summaryrefslogtreecommitdiffstatshomepage
path: root/src/mame/machine/mct_adr.cpp
blob: 9de43725ea98f122a02d4530edfad497106668e3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
// license:BSD-3-Clause
// copyright-holders:Patrick Mackinlay

/*
 * An implementation of the MCT-ADR device found in Microsoft Jazz/MIPS
 * ARCSystem 100 architecture systems. This device was originally designed
 * by Microsoft, and then implemented and used in various forms by MIPS,
 * Olivetti, LSI Logic, NEC, Acer and others.
 *
 * Specific implementations/derivatives include:
 *
 *   LSI Logic R4030/R4230
 *   NEC μPD31432
 *   ALI M6101-A1
 *
 * References:
 *
 *   https://datasheet.datasheetarchive.com/originals/scans/Scans-054/DSAIH000102184.pdf
 *   https://github.com/torvalds/linux/tree/master/arch/mips/jazz/
 *   http://cvsweb.netbsd.org/bsdweb.cgi/src/sys/arch/arc/jazz/
 *
 *   https://www.linux-mips.org/archives/riscy/1993-08/msg00064.html
 *   https://www.linux-mips.org/archives/riscy/1993-08/msg00069.html
 *
 * TODO
 *   - proper width dma
 *   - dma address translation errors
 *   - I/O cache
 *   - revision 2 device
 */

#include "emu.h"
#include "mct_adr.h"

#define VERBOSE 0
#include "logmacro.h"

DEFINE_DEVICE_TYPE(MCT_ADR, mct_adr_device, "mct_adr", "MCT-ADR Address Path Controller")

mct_adr_device::mct_adr_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
	: device_t(mconfig, MCT_ADR, tag, owner, clock)
	, device_memory_interface(mconfig, *this)
	, m_io_config("io", ENDIANNESS_LITTLE, 32, 32, 0)
	, m_dma_config("dma", ENDIANNESS_LITTLE, 32, 32, 0, address_map_constructor(FUNC(mct_adr_device::dma), this))
	, m_out_int_dma(*this)
	, m_out_int_device(*this)
	, m_out_int_timer(*this)
	, m_eisa_iack(*this)
	, m_dma_r(*this)
	, m_dma_w(*this)
{
}

void mct_adr_device::map(address_map &map)
{
	map(0x000, 0x007).lrw32(NAME([this] () { return m_config; }), NAME([this] (u32 data) { m_config = data; }));
	map(0x008, 0x00f).lr32([] () { return 1; }, "revision_level");
	map(0x010, 0x017).lr32(NAME([this] () { m_dma_interrupt_source &= ~DMA_ADDRESS_ERROR; return m_dma_invalid_address; }));
	map(0x018, 0x01f).lrw32(NAME([this] () { return m_trans_tbl_base; }), NAME([this] (u32 data) { LOG("tbl base 0x%08x\n", data); m_trans_tbl_base = data; }));
	map(0x020, 0x027).lrw32(NAME([this] () { return m_trans_tbl_limit; }), NAME([this] (u32 data) { LOG("tbl limit 0x%08x\n", data); m_trans_tbl_limit = data; }));
	map(0x028, 0x02f).lrw32([] () { return 0; }, "translation_invalidate_r", [] (u32 data) { }, "translation_invalidate_w");
	map(0x030, 0x037).lw32(NAME([this] (u32 data) { m_ioc_maint = data; }));
	map(0x038, 0x03f).lr32([] () { return 0; }, "remote_failed_address");
	map(0x040, 0x047).lr32(NAME([this] () { m_dma_interrupt_source &= ~DMA_PARITY_ERROR; return m_dma_memory_failed_address; }));
	map(0x048, 0x04f).lw32(NAME([this] (u32 data) { m_ioc_physical_tag = data; }));
	map(0x050, 0x057).lw32(NAME([this] (u32 data) { m_ioc_logical_tag = data; }));
	map(0x058, 0x05f).lrw32(
			// FIXME: hack to pass diagnostics
			[this] ()
			{
				u32 const data = m_ioc_byte_mask;

