINT16 mDr;           // "internal" representation of the data register
static enum FsmMajorState mFsmMajorState;     // current major state of the FSM
static UINT8 mCommand;                  // current command processed by the FSM
static UINT8 mDataCounter;                 // #UINT16 read/writes counter used by the FSM
static INT16 mReadBuffer[MAX_READS];
static INT16 mWriteBuffer[MAX_WRITES];
static UINT8 mFreeze;                   // need explanation?  ;)

static void DSP1_fsmStep(UINT8 read, UINT8 *data);            // FSM logic

// commands
static void DSP1_memoryTest(INT16 *input, INT16 *output);
static void DSP1_memoryDump(INT16 *input, INT16 *output);
static void DSP1_memorySize(INT16 *input, INT16 *output);
static void DSP1_multiply(INT16* input, INT16* output);
static void DSP1_multiply2(INT16* input, INT16* output);
static void DSP1_inverse(INT16 *input, INT16 *output);
static void DSP1_triangle(INT16 *input, INT16 *output);
static void DSP1_radius(INT16 *input, INT16 *output);
static void DSP1_range(INT16 *input, INT16 *output);
static void DSP1_range2(INT16 *input, INT16 *output);
static void DSP1_distance(INT16 *input, INT16 *output);
static void DSP1_rotate(INT16 *input, INT16 *output);
static void DSP1_polar(INT16 *input, INT16 *output);
static void DSP1_attitudeA(INT16 *input, INT16 *output);
static void DSP1_attitudeB(INT16 *input, INT16 *output);
static void DSP1_attitudeC(INT16 *input, INT16 *output);
static void DSP1_objectiveA(INT16 *input, INT16 *output);
static void DSP1_objectiveB(INT16 *input, INT16 *output);
static void DSP1_objectiveC(INT16 *input, INT16 *output);
static void DSP1_subjectiveA(INT16 *input, INT16 *output);
static void DSP1_subjectiveB(INT16 *input, INT16 *output);
static void DSP1_subjectiveC(INT16 *input, INT16 *output);
static void DSP1_scalarA(INT16 *input, INT16 *output);
static void DSP1_scalarB(INT16 *input, INT16 *output);
static void DSP1_scalarC(INT16 *input, INT16 *output);
static void DSP1_gyrate(INT16 *input, INT16 *output);
static void DSP1_parameter(INT16 *input, INT16 *output);
static void DSP1_raster(INT16 *input, INT16 *output);
static void DSP1_target(INT16 *input, INT16 *output);
static void DSP1_project(INT16 *input, INT16 *output);

// auxiliar functions
static INT16 DSP1_sin(INT16 Angle);
static INT16 DSP1_cos(INT16 Angle);
static void inverse(INT16 Coefficient, INT16 Exponent, INT16 *iCoefficient, INT16 *iExponent);
static INT16 denormalizeAndClip(INT16 C, INT16 E);
static void normalize(INT16 m, INT16 *Coefficient, INT16 *Exponent);
static void normalizeDouble(INT32 Product, INT16 *Coefficient, INT16 *Exponent);
static INT16 shiftR(INT16 C, INT16 E);

//////////////////////////////////////////////////////////////////

UINT8 DSP1_getSr(void)
{
   mSrLowByteAccess = ~mSrLowByteAccess;
   if (mSrLowByteAccess)
   {
      return 0;
   }
   else
   {
      return mSr;
   }
}

//////////////////////////////////////////////////////////////////

UINT8 DSP1_getDr(void)
{
   UINT8 oDr;

   DSP1_fsmStep(1, &oDr);
   return oDr;
}

//////////////////////////////////////////////////////////////////

void DSP1_setDr(UINT8 iDr)
{
    DSP1_fsmStep(0, &iDr);
}

//////////////////////////////////////////////////////////////////

void DSP1_reset(void)
{
	UINT32 i;
	UINT8 *dspin = memory_region(REGION_USER6);

	mSr = DRC|RQM;
	mSrLowByteAccess = FALSE;
	mDr = 0x0080;    // Only a supposition. Is this correct?
	mFreeze = FALSE;
	mFsmMajorState = WAIT_COMMAND;
	memset(&shared, 0, sizeof(struct SharedData)); // another supposition

	// expand the DSP-1 data ROM
	for (i = 0; i < 2048; i+=2)
	{
		DSP1_DataRom[i/2] = dspin[i]<<8 | dspin[i+1];
	}
}

//////////////////////////////////////////////////////////////////

// Though the DSP-1 is unaware of the type of operation (read or write)
// we need to know what is being done by the program, as the class
// is responsible for maintaining the binding between the
// "external" and "internal" representations of the DR (data register).

static void DSP1_fsmStep(UINT8 read, UINT8 *data)
{
   if (0 == (mSr&RQM)) return;
   // Now RQM would be cleared; however, as this code is not to be used in
   // a multithread environment, we will simply fake RQM operation.
   // (The only exception would be Op1A's freeze.)

   // binding
   if (read)
   {
      if (mSr&DRS)
         *data = (UINT8)(mDr>>8);
      else
         *data = (UINT8)(mDr);
   }
   else
   {
      if (mSr&DRS)
      {
         mDr &= 0x00ff;
         mDr |= *data<<8;
      }
      else
      {
         mDr &= 0xff00;
         mDr |= *data;
      }
   }


   switch (mFsmMajorState)
   {
      case WAIT_COMMAND:
         mCommand = (UINT8)(mDr);
         if (!(mCommand & 0xc0))   // valid command?
         {
            switch(mCommand)
            {
               // freeze cases
               case 0x1a:
               case 0x2a:
               case 0x3a:
                  mFreeze = TRUE;
                  break;
               // normal cases
               default:
                  mDataCounter=0;
                  mFsmMajorState = READ_DATA;
                  mSr &= ~DRC;
                  break;
            }
         }
         break;
      case READ_DATA:
         mSr ^= DRS;
         if (!(mSr&DRS))
         {
            mReadBuffer[mDataCounter++] = (INT16)(mDr);
            if (mDataCounter >= mCommandTable[mCommand].reads)
            {
               (*mCommandTable[mCommand].callback)(mReadBuffer, mWriteBuffer);
               if (0 != mCommandTable[mCommand].writes)  // any output?
               {
                  mDataCounter = 0;
                  mDr = (UINT16)(mWriteBuffer[mDataCounter]);
                  mFsmMajorState = WRITE_DATA;
               }
               else
               {
                  mDr = 0x0080;  // valid command completion
                  mFsmMajorState = WAIT_COMMAND;
                  mSr |= DRC;
               }
            }
         }
         break;
      case WRITE_DATA:
         mSr ^= DRS;
         if (!(mSr&DRS))
         {
            ++mDataCounter;
            if (mDataCounter >= mCommandTable[mCommand].writes)
            {
               if ((mCommand == 0x0a)&&(mDr != 0x8000))
               {
                  // works in continuous mode
                  mReadBuffer[0]++;   // next raster line
                  (*mCommandTable[mCommand].callback)(mReadBuffer, mWriteBuffer);
                  mDataCounter = 0;
                  mDr = (UINT16)(mWriteBuffer[mDataCounter]);
               }
               else
               {
                  mDr = 0x0080;  // valid command completion
                  mFsmMajorState = WAIT_COMMAND;
                  mSr |= DRC;
               }
            }
            else
            {
               mDr = (UINT16)(mWriteBuffer[mDataCounter]);
            }
         }
         break;
   }



   // Now RQM would be set (except when executing Op1A -command equals 0x1a, 0x2a or 0x3a-).
   if (mFreeze)
      mSr &= ~RQM;
}

//////////////////////////////////////////////////////////////////

// The info on this table follows Overload's docs.

static const struct DSP1_Command mCommandTable[0x40] = 
{
   {&DSP1_multiply, 2, 1},   //0x00
   {&DSP1_attitudeA, 4, 0},    //0x01
   {&DSP1_parameter, 7, 4},   //0x02
   {&DSP1_subjectiveA, 3, 3},    //0x03
   {&DSP1_triangle, 2, 2},   //0x04
   {&DSP1_attitudeA, 4, 0},   //0x01
   {&DSP1_project, 3, 3},   //0x06
   {&DSP1_memoryTest, 1, 1},   //0x0f
   {&DSP1_radius, 3, 2},   //0x08
   {&DSP1_objectiveA, 3, 3},   //0x0d
   {&DSP1_raster, 1, 4},   // 0x0a. This will normally work in continuous mode
   {&DSP1_scalarA, 3, 1},   //0x0b
   {&DSP1_rotate, 3, 2},   //0x0c
   {&DSP1_objectiveA, 3, 3},   //0x0d
   {&DSP1_target, 2, 2},   //0x0e
   {&DSP1_memoryTest, 1, 1},   //0x0f

