summaryrefslogtreecommitdiffstatshomepage
path: root/src/mame/machine/segas32.c
blob: 0026d3beaacd348d271eef018444b316d0d64208 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
/* Sega System 32 Protection related functions */

#include "driver.h"
#include "segas32.h"


/******************************************************************************
 ******************************************************************************
  Golden Axe 2 (Revenge of Death Adder)
 ******************************************************************************
 ******************************************************************************/

#define xxxx 0x00

static const UINT8 ga2_v25_opcode_table[256] = {
     xxxx,xxxx,0xEA,xxxx,xxxx,0x8B,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,
     xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,0xFA,
     xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,0x49,xxxx,xxxx,xxxx,
     xxxx,xxxx,xxxx,xxxx,xxxx,0xE8,xxxx,xxxx,0x75,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,
     xxxx,xxxx,xxxx,xxxx,0x8D,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,0xBF,xxxx,0x88,xxxx,
     xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,
     xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,
     xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,0xBC,
     xxxx,xxxx,xxxx,0x8A,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,0x83,xxxx,xxxx,xxxx,xxxx,xxxx,
     xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,0xB8,0x26,xxxx,
     xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,0xEB,
     xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,0xB2,xxxx,xxxx,xxxx,xxxx,
     xxxx,xxxx,xxxx,0xC3,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,
     xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,0xB9,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,
     xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,
     xxxx,xxxx,0x8E,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,0xBE,xxxx,xxxx,xxxx,xxxx
};

#undef xxxx

static void nec_v25_cpu_decrypt(void)
{
	int i;
	UINT8 *rom = memory_region(REGION_CPU3);
	UINT8* decrypted = auto_malloc(0x100000);
	UINT8* temp = malloc_or_die(0x100000);

	// set CPU3 opcode base
	memory_set_decrypted_region(2, 0x00000, 0xfffff, decrypted);

	// make copy of ROM so original can be overwritten
	memcpy(temp, rom, 0x10000);

	for(i = 0; i < 0x10000; i++)
	{
		int j = BITSWAP16(i, 14, 11, 15, 12, 13, 4, 3, 7, 5, 10, 2, 8, 9, 6, 1, 0);

		// normal ROM data with address swap undone
		rom[i] = temp[j];

		// decryped opcodes with address swap undone
		decrypted[i] = ga2_v25_opcode_table[ temp[j] ];
	}

	memcpy(rom+0xf0000, rom, 0x10000);
	memcpy(decrypted+0xf0000, decrypted, 0x10000);

	free(temp);
}

void decrypt_ga2_protrom(void)
{
	nec_v25_cpu_decrypt();
}


WRITE16_HANDLER( ga2_dpram_w )
{
	/* does it ever actually write.. */
}

READ16_HANDLER( ga2_dpram_r )
{
	return (ga2_dpram[offset])|(ga2_dpram[offset+1]<<8);
}


#if 0 // simulation
READ16_HANDLER(ga2_sprite_protection_r)
{
	static UINT32 prot[16] =
	{
		0x0a, 0,
		0xc5, 0,
		0x11, 0,
		0x11, 0,
		0x18, 0,
		0x18, 0,
		0x1f, 0,
		0xc6, 0,
	};

	return prot[offset];
}

READ16_HANDLER(ga2_wakeup_protection_r)
{
	static const char *prot =
		"wake up! GOLDEN AXE The Revenge of Death-Adder! ";
	return prot[offset];
}
#endif

/******************************************************************************
 ******************************************************************************
  Sonic Arcade protection
 ******************************************************************************
 ******************************************************************************/


// This code duplicates the actions of the protection device used in SegaSonic
// arcade revision C, allowing the game to run correctly.
#define CLEARED_LEVELS			0xE5C4
#define CURRENT_LEVEL			0xF06E
#define CURRENT_LEVEL_STATUS		0xF0BC
#define LEVEL_ORDER_ARRAY		0x263A

WRITE16_HANDLER(sonic_level_load_protection)
{
	UINT16 level;
//Perform write
	system32_workram[CLEARED_LEVELS / 2] = (data & ~mem_mask) | (system32_workram[CLEARED_LEVELS / 2] & mem_mask);

//Refresh current level
		if (system32_workram[CLEARED_LEVELS / 2] == 0)
		{
			level = 0x0007;
		}
		else
		{
			level =  *((memory_region(REGION_CPU1) + LEVEL_ORDER_ARRAY) + (system32_workram[CLEARED_LEVELS / 2] * 2) - 1);
			level |= *((memory_region(REGION_CPU1) + LEVEL_ORDER_ARRAY) + (system32_workram[CLEARED_LEVELS / 2] * 2) - 2) << 8;
		}
		system32_workram[CURRENT_LEVEL / 2] = level;

//Reset level status
		system32_workram[CURRENT_LEVEL_STATUS / 2] = 0x0000;
		system32_workram[(CURRENT_LEVEL_STATUS + 2) / 2] = 0x0000;
}


/******************************************************************************
 ******************************************************************************
  Burning Rival
 ******************************************************************************
 ******************************************************************************/