				if (data == 0xffffffff)
					m_ioc_byte_mask = 0;
				return data;
			}, "io_cache_byte_mask_r",
			NAME([this] (u32 data) { m_ioc_byte_mask |= data; }));
	map(0x060, 0x067).lw32(
			[this] (u32 data)
			{
				// FIXME: hack to pass diagnostics
				if (m_ioc_logical_tag == 0x80000001 && m_ioc_byte_mask == 0x0f0f0f0f)
				{
					u32 const address = (m_ioc_physical_tag & ~0x1) + ((m_ioc_maint & 0x3) << 3);

					space(0).write_dword(address, data);
				}
			}, "io_cache_buffer_window_lo");
	// io_cache_buffer_window_hi
	map(0x070, 0x0ef).lrw32(
			NAME([this] (offs_t offset) { return m_remote_speed[offset  >> 1]; }),
			NAME([this] (offs_t offset, u32 data) { m_remote_speed[offset >> 1] = data; }));
	// parity_diagnostic_lo
	// parity_diagnostic_hi
	map(0x100, 0x1ff).lrw32(
			NAME([this] (offs_t offset) { return m_dma_reg[offset >> 1]; }),
			[this] (offs_t offset, u32 data)
			{
				unsigned const reg = offset >> 1;

				LOG("dma_reg %d data 0x%08x (%s)\n", offset, data, machine().describe_context());

				m_dma_reg[reg] = data;

				if ((reg == REG_ENABLE) && (data & DMA_ENABLE))
					LOG("dma started address 0x%08x count %d\n", translate_address(m_dma_reg[(0 << 2) + REG_ADDRESS]), m_dma_reg[(0 << 2) + REG_COUNT]);
			}, "dma_reg_w");
	map(0x200, 0x207).lr32(NAME([this] () { return m_dma_interrupt_source; }));
	map(0x208, 0x20f).lr32([] () { return 0; }, "error_type");
	map(0x210, 0x217).lrw32(NAME([this] () { return m_memory_refresh_rate; }), NAME([this] (u32 data) { m_memory_refresh_rate = data; }));
	// refresh_counter
	map(0x220, 0x227).lrw32(NAME([this] () { return m_nvram_protect; }), NAME([this] (u32 data) { LOG("nvram_protect 0x%08x (%s)\n", data, machine().describe_context()); m_nvram_protect = data; }));
	map(0x228, 0x22f).lw32(
			[this] (u32 data)
			{
				LOG("timer_w 0x%08x\n", data);

				attotime interval = attotime::from_ticks((data + 1) & 0x1ff, 1000);

				m_interval_timer->adjust(interval, 0, interval);
			}, "interrupt_interval");
	map(0x230, 0x237).lr32([this] () { if (m_out_int_timer_asserted) { m_out_int_timer_asserted = false; m_out_int_timer(0); } return m_interval_timer->remaining().as_ticks(1000); }, "interval_timer");
	map(0x238, 0x23b).lr32(NAME([this] () { return m_eisa_iack(); }));
}

// HACK: this address map translates i386 bus master DMA device access (the
// SONIC network controller) to DRAM.
device_memory_interface::space_config_vector mct_adr_device::memory_space_config() const
{
	return space_config_vector{
		std::make_pair(0, &m_io_config),
		std::make_pair(1, &m_dma_config)
	};
}

void mct_adr_device::dma(address_map &map)
{
	map(0x00000000U, 0xffffffffU).rw(FUNC(mct_adr_device::dma_r), FUNC(mct_adr_device::dma_w));
}

void mct_adr_device::device_start()
{
	m_out_int_dma.resolve();
	m_out_int_device.resolve();
	m_out_int_timer.resolve();
	m_eisa_iack.resolve();

	m_dma_r.resolve_all_safe(0xff);
	m_dma_w.resolve_all_safe();

	m_ioc_maint = 0;
	m_ioc_physical_tag = 0;
	m_ioc_logical_tag = 0;

	m_irq_check = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(mct_adr_device::irq_check), this));
	m_dma_check = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(mct_adr_device::dma_check), this));
	m_interval_timer = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(mct_adr_device::interval_timer), this));