   {&DSP1_inverse, 2, 2},   //0x10
   {&DSP1_attitudeB, 4, 0},   //0x11
   {&DSP1_parameter, 7, 4},   //0x02
   {&DSP1_subjectiveB, 3, 3},   //0x13
   {&DSP1_gyrate, 6, 3},   //0x14
   {&DSP1_attitudeB, 4, 0},   //0x11
   {&DSP1_project, 3, 3},   //0x06
   {&DSP1_memoryDump, 1, 1024},   //0x1f
   {&DSP1_range, 4, 1},   //0x18
   {&DSP1_objectiveB, 3, 3},   //0x1d
   {0, 0, 0},   // 0x1a; the chip freezes
   {&DSP1_scalarB, 3, 1},   //0x1b
   {&DSP1_polar, 6, 3},   //0x1c
   {&DSP1_objectiveB, 3, 3},   //0x1d
   {&DSP1_target, 2, 2},   //0x0e
   {&DSP1_memoryDump, 1, 1024},   //0x1f

   {&DSP1_multiply2, 2, 1},   //0x20
   {&DSP1_attitudeC, 4, 0},   //0x21
   {&DSP1_parameter, 7, 4},   //0x02
   {&DSP1_subjectiveC, 3, 3},   //0x23
   {&DSP1_triangle, 2, 2},   //0x04
   {&DSP1_attitudeC, 4, 0},   //0x21
   {&DSP1_project, 3, 3},   //0x06
   {&DSP1_memorySize, 1, 1},    //0x2f
   {&DSP1_distance, 3, 1},   //0x28
   {&DSP1_objectiveC, 3, 3},   //0x2d
   {0, 0, 0},   // 0x1a; the chip freezes
   {&DSP1_scalarC, 3, 1},   //0x2b
   {&DSP1_rotate, 3, 2},   //0x0c
   {&DSP1_objectiveC, 3, 3},   //0x2d
   {&DSP1_target, 2, 2},   //0x0e
   {&DSP1_memorySize, 1, 1},   //0x2f

   {&DSP1_inverse, 2, 2},   //0x10
   {&DSP1_attitudeA, 4, 0},   //0x01
   {&DSP1_parameter, 7, 4},   //0x02
   {&DSP1_subjectiveA, 3, 3},   //0x03
   {&DSP1_gyrate, 6, 3},   //0x14
   {&DSP1_attitudeA, 4, 0},   //0x01
   {&DSP1_project, 3, 3},   //0x06
   {&DSP1_memoryDump, 1, 1024},   //0x1f
   {&DSP1_range2, 4, 1},   //0x38
   {&DSP1_objectiveA, 3, 3},   //0x0d
   {0, 0, 0},   // 0x1a; the chip freezes
   {&DSP1_scalarA, 3, 1},   //0x0b
   {&DSP1_polar, 6, 3},   //0x1c
   {&DSP1_objectiveA, 3, 3},   //0x0d
   {&DSP1_target, 2, 2},   //0x0e
   {&DSP1_memoryDump, 1, 1024},   //0x1f
};

//////////////////////////////////////////////////////////////////

static void DSP1_memoryTest(INT16 *input, INT16 *output)
{
//   INT16 *Size = &input[0];
   INT16 *Result = &output[0];

   *Result = 0x0000;
}

//////////////////////////////////////////////////////////////////

static void DSP1_memoryDump(INT16 *input, INT16 *output)
{
   memcpy(output, DSP1_DataRom, 1024);
}

//////////////////////////////////////////////////////////////////

static void DSP1_memorySize(INT16 *input, INT16 *output)
{
   INT16 *Size = &output[0];

   *Size = 0x0100;
}

//////////////////////////////////////////////////////////////////

// 16-bit multiplication

static void DSP1_multiply(INT16 *input, INT16 *output)
{
   INT16 Multiplicand = input[0];
   INT16 Multiplier = input[1];
   INT16 *Product = &output[0];

   *Product = Multiplicand * Multiplier >> 15;
}

//////////////////////////////////////////////////////////////////

// 16-bit multiplication. 'Alternative' method. Can anyone check this carefully?

static void DSP1_multiply2(INT16 *input, INT16 *output)
{
   INT16 Multiplicand = input[0];
   INT16 Multiplier = input[1];
   INT16* Product = &output[0];

   *Product = (Multiplicand * Multiplier >> 15)+1;
}

//////////////////////////////////////////////////////////////////

// This command determines the inverse of a floating point decimal number.

static void DSP1_inverse(INT16 *input, INT16 *output)
{
   INT16 Coefficient = input[0];
   INT16 Exponent = input[1];
   INT16* iCoefficient = &output[0];
   INT16* iExponent = &output[1];

   inverse(Coefficient, Exponent, iCoefficient, iExponent);
}

//////////////////////////////////////////////////////////////////

// Vector component calculation. Determines the X and Y components for a
// two-dimensional vector whose size and direction is known.
// Y = Radius * sin(Angle)
// X = Radius * cos(Angle)

static void DSP1_triangle(INT16 *input, INT16 *output)
{
   INT16 Angle = input[0];
   INT16 Radius = input[1];
   INT16* Y = &output[0];
   INT16* X = &output[1];

   *Y = DSP1_sin(Angle) * Radius >> 15;
   *X = DSP1_cos(Angle) * Radius >> 15;
}

//////////////////////////////////////////////////////////////////

// Determines the squared norm of a vector (X,Y,Z)
// The output is Radius = X^2+Y^2+Z^2 (double integer)

static void DSP1_radius(INT16 *input, INT16 *output)
{
   INT16 X = input[0];
   INT16 Y = input[1];
   INT16 Z = input[2];
   INT16* RadiusLow = &output[0];
   INT16* RadiusHigh = &output[1];

   INT32 Radius;

   Radius = (X * X + Y * Y + Z * Z) << 1;
   *RadiusLow = (INT16)(Radius);
   *RadiusHigh = (INT16)(Radius>>16);
}

//////////////////////////////////////////////////////////////////

// Vector size comparison. This command compares the size of the vector (X,Y,Z) and the distance (R)
// from a particular point, and so may be used to determine if a point is within the sphere or radius R.
// The output is D = X^2+Y^2+Z^2-R^2

static void DSP1_range(INT16 *input, INT16 *output)
{
   INT16 X = input[0];
   INT16 Y = input[1];
   INT16 Z = input[2];
   INT16 Radius = input[3];
   INT16* Range = &output[0];

   *Range = (X * X + Y * Y + Z * Z - Radius * Radius) >> 15;
}

//////////////////////////////////////////////////////////////////

// Vector size comparison. 'Alternative' method.

static void DSP1_range2(INT16 *input, INT16 *output)
{
   INT16 X = input[0];
   INT16 Y = input[1];
   INT16 Z = input[2];
   INT16 Radius = input[3];
   INT16* Range = &output[0];

   *Range = ((X * X + Y * Y + Z * Z - Radius * Radius) >> 15) + 1;
}

//////////////////////////////////////////////////////////////////

// This command calculates the norm of a (X,Y,Z) vector, or the distance from
// the point (X,Y,Z) to (0,0,0), as you prefer to see it.
// Distance = sqrt(X^2+Y^2+Z^2)
// The square root of a number 'a' is calculated by doing this: you
// write 'a' as b*2^2n, with 'b' between 1/4 and 1; then, you calculate
// c=sqrt(b) by using lineal interpolation between points of a
// look-up table and, finally, you output the result as c*2^n.

static void DSP1_distance(INT16 *input, INT16 *output)
{
   INT16 X = input[0];
   INT16 Y = input[1];
   INT16 Z = input[2];
   INT16* Distance = &output[0];
   INT16 Pos, Node1, Node2;

   INT32 Radius = X * X + Y * Y + Z * Z;

   
   if (Radius == 0) Distance = 0;
   else
   {
      INT16 C, E;
      normalizeDouble(Radius, &C, &E);
      if (E & 1) C = C * 0x4000 >> 15;

      Pos = C * 0x0040 >> 15;

      Node1 = DSP1_DataRom[0x00d5 + Pos];
      Node2 = DSP1_DataRom[0x00d6 + Pos];

      *Distance = ((Node2 - Node1) * (C & 0x1ff) >> 9) + Node1;