// the protection board on many system32 games has full dma/bus access
// and can write things into work RAM.  we simulate that here for burning rival.
READ16_HANDLER(brival_protection_r)
{
	if (!mem_mask)	// only trap on word-wide reads
	{
		switch (offset)
		{
			case 0:
			case 2:
			case 3:
				return 0;
				break;
		}
	}

	return system32_workram[0xba00/2 + offset];
}

WRITE16_HANDLER(brival_protection_w)
{
	static const int protAddress[6][2] =
	{
		{ 0x109517, 0x00/2 },
		{ 0x109597, 0x10/2 },
		{ 0x109597, 0x20/2 },
		{ 0x109597, 0x30/2 },
		{ 0x109597, 0x40/2 },
		{ 0x109617, 0x50/2 },
	};
	char ret[32];
	int curProtType;
	UINT8 *ROM = memory_region(REGION_CPU1);

	switch (offset)
	{
		case 0x800/2:
			curProtType = 0;
			break;
		case 0x802/2:
			curProtType = 1;
			break;
		case 0x804/2:
			curProtType = 2;
			break;
		case 0x806/2:
			curProtType = 3;
			break;
		case 0x808/2:
			curProtType = 4;
			break;
		case 0x80a/2:
			curProtType = 5;
			break;
		default:
			if (offset >= 0xa00/2 && offset < 0xc00/2)
				return;
			logerror("brival_protection_w: UNKNOWN WRITE: offset %x value %x\n", offset, data);
			return;
			break;
	}

	memcpy(ret, &ROM[protAddress[curProtType][0]], 16);
	ret[16] = '\0';

	memcpy(&system32_protram[protAddress[curProtType][1]], ret, 16);
}


/******************************************************************************
 ******************************************************************************
  Dark Edge
 ******************************************************************************
 ******************************************************************************/

void darkedge_fd1149_vblank(void)
{
	program_write_word(0x20f072, 0);
	program_write_word(0x20f082, 0);

	if( program_read_byte(0x20a12c) != 0 )
	{
		program_write_byte(0x20a12c, program_read_byte(0x20a12c)-1 );

		if( program_read_byte(0x20a12c) == 0 )
			program_write_byte(0x20a12e, 1);
	}
}


WRITE16_HANDLER( darkedge_protection_w )
{
	logerror("%06x:darkedge_prot_w(%06X) = %04X & %04X\n",
		activecpu_get_pc(), 0xa00000 + 2*offset, data, mem_mask ^ 0xffff);
}


READ16_HANDLER( darkedge_protection_r )
{
	logerror("%06x:darkedge_prot_r(%06X) & %04X\n",
		activecpu_get_pc(), 0xa00000 + 2*offset, mem_mask ^ 0xffff);
	return 0xffff;
}



/******************************************************************************
 ******************************************************************************
  DBZ VRVS
 ******************************************************************************
 ******************************************************************************/

WRITE16_HANDLER( dbzvrvs_protection_w )
{
	program_write_word( 0x2080c8, program_read_word( 0x200044 ) );
}


READ16_HANDLER( dbzvrvs_protection_r )
{
	return 0xffff;
}



/******************************************************************************
 ******************************************************************************
  Arabian Fight
 ******************************************************************************
 ******************************************************************************/


// protection ram is 8-bits wide and only occupies every other address
READ16_HANDLER(arabfgt_protection_r)
{
	int PC = activecpu_get_pc();
	int cmpVal;

	if (PC == 0xfe0325 || PC == 0xfe01e5 || PC == 0xfe035e || PC == 0xfe03cc)
	{
		cmpVal = activecpu_get_reg(1);

		// R0 always contains the value the protection is supposed to return (!)
		return cmpVal;
	}
	else
	{
		popmessage("UNKONWN ARF PROTECTION READ PC=%x\n", PC);
	}

	return 0;
}

WRITE16_HANDLER(arabfgt_protection_w)
{
}

READ16_HANDLER(arf_wakeup_protection_r)
{
	static const char *prot =
		"wake up! ARF!                                   ";
	return prot[offset];
}

/******************************************************************************
 ******************************************************************************
  The J.League 1994 (Japan)
 ******************************************************************************
 ******************************************************************************/
WRITE16_HANDLER( jleague_protection_w )
		{
	COMBINE_DATA( &system32_workram[0xf700/2 + offset ] );

	switch( offset )
	{
		// Map team browser selection to opponent browser selection
		// using same lookup table that V60 uses for sound sample mapping.
		case 0:
			program_write_byte( 0x20f708, program_read_word( 0x7bbc0 + data*2 ) );
			break;

		// move on to team browser
		case 4/2:
			program_write_byte( 0x200016, data & 0xff );
			break;

		default:
			break;
	}
}

/******************************************************************************
 ******************************************************************************
  Air Rescue
 ******************************************************************************
 ******************************************************************************/
/*
    protection
    a00000 - a00002 dsp i/o
    a00004 - dsp int/ack

    dsp uses its p0/p1 for address select
    dsp.sr = ???0 read a00000 into dsp.a
    dsp.sr = ???1 read a00002 into dsp.b
    dsp.sr = ???2 write dsp.b in a00000
    dsp.sr = ???3 write dsp.a in a00002

    Use of p0/p1 means there's no other way for dsp to communicate with V60, unless it shares RAM.
    99.99% of the dsp code is unused because the V60 ROM is hardcoded as part of a twin set,
    maybe the standalone board was for dev only? nop the 3 bytes at 0x06023A for standalone. (centred intro text)
*/
static UINT16 arescue_dsp_io[6] = {0,0,0,0,0,0};

READ16_HANDLER( arescue_dsp_r )
{
	if( offset == 4/2 )
	{
		switch( arescue_dsp_io[0] )
		{
			case 0:
			case 1:
			case 2:
				break;

			case 3:
				arescue_dsp_io[0] = 0x8000;
				arescue_dsp_io[2/2] = 0x0001;
				break;

			case 6:
				arescue_dsp_io[0] = 4 * arescue_dsp_io[2/2];
				break;

			default:
				logerror("Unhandled DSP cmd %04x (%04x).\n", arescue_dsp_io[0], arescue_dsp_io[1] );
				break;
		}
	}

	return arescue_dsp_io[offset];
}

WRITE16_HANDLER( arescue_dsp_w )
{
	COMBINE_DATA(&arescue_dsp_io[offset]);
}