#if DSP1_VERSION < 0x0102
		if (Pos & 1) *Distance -= (Node2 - Node1);
#endif		
		*Distance >>= (E >> 1);
   }
}

//////////////////////////////////////////////////////////////////

// Determines the (X2, Y2) coordinates obtained by rotating (X1, Y1)
// clockwise for an angle 'Angle'. The official documentation says
// 'counterclockwise', but it's obviously wrong (surprise! :P)
//
// In matrix notation:
// |X2|    |cos(Angle)   sin(Angle)| |X1|
// |  | =  |                       | |  |
// |Y2|    |-sin(Angle   cos(Angle)| |Y1|

static void DSP1_rotate(INT16 *input, INT16 *output)
{
   INT16 Angle = input[0];
   INT16 X1 = input[1];
   INT16 Y1 = input[2];
   INT16* X2 = &output[0];
   INT16* Y2 = &output[1];

   *X2 = (Y1 * DSP1_sin(Angle) >> 15) + (X1 * DSP1_cos(Angle) >> 15);
   *Y2 = (Y1 * DSP1_cos(Angle) >> 15) - (X1 * DSP1_sin(Angle) >> 15);
}

//////////////////////////////////////////////////////////////////

// Calculate the coordinates (X2, Y2, Z2) obtained when rotating (X1, Y1, Z1)
// three-dimensionally. Rotation is done in the order of Az around the Z axis,
// Ay around the Y axis and Ax around the X axis. As occur with the "attitude" commands
// (see comments in the "gyrate" command), qthis doesn't match what explained in
// the official documentation, but it's coherent with what it is done in the "attitude"
// command (but not with the "gyrate" command).
//
// In matrix notation:
// |X2|   |1      0      0  | |cosRy   0   -sinRy| | cosRz  sinRz    0| |X1|
// |Y2| = |0    cosRx  sinRx| |  0     1      0  | |-sinRz  cosRz    0| |Y1|
// |Z2|   |0   -sinRx  cosRx| |sinRy   0    cosRy| |   0      0      1| |Z1|

static void DSP1_polar(INT16 *input, INT16 *output)
{
   INT16 Az = input[0];
   INT16 Ay = input[1];
   INT16 Ax = input[2];
   INT16 X1 = input[3];
   INT16 Y1 = input[4];
   INT16 Z1 = input[5];
   INT16* X2 = &output[0];
   INT16* Y2 = &output[1];
   INT16* Z2 = &output[2];

   INT16 X, Y, Z;

   // Rotate Around Z
   X = (Y1 * DSP1_sin(Az) >> 15) + (X1 * DSP1_cos(Az) >> 15);
   Y = (Y1 * DSP1_cos(Az) >> 15) - (X1 * DSP1_sin(Az) >> 15);
   X1 = X; Y1 = Y;

   // Rotate Around Y
   Z = (X1 * DSP1_sin(Ay) >> 15) + (Z1 * DSP1_cos(Ay) >> 15);
   X = (X1 * DSP1_cos(Ay) >> 15) - (Z1 * DSP1_sin(Ay) >> 15);
   *X2 = X; Z1 = Z;

   // Rotate Around X	
   Y = (Z1 * DSP1_sin(Ax) >> 15) + (Y1 * DSP1_cos(Ax) >> 15);
   Z = (Z1 * DSP1_cos(Ax) >> 15) - (Y1 * DSP1_sin(Ax) >> 15);
   *Y2 = Y; *Z2 = Z;
}

//////////////////////////////////////////////////////////////////

// Set up the elements of an "attitude matrix" (there are other ones):
//           S | cosRz  sinRz    0| |cosRy   0   -sinRy| |1      0      0  |
// MatrixA = - |-sinRz  cosRz    0| |  0     1      0  | |0    cosRx  sinRx|
//           2 |   0      0      1| |sinRy   0    cosRy| |0   -sinRx  cosRx|
// This matrix is thought to be used within the following framework:
// let's suppose we define positive rotations around a system of orthogonal axes in this manner:
// a rotation of +90 degrees around axis3 converts axis2 into axis1
// a rotation of +90 degrees around axis2 converts axis1 into axis3
// a rotation of +90 degrees around axis1 converts axis3 into axis2
// and let's suppose that we have defined a new orthonormal axes system (FLU)
// by doing the following operations about the standard one (XYZ):
// first rotating the XYZ system around Z by an angle Rz (obtaining X'Y'Z'),
// then rotating the resulting system around Y by an angle Ry (obtaining X''Y''Z'')
// and, finally, rotating the resulting system around X by an angle Rx (obtaining FLU)
// This FLU (forward/left/up) system represents an "attitude" and, then, the matrix here defined
// is the change of coordinates matrix that transform coordinates in the FLU
// system (the "object coordinates") into the standard XYZ system (the "global coordinates"),
// multiplied by a scale factor S/2, that is:
// |x|   S             |f|
// |y| * - = MatrixA * |l|
// |z|   2             |u|
// In a similar way, if we use the transpose of the matrix, we can transform global coordinates
// into object coordinates:
// |f|   S                        |x|
// |l| * - = MatrixA_transposed * |y|
// |u|   2                        |z|
//
// input[0]: S
// input[1]: Rz
// input[2]: Ry
// input[3]: Rx

static void DSP1_attitudeA(INT16 *input, INT16 *output)
{
   INT16 S = input[0];
   INT16 Rz = input[1];
   INT16 Ry = input[2];
   INT16 Rx = input[3];

   INT16 SinRz = DSP1_sin(Rz);
   INT16 CosRz = DSP1_cos(Rz);
   INT16 SinRy = DSP1_sin(Ry);
   INT16 CosRy = DSP1_cos(Ry);
   INT16 SinRx = DSP1_sin(Rx);
   INT16 CosRx = DSP1_cos(Rx);

   S >>= 1;

   shared.MatrixA[0][0] = (S * CosRz >> 15) * CosRy >> 15;
   shared.MatrixA[0][1] = ((S * SinRz >> 15) * CosRx >> 15) + (((S * CosRz >> 15) * SinRx >> 15) * SinRy >> 15);
   shared.MatrixA[0][2] = ((S * SinRz >> 15) * SinRx >> 15) - (((S * CosRz >> 15) * CosRx >> 15) * SinRy >> 15);

   shared.MatrixA[1][0] = -((S * SinRz >> 15) * CosRy >> 15);
   shared.MatrixA[1][1] = ((S * CosRz >> 15) * CosRx >> 15) - (((S * SinRz >> 15) * SinRx >> 15) * SinRy >> 15);
   shared.MatrixA[1][2] = ((S * CosRz >> 15) * SinRx >> 15) + (((S * SinRz >> 15) * CosRx >> 15) * SinRy >> 15);

   shared.MatrixA[2][0] = S * SinRy >> 15;
   shared.MatrixA[2][1] = -((S * SinRx >> 15) * CosRy >> 15);
   shared.MatrixA[2][2] = (S * CosRx >> 15) * CosRy >> 15;
}

//////////////////////////////////////////////////////////////////

// Same than 'attitudeA', but with a difference attitude matrix (matrixB)

static void DSP1_attitudeB(INT16 *input, INT16 *output)
{
   INT16 S = input[0];
   INT16 Rz = input[1];
   INT16 Ry = input[2];
   INT16 Rx = input[3];

   INT16 SinRz = DSP1_sin(Rz);
   INT16 CosRz = DSP1_cos(Rz);
   INT16 SinRy = DSP1_sin(Ry);
   INT16 CosRy = DSP1_cos(Ry);
   INT16 SinRx = DSP1_sin(Rx);
   INT16 CosRx = DSP1_cos(Rx);

   S >>= 1;

   shared.MatrixB[0][0] = (S * CosRz >> 15) * CosRy >> 15;
   shared.MatrixB[0][1] = ((S * SinRz >> 15) * CosRx >> 15) + (((S * CosRz >> 15) * SinRx >> 15) * SinRy >> 15);
   shared.MatrixB[0][2] = ((S * SinRz >> 15) * SinRx >> 15) - (((S * CosRz >> 15) * CosRx >> 15) * SinRy >> 15);

   shared.MatrixB[1][0] = -((S * SinRz >> 15) * CosRy >> 15);
   shared.MatrixB[1][1] = ((S * CosRz >> 15) * CosRx >> 15) - (((S * SinRz >> 15) * SinRx >> 15) * SinRy >> 15);
   shared.MatrixB[1][2] = ((S * CosRz >> 15) * SinRx >> 15) + (((S * SinRz >> 15) * CosRx >> 15) * SinRy >> 15);

   shared.MatrixB[2][0] = S * SinRy >> 15;
   shared.MatrixB[2][1] = -((S * SinRx >> 15) * CosRy >> 15);
   shared.MatrixB[2][2] = (S * CosRx >> 15) * CosRy >> 15;
}

//////////////////////////////////////////////////////////////////

// Same than 'attitudeA', but with a difference attitude matrix (matrixC)

static void DSP1_attitudeC(INT16 *input, INT16 *output)
{
   INT16 S = input[0];
   INT16 Rz = input[1];
   INT16 Ry = input[2];
   INT16 Rx = input[3];

   INT16 SinRz = DSP1_sin(Rz);
   INT16 CosRz = DSP1_cos(Rz);
   INT16 SinRy = DSP1_sin(Ry);
   INT16 CosRy = DSP1_cos(Ry);
   INT16 SinRx = DSP1_sin(Rx);
   INT16 CosRx = DSP1_cos(Rx);

   S >>= 1;

   shared.MatrixC[0][0] = (S * CosRz >> 15) * CosRy >> 15;
   shared.MatrixC[0][1] = ((S * SinRz >> 15) * CosRx >> 15) + (((S * CosRz >> 15) * SinRx >> 15) * SinRy >> 15);
   shared.MatrixC[0][2] = ((S * SinRz >> 15) * SinRx >> 15) - (((S * CosRz >> 15) * CosRx >> 15) * SinRy >> 15);

   shared.MatrixC[1][0] = -((S * SinRz >> 15) * CosRy >> 15);
   shared.MatrixC[1][1] = ((S * CosRz >> 15) * CosRx >> 15) - (((S * SinRz >> 15) * SinRx >> 15) * SinRy >> 15);
   shared.MatrixC[1][2] = ((S * CosRz >> 15) * SinRx >> 15) + (((S * SinRz >> 15) * CosRx >> 15) * SinRy >> 15);

   shared.MatrixC[2][0] = S * SinRy >> 15;
   shared.MatrixC[2][1] = -((S * SinRx >> 15) * CosRy >> 15);
   shared.MatrixC[2][2] = (S * CosRx >> 15) * CosRy >> 15;
}

//////////////////////////////////////////////////////////////////

// Convert global coordinates (X,Y,Z) to object coordinates (F,L,U)
// See the comment in "attitudeA" for a explanation about the calculation.
//
// input[0]: X ; input[1]: Y ; input[2]: Z
// &output[0]: F ; &output[1]: L ; &output[2]: U

static void DSP1_objectiveA(INT16 *input, INT16 *output)
{
   INT16 X = input[0];
   INT16 Y = input[1];
   INT16 Z = input[2];
   INT16* F = &output[0];
   INT16* L = &output[1];
   INT16* U = &output[2];

   *F = (shared.MatrixA[0][0] * X >> 15) + (shared.MatrixA[1][0] * Y >> 15) + (shared.MatrixA[2][0] * Z >> 15);
   *L = (shared.MatrixA[0][1] * X >> 15) + (shared.MatrixA[1][1] * Y >> 15) + (shared.MatrixA[2][1] * Z >> 15);
   *U = (shared.MatrixA[0][2] * X >> 15) + (shared.MatrixA[1][2] * Y >> 15) + (shared.MatrixA[2][2] * Z >> 15);
}

//////////////////////////////////////////////////////////////////

// Same than 'objectiveA', but for the 'B' attitude

static void DSP1_objectiveB(INT16 *input, INT16 *output)
{
   INT16 X = input[0];
   INT16 Y = input[1];
   INT16 Z = input[2];
   INT16* F = &output[0];
   INT16* L = &output[1];
   INT16* U = &output[2];

   *F = (shared.MatrixB[0][0] * X >> 15) + (shared.MatrixB[1][0] * Y >> 15) + (shared.MatrixB[2][0] * Z >> 15);
   *L = (shared.MatrixB[0][1] * X >> 15) + (shared.MatrixB[1][1] * Y >> 15) + (shared.MatrixB[2][1] * Z >> 15);
   *U = (shared.MatrixB[0][2] * X >> 15) + (shared.MatrixB[1][2] * Y >> 15) + (shared.MatrixB[2][2] * Z >> 15);
}

//////////////////////////////////////////////////////////////////

// Same than 'objectiveA', but for the 'C' attitude

static void DSP1_objectiveC(INT16 *input, INT16 *output)
{
   INT16 X = input[0];
   INT16 Y = input[1];
   INT16 Z = input[2];
   INT16* F = &output[0];
   INT16* L = &output[1];
   INT16* U = &output[2];

   *F = (shared.MatrixC[0][0] * X >> 15) + (shared.MatrixC[1][0] * Y >> 15) + (shared.MatrixC[2][0] * Z >> 15);
   *L = (shared.MatrixC[0][1] * X >> 15) + (shared.MatrixC[1][1] * Y >> 15) + (shared.MatrixC[2][1] * Z >> 15);
   *U = (shared.MatrixC[0][2] * X >> 15) + (shared.MatrixC[1][2] * Y >> 15) + (shared.MatrixC[2][2] * Z >> 15);
}

//////////////////////////////////////////////////////////////////

// Convert object coordinates (F,L,U) to object coordinates (X,Y,Z)
// See the comment in "attitudeA" for a explanation about the calculation.
//
// input[0]: F ; input[1]: L ; input[2]: U
// &output[0]: X ; &output[1]: Y ; &output[2]: Z

static void DSP1_subjectiveA(INT16 *input, INT16 *output)
{
   INT16 F = input[0];
   INT16 L = input[1];
   INT16 U = input[2];
   INT16* X = &output[0];
   INT16* Y = &output[1];
   INT16* Z = &output[2];

   *X = (shared.MatrixA[0][0] * F >> 15) + (shared.MatrixA[0][1] * L >> 15) + (shared.MatrixA[0][2] * U >> 15);
   *Y = (shared.MatrixA[1][0] * F >> 15) + (shared.MatrixA[1][1] * L >> 15) + (shared.MatrixA[1][2] * U >> 15);
   *Z = (shared.MatrixA[2][0] * F >> 15) + (shared.MatrixA[2][1] * L >> 15) + (shared.MatrixA[2][2] * U >> 15);
}

//////////////////////////////////////////////////////////////////

// Same than 'subjectiveA', but for the 'B' attitude

static void DSP1_subjectiveB(INT16 *input, INT16 *output)
{
   INT16 F = input[0];
   INT16 L = input[1];
   INT16 U = input[2];
   INT16* X = &output[0];
   INT16* Y = &output[1];
   INT16* Z = &output[2];

   *X = (shared.MatrixB[0][0] * F >> 15) + (shared.MatrixB[0][1] * L >> 15) + (shared.MatrixB[0][2] * U >> 15);
   *Y = (shared.MatrixB[1][0] * F >> 15) + (shared.MatrixB[1][1] * L >> 15) + (shared.MatrixB[1][2] * U >> 15);
   *Z = (shared.MatrixB[2][0] * F >> 15) + (shared.MatrixB[2][1] * L >> 15) + (shared.MatrixB[2][2] * U >> 15);
}

//////////////////////////////////////////////////////////////////

// Same than 'subjectiveA', but for the 'C' attitude

static void DSP1_subjectiveC(INT16 *input, INT16 *output)
{
   INT16 F = input[0];
   INT16 L = input[1];
   INT16 U = input[2];
   INT16* X = &output[0];
   INT16* Y = &output[1];
   INT16* Z = &output[2];

   *X = (shared.MatrixC[0][0] * F >> 15) + (shared.MatrixC[0][1] * L >> 15) + (shared.MatrixC[0][2] * U >> 15);
   *Y = (shared.MatrixC[1][0] * F >> 15) + (shared.MatrixC[1][1] * L >> 15) + (shared.MatrixC[1][2] * U >> 15);
   *Z = (shared.MatrixC[2][0] * F >> 15) + (shared.MatrixC[2][1] * L >> 15) + (shared.MatrixC[2][2] * U >> 15);
}

//////////////////////////////////////////////////////////////////

// This command calculates the inner product (S) of a vector (X,Y,Z) and
// the first column of MatrixA. It should be noted that that first column
// represent the global coordinates of an unity vector in the forward
// direction in the object coordinate system (coordinates (1,0,0) in the FLU
// axes system).
//
// input[0]: X ; input[1]: Y ; input[2]: Z
// &output[0]: S

static void DSP1_scalarA(INT16 *input, INT16 *output)
{
   INT16 X = input[0];
   INT16 Y = input[1];
   INT16 Z = input[2];
   INT16* S = &output[0];

   *S = (X * shared.MatrixA[0][0] + Y * shared.MatrixA[1][0] + Z * shared.MatrixA[2][0]) >> 15;
}

//////////////////////////////////////////////////////////////////

// Same than 'scalarA', but for the 'B' attitude

static void DSP1_scalarB(INT16 *input, INT16 *output)
{
   INT16 X = input[0];
   INT16 Y = input[1];
   INT16 Z = input[2];
   INT16* S = &output[0];

   *S = (X * shared.MatrixB[0][0] + Y * shared.MatrixB[1][0] + Z * shared.MatrixB[2][0]) >> 15;
}

//////////////////////////////////////////////////////////////////

// Same than 'scalarA', but for the 'C' attitude

static void DSP1_scalarC(INT16 *input, INT16 *output)
{
   INT16 X = input[0];
   INT16 Y = input[1];
   INT16 Z = input[2];
   INT16* S = &output[0];

   *S = (X * shared.MatrixC[0][0] + Y * shared.MatrixC[1][0] + Z * shared.MatrixC[2][0]) >> 15;
}

//////////////////////////////////////////////////////////////////

// This command determines the final attitude angles after the body with attitude angles (Ax, Ay, Az) with
// respect to the global coordinates is rotated by the minor angular displacements (DeltaF, DeltaL, DeltaU).
// It means that the XYZ axes are rotated by (Ax, Ay, Az) to obtain the FLU axes and, then, these
// are rotated by (DeltaF, DeltaL, DeltaU). The command calculates and return the new FLU angles respect to the
// XYZ system (Rx, Ry, Rz)
// The formulae are:
// Rx = Ax + (DeltaU*sin(Ay)+DeltaF*cos(Ay))
// Ry = Ay + DeltaL - tan(Ax)*(DeltaU*cos(Ay)+DeltaF*sin(Ay))
// Rz = Az + sec(Ax)*(DeltaU*cos(Ay)-DeltaF*sin(Ay))
//
// Now the discussion: according to the official documentation, as described in various commands, you pass from
// XYZ to FLU by doing the rotations in the order Y, X, Z. In this command, the formulae are coherent with the
// fact that Y is the first axis to do a rotation around it. However, in the "attitude" command, while the official
// document describe it that way, we have discovered, when reverse engineering the command, that the calculated
// matrix do the rotation around Y in the second place. This incoherent behaviour of various commands is, in my
// opinion, a pretty severe implementation error. However, if you only use small "minor displacements", the error term
// introduced by that incoherence should be almost negligible.

static void DSP1_gyrate(INT16 *input, INT16 *output)
{
   INT16 Az = input[0];
   INT16 Ax = input[1];
   INT16 Ay = input[2];
   INT16 U = input[3];
   INT16 F = input[4];
   INT16 L = input[5];
   INT16* Rz = &output[0];
   INT16* Rx = &output[1];
   INT16* Ry = &output[2];

   INT16 CSec, ESec, CSin, C, E;
   INT16 SinAy = DSP1_sin(Ay);
   INT16 CosAy = DSP1_cos(Ay);

   inverse(DSP1_cos(Ax), 0, &CSec, &ESec);

   // Rotation Around Z
   normalizeDouble(U * CosAy - F * SinAy, &C, &E);

   E = ESec - E;

   normalize(C * CSec >> 15, &C, &E);

   *Rz = Az + denormalizeAndClip(C, E);

   // Rotation Around X
   *Rx = Ax + (U * SinAy >> 15) + (F * CosAy >> 15);

   // Rotation Around Y
   normalizeDouble(U * CosAy + F * SinAy, &C, &E);

   E = ESec - E;

   normalize(DSP1_sin(Ax), &CSin, &E);

   normalize(-(C * (CSec * CSin >> 15) >> 15), &C, &E);

   *Ry = Ay + denormalizeAndClip(C, E) + L;
}

//////////////////////////////////////////////////////////////////

static const INT16 DSP1_MaxAZS_Exp[16] = {
   0x38b4, 0x38b7, 0x38ba, 0x38be, 0x38c0, 0x38c4, 0x38c7, 0x38ca,	
   0x38ce, 0x38d0, 0x38d4, 0x38d7, 0x38da, 0x38dd, 0x38e0, 0x38e4
};		

//////////////////////////////////////////////////////////////////


// Set-up the projection framework. Besides returning some values, it store in RAM some values that
// will be used by the other three projection commands (raster, target an project)
// Input:
// (Fx, Fy, Fz)-> coordinates of base point (global coordinates)
// Lfe-> distance between the base point and the viewpoint (center of projection)
// Les-> distance between the base point and the screen
// Aas-> azimuth angle (0 degrees is east; 90 degrees is north)
// Azs-> zenith angle (0 degrees is zenith)
// Output:
// Vof-> raster line of imaginary center (whatever it means ;) )
// Vva-> raster line representing the horizon line
// (Cx, Cy)-> coordinates of the projection of the center of the screen over the ground (ground coordinates)

static void DSP1_parameter(INT16 *input, INT16 *output)
{
   INT16 Fx = input[0];
   INT16 Fy = input[1];
   INT16 Fz = input[2];
   INT16 Lfe = input[3];
   INT16 Les = input[4];
   INT16 Aas = input[5];
   INT16 Azs = input[6];
   INT16* Vof = &output[0];
   INT16* Vva = &output[1];
   INT16* Cx = &output[2];
   INT16* Cy = &output[3];

   INT16 CSec, C, E;
   INT16 LfeNx, LfeNy, LfeNz;
   INT16 LesNx, LesNy, LesNz;
   INT16 AZS, MaxAZS;

   // Copy Zenith angle for clipping
   AZS = Azs;

   // Store Les and his coefficient and exponent when normalized
   shared.Les = Les;
   shared.E_Les=0;
   normalize(Les, &shared.C_Les, &shared.E_Les);

   // Store Sine and Cosine of Azimuth and Zenith angle
   shared.SinAas = DSP1_sin(Aas);
   shared.CosAas = DSP1_cos(Aas);
   shared.SinAzs = DSP1_sin(Azs);
   shared.CosAzs = DSP1_cos(Azs);

   // normal vector to the screen (norm 1, points toward the center of projection)
   shared.Nx = shared.SinAzs * -shared.SinAas >> 15;
   shared.Ny = shared.SinAzs * shared.CosAas >> 15;
   shared.Nz = shared.CosAzs * 0x7fff >> 15;

   // horizontal vector of the screen (Hz=0, norm 1, points toward the right of the screen)
   shared.Hx = shared.CosAas*0x7fff>>15;
   shared.Hy = shared.SinAas*0x7fff>>15;

   // vertical vector of the screen (norm 1, points toward the top of the screen) 
   shared.Vx = shared.CosAzs*-shared.SinAas>>15;
   shared.Vy = shared.CosAzs*shared.CosAas>>15;
   shared.Vz = -shared.SinAzs*0x7fff>>15;

   LfeNx = Lfe*shared.Nx>>15;
   LfeNy = Lfe*shared.Ny>>15;
   LfeNz = Lfe*shared.Nz>>15;  

   // Center of Projection
   shared.CentreX = Fx+LfeNx;
   shared.CentreY = Fy+LfeNy;
   shared.CentreZ = Fz+LfeNz;

   LesNx = Les*shared.Nx>>15;
   LesNy = Les*shared.Ny>>15;
   LesNz = Les*shared.Nz>>15;

   // center of the screen (global coordinates)
   shared.Gx=shared.CentreX-LesNx;
   shared.Gy=shared.CentreY-LesNy;
   shared.Gz=shared.CentreZ-LesNz;


   E = 0;
   normalize(shared.CentreZ, &C, &E);

   shared.CentreZ_C = C;
   shared.CentreZ_E = E;

   // Determine clip boundary and clip Zenith angle if necessary
   // (Why to clip? Maybe to avoid the screen can only show sky with no ground? Only a guess...)
   MaxAZS = DSP1_MaxAZS_Exp[-E];

   if (AZS < 0) {
      MaxAZS = -MaxAZS;
      if (AZS < MaxAZS + 1) AZS = MaxAZS + 1;
   } else {
      if (AZS > MaxAZS) AZS = MaxAZS;
   }

   // Store Sine and Cosine of clipped Zenith angle
   shared.SinAZS = DSP1_sin(AZS);
   shared.CosAZS = DSP1_cos(AZS);

   // calculate the separation of (cx, cy) from the projection of
   // the 'centre of projection' over the ground... (CentreZ*tg(AZS))
   inverse(shared.CosAZS, 0, &shared.SecAZS_C1, &shared.SecAZS_E1);	
   normalize(C * shared.SecAZS_C1 >> 15, &C, &E);
   E += shared.SecAZS_E1;
   C = denormalizeAndClip(C, E) * shared.SinAZS >> 15;

   // ... and then take into account the position of the centre of
   // projection and the azimuth angle
   shared.CentreX += C * shared.SinAas >> 15;
   shared.CentreY -= C * shared.CosAas >> 15;

   *Cx = shared.CentreX;
   *Cy = shared.CentreY;

   // Raster number of imaginary center and horizontal line
   *Vof = 0;

   if ((Azs != AZS) || (Azs == MaxAZS))
   {
      INT16 Aux;

      // correct vof and vva when Azs is outside the 'non-clipping interval'
      // we have only some few Taylor coefficients, so we cannot guess which ones
      // are the approximated functions and, what is worse, we don't know why
      // the own clipping stuff (and, particularly, this correction) is done
      if (Azs == -32768) Azs = -32767;	

      C = Azs - MaxAZS;
      if (C >= 0) C--;
      Aux = ~(C << 2);

      // Vof += x+(1/3)*x^3, where x ranges from 0 to PI/4 when Azs-MaxAZS goes from 0 to 0x2000
      C = Aux * DSP1_DataRom[0x0328] >> 15;
      C = (C * Aux >> 15) + DSP1_DataRom[0x0327];
      *Vof -= (C * Aux >> 15) * Les >> 15;

      // CosAZS *= 1+(1/2)*x^2+(5/24)*x^24, where x ranges from 0 to PI/4 when Azs-MaxAZS goes from 0 to 0x2000
      C = Aux * Aux >> 15;
      Aux = (C * DSP1_DataRom[0x0324] >> 15) + DSP1_DataRom[0x0325];
      shared.CosAZS += (C * Aux >> 15) * shared.CosAZS >> 15;
   }

   // vertical offset of the screen with regard to the horizontal plane
   // containing the centre of projection
   shared.VOffset = Les * shared.CosAZS >> 15;

   // The horizon line (the line in the screen that is crossed by the horizon plane
   // -the horizontal plane containing the 'centre of projection'-),
   // will be at distance Les*cotg(AZS) from the centre of the screen. This is difficult
   // to explain but easily seen in a graph. To better see it, consider it in this way:
   // Les*tg(AZS-90), draw some lines and apply basic trigonometry. ;)
   inverse(shared.SinAZS, 0, &CSec, &E);
   normalize(shared.VOffset, &C, &E);
   normalize(C * CSec >> 15, &C, &E);

   if (C == -32768) { C >>= 1; E++; }

   *Vva = denormalizeAndClip(-C, E);

   // Store Secant of clipped Zenith angle
   inverse(shared.CosAZS, 0, &shared.SecAZS_C2, &shared.SecAZS_E2);	
}

//////////////////////////////////////////////////////////////////

// Calculates the matrix which transform an object situated on a raster line (Vs) into
// his projection over the ground. The modified SecAZS is used here, so
// i don't understand the fine details, but, basically, it's done
// this way: The vertical offset between the point of projection and the
// raster line is calculated (Vs*SinAzs>>15)+VOffset, then the height of
// the center of projection is measured in that units (*CentreZ_C). If, now
// you consider the "reference case" (center of projection at an unit of height),
// the projection of a thin strip containing the raster line will have the same
// width (as the raster line would be on the ground in this case, but will suffer a
// change of scale in height (as the ground and the vertical axis would form an angle of 180-Azs degrees).
// This scale factor, when the angle 'center of screen-center of projection-raster line' is small,
// can be aproximated by the one of the center of the screen, 1/cos(Azs).(**) (Here is when it's used
// SecAZS). By last, you have to consider the effect of the azimuth angle Aas, and you are done.
//
// Using matrix notation:
//                    |A     B|    Centre_ZS     | cos(Aas)   -sin(Aas)|   |1           0|
// ProjectionMatrix = |       | = ----------- *  |                     | * |             |
//                    |C     D|   Vs*sin(Azs)    |sin(Aas)     cos(Aas)|   |0    sec(Azs)|
//
// (**)
// If Les=1, the vertical offset between the center
// of projection and the center of the screen is Cos(Azs); then, if the vertical
// offset is 1, the ratio of the projection over the ground respect to the
// line on the screen is 1/cos(Azs).

static void DSP1_raster(INT16 *input, INT16 *output)
{
   INT16 Vs = input[0];
   INT16* An = &output[0];
   INT16* Bn = &output[1];
   INT16* Cn = &output[2];
   INT16* Dn = &output[3];

   INT16 C, E, C1, E1;

   inverse((Vs * shared.SinAzs >> 15) + shared.VOffset, 7, &C, &E);

   E += shared.CentreZ_E;
   C1 = C * shared.CentreZ_C >> 15;

   E1 = E + shared.SecAZS_E2;

   normalize(C1, &C, &E);
   C = denormalizeAndClip(C, E);

   *An = C * shared.CosAas >> 15;
   *Cn = C * shared.SinAas >> 15;

   normalize(C1 * shared.SecAZS_C2 >> 15, &C, &E1);
   C = denormalizeAndClip(C, E1);

   *Bn = C * -shared.SinAas >> 15;
   *Dn = C * shared.CosAas >> 15;
}

//////////////////////////////////////////////////////////////////

// Calculate the projection over the ground of a selected point of screen
// It simply apply the projection matrix described in the "Raster" command
// to the vector (H,V) transposed, and add the result to the position of
// the centre of projection.
// The only special point to take into account is the directions on the screen:
// H is positive rightward, but V is positive downward; this is why
// the signs take that configuration 

static void DSP1_target(INT16 *input, INT16 *output)
{
   INT16 H = input[0];
   INT16 V = input[1];
   INT16* X = &output[0];
   INT16* Y = &output[1];

   INT16 C, E, C1, E1;

   inverse((V * shared.SinAzs >> 15) + shared.VOffset, 8, &C, &E);

   E += shared.CentreZ_E;
   C1 = C * shared.CentreZ_C >> 15;

   E1 = E + shared.SecAZS_E1;

   H <<= 8;
   normalize(C1, &C, &E);
   C = denormalizeAndClip(C, E) * H >> 15;

   *X = shared.CentreX + (C * shared.CosAas >> 15);
   *Y = shared.CentreY - (C * shared.SinAas >> 15);

   V <<= 8;
   normalize(C1 * shared.SecAZS_C1 >> 15, &C, &E1);
   C = denormalizeAndClip(C, E1) * V >> 15;

   *X += C * -shared.SinAas >> 15;
   *Y += C * shared.CosAas >> 15;
}

//////////////////////////////////////////////////////////////////

// Calculation of the projection over the screen (H,V) of an object (X,Y,Z) and his
// 'enlargement ratio' (M). The positive directions on the screen are as described
// in the targe command. M is scaled down by 2^-7, that is, M==0x0100 means ratio 1:1

static void DSP1_project(INT16 *input, INT16 *output)
{
   INT16 X = input[0];
   INT16 Y = input[1];
   INT16 Z = input[2];
   INT16* H = &output[0];
   INT16* V = &output[1];
   INT16* M = &output[2];

   INT32 aux, aux4;
   INT16 E, E2, E3, E4, E5, refE, E6, E7;
   INT16 C2, C4, C6, C8, C9, C10, C11, C12, C16, C17, C18, C19, C20, C21, C22, C23, C24, C25, C26;
   INT16 Px, Py, Pz;

   E4=E3=E2=E=E5=0;

   normalizeDouble((INT32)(X)-shared.Gx, &Px, &E4);
   normalizeDouble((INT32)(Y)-shared.Gy, &Py, &E);
   normalizeDouble((INT32)(Z)-shared.Gz, &Pz, &E3);
   Px>>=1; E4--;   // to avoid overflows when calculating the scalar products
   Py>>=1; E--;
   Pz>>=1; E3--;

   refE = (E<E3)?E:E3;
   refE = (refE<E4)?refE:E4;

   Px=shiftR(Px,E4-refE);    // normalize them to the same exponent
   Py=shiftR(Py,E-refE);
   Pz=shiftR(Pz,E3-refE);

   C11=- (Px*shared.Nx>>15);
   C8=- (Py*shared.Ny>>15);
   C9=- (Pz*shared.Nz>>15);
   C12=C11+C8+C9;   // this cannot overflow!

   aux4=C12;   // de-normalization with 32-bits arithmetic
   refE = 16-refE;    // refE can be up to 3
   if (refE>=0)
      aux4 <<=(refE);
   else
      aux4 >>=-(refE);
   if (aux4==-1) aux4 = 0;      // why?
   aux4>>=1;

   aux = (UINT16)(shared.Les) + aux4;   // Les - the scalar product of P with the normal vector of the screen
   normalizeDouble(aux, &C10, &E2);
   E2 = 15-E2;

   inverse(C10, 0, &C4, &E4);
   C2=C4*shared.C_Les>>15;                 // scale factor


   // H
   E7=0;
   C16= (Px*shared.Hx>>15);
   C20= (Py*shared.Hy>>15);
   C17=C16+C20;   // scalar product of P with the normalized horizontal vector of the screen...

   C18=C17*C2>>15;    // ... multiplied by the scale factor
   normalize(C18, &C19, &E7);
   *H=denormalizeAndClip(C19, shared.E_Les-E2+refE+E7);

   // V
   E6=0;
   C21 = Px*shared.Vx>>15;
   C22 = Py*shared.Vy>>15;
   C23 = Pz*shared.Vz>>15;
   C24=C21+C22+C23;   // scalar product of P with the normalized vertical vector of the screen...

   C26=C24*C2>>15;    // ... multiplied by the scale factor
   normalize(C26, &C25, &E6);
   *V=denormalizeAndClip(C25, shared.E_Les-E2+refE+E6);

   // M
   normalize(C2, &C6, &E4);
   *M=denormalizeAndClip(C6, E4+shared.E_Les-E2-7); // M is the scale factor divided by 2^7
}

//////////////////////////////////////////////////////////////////

// Calculate the sine of the input parameter
// this is done by linear interpolation between
// the points of a look-up table

static INT16 DSP1_sin(INT16 Angle)
{
   INT32 S;

   if (Angle < 0) {
      if (Angle == -32768) return 0;
      return -sin(-Angle);
   }
   S = DSP1_SinTable[Angle >> 8] + (DSP1_MulTable[Angle & 0xff] * DSP1_SinTable[0x40 + (Angle >> 8)] >> 15);
   if (S > 32767) S = 32767;
   return (INT16) S;
}

//////////////////////////////////////////////////////////////////

// Calculate the cosine of the input parameter.
// It's used the same method than in sin(INT16)

static INT16 DSP1_cos(INT16 Angle)
{
   INT32 S;

   if (Angle < 0) {
      if (Angle == -32768) return -32768;
      Angle = -Angle;
   }
   S = DSP1_SinTable[0x40 + (Angle >> 8)] - (DSP1_MulTable[Angle & 0xff] * DSP1_SinTable[Angle >> 8] >> 15);
   if (S < -32768) S = -32767;
   return (INT16) S;
}

//////////////////////////////////////////////////////////////////

// Determines the inverse of a floating point decimal number
// iCoefficient*2^iExponent = 1/(Coefficient*2^Exponent), with the output
// normalized (iCoefficient represents a number whose absolute value is between 1/2 and 1)
// To invert 'Coefficient' a first initial guess is taken from a look-up table
// and, then, two iterations of the Newton method (applied to the function
// f(x)=1/(2*x)-Coefficient) are done. This results in a close approximation (iCoefficient) to a number 'y'
// that verify Coefficient*y=1/2. This is why you have to correct the exponent by one
// unit at the end.

static void inverse(INT16 Coefficient, INT16 Exponent, INT16 *iCoefficient, INT16 *iExponent)
{
   // Step One: Division by Zero
   if (Coefficient == 0x0000)
   {
      *iCoefficient = 0x7fff;
      *iExponent = 0x002f;
   }
   else
   {
      INT16 Sign = 1;

      // Step Two: Remove Sign
      if (Coefficient < 0)
      {
         if (Coefficient < -32767) Coefficient = -32767;
         Coefficient = -Coefficient;
         Sign = -1;
      }

      // Step Three: Normalize
      while (Coefficient < 0x4000)
      {
         Coefficient <<= 1;
         Exponent--;
      }

      // Step Four: Special Case
      if (Coefficient == 0x4000)
         if (Sign == 1) *iCoefficient = 0x7fff;
      else  {
         *iCoefficient = -0x4000;
         Exponent--;
      }
      else {
         // Step Five: Initial Guess
         INT16 i = DSP1_DataRom[((Coefficient - 0x4000) >> 7) + 0x0065];

         // Step Six: Iterate Newton's Method
         i = (i + (-i * (Coefficient * i >> 15) >> 15)) << 1;
         i = (i + (-i * (Coefficient * i >> 15) >> 15)) << 1;

         *iCoefficient = i * Sign;
      }

      *iExponent = 1 - Exponent;
   }
}

//////////////////////////////////////////////////////////////////

static INT16 denormalizeAndClip(INT16 C, INT16 E)
{
   if (E > 0) {
      if (C > 0) return 32767; else if (C < 0) return -32767;
   } else {
      if (E < 0) return C * DSP1_DataRom[0x0031 + E] >> 15;
   }
   return C;
}

//////////////////////////////////////////////////////////////////

// Normalize the input number (m), understood as ranging from -1 to 1,
// to the form: Coefficient*2^Exponent,
// where the absolute value of Coefficient is >= 1/2
// (Coefficient>=0x4000 or Coefficient <= (INT16)0xc001)

static void normalize(INT16 m, INT16 *Coefficient, INT16 *Exponent)
{
   INT16 i = 0x4000;
   INT16 e = 0;

   if (m < 0)
      while ((m & i) && i) 
   {
      i >>= 1;
      e++;
   }
   else
      while (!(m & i) && i) 
   {
      i >>= 1;
      e++;
   }

   if (e > 0)
      *Coefficient = m * DSP1_DataRom[0x21 + e] << 1;
   else
      *Coefficient = m;

   *Exponent -= e;
}

//////////////////////////////////////////////////////////////////

// Same than 'normalize' but with an INT32 input

static void normalizeDouble(INT32 Product, INT16 *Coefficient, INT16 *Exponent)
{
   INT16 n = Product & 0x7fff;
   INT16 m = Product >> 15;
   INT16 i = 0x4000;
   INT16 e = 0;

   if (m < 0)
      while ((m & i) && i) 
   {
      i >>= 1;
      e++;
   }
   else
      while (!(m & i) && i) 
   {
      i >>= 1;
      e++;
   }

   if (e > 0)
   {
      *Coefficient = m * DSP1_DataRom[0x0021 + e] << 1;

      if (e < 15)
         *Coefficient += n * DSP1_DataRom[0x0040 - e] >> 15;
      else
      {
         i = 0x4000;

         if (m < 0)
            while ((n & i) && i) 
         {
            i >>= 1;
            e++;
         }
         else
            while (!(n & i) && i) 
         {
            i >>= 1;
            e++;
         }

         if (e > 15)
            *Coefficient = n * DSP1_DataRom[0x0012 + e] << 1;
         else
            *Coefficient += n;
      }
   }
   else
      *Coefficient = m;

   *Exponent = e;
}

//////////////////////////////////////////////////////////////////

// Shift to the right

static INT16 shiftR(INT16 C, INT16 E)
{
   return (C * DSP1_DataRom[0x0031 + E] >> 15);
}

//////////////////////////////////////////////////////////////////

static const INT16 DSP1_SinTable[256] = {
   0x0000,  0x0324,  0x0647,  0x096a,  0x0c8b,  0x0fab,  0x12c8,  0x15e2,
   0x18f8,  0x1c0b,  0x1f19,  0x2223,  0x2528,  0x2826,  0x2b1f,  0x2e11,
   0x30fb,  0x33de,  0x36ba,  0x398c,  0x3c56,  0x3f17,  0x41ce,  0x447a,
   0x471c,  0x49b4,  0x4c3f,  0x4ebf,  0x5133,  0x539b,  0x55f5,  0x5842,
   0x5a82,  0x5cb4,  0x5ed7,  0x60ec,  0x62f2,  0x64e8,  0x66cf,  0x68a6,
   0x6a6d,  0x6c24,  0x6dca,  0x6f5f,  0x70e2,  0x7255,  0x73b5,  0x7504,
   0x7641,  0x776c,  0x7884,  0x798a,  0x7a7d,  0x7b5d,  0x7c29,  0x7ce3,
   0x7d8a,  0x7e1d,  0x7e9d,  0x7f09,  0x7f62,  0x7fa7,  0x7fd8,  0x7ff6,
   0x7fff,  0x7ff6,  0x7fd8,  0x7fa7,  0x7f62,  0x7f09,  0x7e9d,  0x7e1d,
   0x7d8a,  0x7ce3,  0x7c29,  0x7b5d,  0x7a7d,  0x798a,  0x7884,  0x776c,
   0x7641,  0x7504,  0x73b5,  0x7255,  0x70e2,  0x6f5f,  0x6dca,  0x6c24,
   0x6a6d,  0x68a6,  0x66cf,  0x64e8,  0x62f2,  0x60ec,  0x5ed7,  0x5cb4,
   0x5a82,  0x5842,  0x55f5,  0x539b,  0x5133,  0x4ebf,  0x4c3f,  0x49b4,
   0x471c,  0x447a,  0x41ce,  0x3f17,  0x3c56,  0x398c,  0x36ba,  0x33de,
   0x30fb,  0x2e11,  0x2b1f,  0x2826,  0x2528,  0x2223,  0x1f19,  0x1c0b,
   0x18f8,  0x15e2,  0x12c8,  0x0fab,  0x0c8b,  0x096a,  0x0647,  0x0324,
   -0x0000, -0x0324, -0x0647, -0x096a, -0x0c8b, -0x0fab, -0x12c8, -0x15e2,
   -0x18f8, -0x1c0b, -0x1f19, -0x2223, -0x2528, -0x2826, -0x2b1f, -0x2e11,
   -0x30fb, -0x33de, -0x36ba, -0x398c, -0x3c56, -0x3f17, -0x41ce, -0x447a,
   -0x471c, -0x49b4, -0x4c3f, -0x4ebf, -0x5133, -0x539b, -0x55f5, -0x5842,
   -0x5a82, -0x5cb4, -0x5ed7, -0x60ec, -0x62f2, -0x64e8, -0x66cf, -0x68a6,
   -0x6a6d, -0x6c24, -0x6dca, -0x6f5f, -0x70e2, -0x7255, -0x73b5, -0x7504,
   -0x7641, -0x776c, -0x7884, -0x798a, -0x7a7d, -0x7b5d, -0x7c29, -0x7ce3,
   -0x7d8a, -0x7e1d, -0x7e9d, -0x7f09, -0x7f62, -0x7fa7, -0x7fd8, -0x7ff6,
   -0x7fff, -0x7ff6, -0x7fd8, -0x7fa7, -0x7f62, -0x7f09, -0x7e9d, -0x7e1d,
   -0x7d8a, -0x7ce3, -0x7c29, -0x7b5d, -0x7a7d, -0x798a, -0x7884, -0x776c,
   -0x7641, -0x7504, -0x73b5, -0x7255, -0x70e2, -0x6f5f, -0x6dca, -0x6c24,
   -0x6a6d, -0x68a6, -0x66cf, -0x64e8, -0x62f2, -0x60ec, -0x5ed7, -0x5cb4,
   -0x5a82, -0x5842, -0x55f5, -0x539b, -0x5133, -0x4ebf, -0x4c3f, -0x49b4,
   -0x471c, -0x447a, -0x41ce, -0x3f17, -0x3c56, -0x398c, -0x36ba, -0x33de,
   -0x30fb, -0x2e11, -0x2b1f, -0x2826, -0x2528, -0x2223, -0x1f19, -0x1c0b,
   -0x18f8, -0x15e2, -0x12c8, -0x0fab, -0x0c8b, -0x096a, -0x0647, -0x0324};

   //////////////////////////////////////////////////////////////////

// Optimised for Performance
static const INT16 DSP1_MulTable[256] = {
      0x0000,  0x0003,  0x0006,  0x0009,  0x000c,  0x000f,  0x0012,  0x0015,
      0x0019,  0x001c,  0x001f,  0x0022,  0x0025,  0x0028,  0x002b,  0x002f,
      0x0032,  0x0035,  0x0038,  0x003b,  0x003e,  0x0041,  0x0045,  0x0048,
      0x004b,  0x004e,  0x0051,  0x0054,  0x0057,  0x005b,  0x005e,  0x0061,
      0x0064,  0x0067,  0x006a,  0x006d,  0x0071,  0x0074,  0x0077,  0x007a,
      0x007d,  0x0080,  0x0083,  0x0087,  0x008a,  0x008d,  0x0090,  0x0093,
      0x0096,  0x0099,  0x009d,  0x00a0,  0x00a3,  0x00a6,  0x00a9,  0x00ac,
      0x00af,  0x00b3,  0x00b6,  0x00b9,  0x00bc,  0x00bf,  0x00c2,  0x00c5,
      0x00c9,  0x00cc,  0x00cf,  0x00d2,  0x00d5,  0x00d8,  0x00db,  0x00df,
      0x00e2,  0x00e5,  0x00e8,  0x00eb,  0x00ee,  0x00f1,  0x00f5,  0x00f8,
      0x00fb,  0x00fe,  0x0101,  0x0104,  0x0107,  0x010b,  0x010e,  0x0111,
      0x0114,  0x0117,  0x011a,  0x011d,  0x0121,  0x0124,  0x0127,  0x012a,
      0x012d,  0x0130,  0x0133,  0x0137,  0x013a,  0x013d,  0x0140,  0x0143,
      0x0146,  0x0149,  0x014d,  0x0150,  0x0153,  0x0156,  0x0159,  0x015c,
      0x015f,  0x0163,  0x0166,  0x0169,  0x016c,  0x016f,  0x0172,  0x0175,
      0x0178,  0x017c,  0x017f,  0x0182,  0x0185,  0x0188,  0x018b,  0x018e,
      0x0192,  0x0195,  0x0198,  0x019b,  0x019e,  0x01a1,  0x01a4,  0x01a8,
      0x01ab,  0x01ae,  0x01b1,  0x01b4,  0x01b7,  0x01ba,  0x01be,  0x01c1,
      0x01c4,  0x01c7,  0x01ca,  0x01cd,  0x01d0,  0x01d4,  0x01d7,  0x01da,
      0x01dd,  0x01e0,  0x01e3,  0x01e6,  0x01ea,  0x01ed,  0x01f0,  0x01f3,
      0x01f6,  0x01f9,  0x01fc,  0x0200,  0x0203,  0x0206,  0x0209,  0x020c,
      0x020f,  0x0212,  0x0216,  0x0219,  0x021c,  0x021f,  0x0222,  0x0225,
      0x0228,  0x022c,  0x022f,  0x0232,  0x0235,  0x0238,  0x023b,  0x023e,
      0x0242,  0x0245,  0x0248,  0x024b,  0x024e,  0x0251,  0x0254,  0x0258,
      0x025b,  0x025e,  0x0261,  0x0264,  0x0267,  0x026a,  0x026e,  0x0271,
      0x0274,  0x0277,  0x027a,  0x027d,  0x0280,  0x0284,  0x0287,  0x028a,
      0x028d,  0x0290,  0x0293,  0x0296,  0x029a,  0x029d,  0x02a0,  0x02a3,
      0x02a6,  0x02a9,  0x02ac,  0x02b0,  0x02b3,  0x02b6,  0x02b9,  0x02bc,
      0x02bf,  0x02c2,  0x02c6,  0x02c9,  0x02cc,  0x02cf,  0x02d2,  0x02d5,
      0x02d8,  0x02db,  0x02df,  0x02e2,  0x02e5,  0x02e8,  0x02eb,  0x02ee,
      0x02f1,  0x02f5,  0x02f8,  0x02fb,  0x02fe,  0x0301,  0x0304,  0x0307,
      0x030b,  0x030e,  0x0311,  0x0314,  0x0317,  0x031a,  0x031d,  0x0321};

//////////////////////////////////////////////////////////////////

// Data ROM, as logged from a DSP-1B with the 0x1f command;
// it contains the tables and constants used by the commands.
// The tables used are: two shift tables (0x022-0x031 and 0x031-0x040 -this last one
// with an error in 0x03c which has survived to all the DSP-1 revisions-); a inverse
// table (used as initial guess) at 0x065-0x0e4; a square root table (used also
// as initial guess) at 0x0e5-0x115; two sin and cos tables (used as nodes to construct
// a interpolation curve) at, respectively, 0x116-0x197 and 0x196-0x215.
// As a curiosity, in the positions 0x21c-0x31c it's contained a
// 257-points arccos table that, apparently, have been not used anywhere
// (maybe for the MaxAZS_Exp table?).
static UINT16 DSP1_DataRom[1024];