	m_out_int_timer_asserted = false;
	m_out_int_device_asserted = false;
}

void mct_adr_device::device_reset()
{
	m_config = 0x104; // REV1, REV2 is 0x410
	m_trans_tbl_base = 0;
	m_trans_tbl_limit = 0;
	m_ioc_byte_mask = 0;

	for (u32 &val : m_remote_speed)
		val = 0x7;

	for (u32 &val : m_dma_reg)
		val = 0;

	m_dma_interrupt_source = 0;
	m_memory_refresh_rate = 0x18186;
	m_nvram_protect = 0x7;

	m_dma_invalid_address = 0;
	m_dma_memory_failed_address = 0;

	m_isr = 0;
	m_imr = 0x10; // firmware diagnostic expects network interrupts to be unmasked at boot

	m_interval_timer->adjust(attotime::from_msec(1), 0, attotime::from_msec(1));

	irq_check(nullptr, 0);
}

void mct_adr_device::set_irq_line(int irq, int state)
{
	if ((irq != 3) && (m_isr & (1 << irq)) ^ (state << irq))
		LOG("set_irq_line %d state %d m_imr 0x%04x\n", irq, state, m_imr);

	if (state)
		m_isr |= (1 << irq);
	else
		m_isr &= ~(1 << irq);

	m_irq_check->adjust(attotime::zero);
}

TIMER_CALLBACK_MEMBER(mct_adr_device::irq_check)
{
	if (bool(m_isr & m_imr) != m_out_int_device_asserted)
	{
		m_out_int_device_asserted = bool(m_isr & m_imr);

		m_out_int_device(m_out_int_device_asserted ? 1 : 0);
	}
}

u16 mct_adr_device::isr_r()
{
	u16 const pending = m_isr & m_imr;

	for (u16 irq = 0; irq < 16; irq++)
		if (BIT(pending, irq))
			return (irq + 1) << 2;

	return 0;
}

void mct_adr_device::imr_w(u16 data)
{
	LOG("imr_w 0x%04x (%s)\n", data, machine().describe_context());

	m_imr = data;

	m_irq_check->adjust(attotime::zero);
}

TIMER_CALLBACK_MEMBER(mct_adr_device::interval_timer)
{
	if (m_out_int_timer_asserted)
		m_out_int_timer(0);
	else
		m_out_int_timer_asserted = true;

	m_out_int_timer(1);
}

void mct_adr_device::set_drq_line(int channel, int state)
{
	m_drq_active[channel] = state == ASSERT_LINE;

	if (state)
		m_dma_check->adjust(attotime::zero);
}

TIMER_CALLBACK_MEMBER(mct_adr_device::dma_check)
{
	bool active = false;

	for (int channel = 0; channel < 4; channel++)
	{
		if (!m_drq_active[channel])
			continue;

		// reg 0x00: 0x00000011 - mode (ch0) (WIDTH16 | ATIME_80)
		// reg 0x20: 0x0000000a - mode (ch1) (WIDTH8 | ATIME_120)
		// reg 0x18: 0x00000f20 - address
		// reg 0x10: 0x00000024 - count
		// reg 0x08: 0x00000001 - enable (ENABLE | !WRITE)

		// check channel enabled
		if (!(m_dma_reg[(channel << 2) + REG_ENABLE] & DMA_ENABLE))
			return;

		// check transfer count
		if (!m_dma_reg[(channel << 2) + REG_COUNT])
			return;

		u32 const address = translate_address(m_dma_reg[(channel << 2) + REG_ADDRESS]);

		// perform dma transfer
		if (m_dma_reg[(channel << 2) + REG_ENABLE] & DMA_DIRECTION)
		{
			u8 const data = space(0).read_byte(address);

			//LOG("dma_w data 0x%02x address 0x%08x\n", data, address);

			m_dma_w[channel](data);
		}
		else
		{
			u8 const data = m_dma_r[channel]();

			//LOG("dma_r data 0x%02x address 0x%08x\n", data, address);

			space(0).write_byte(address, data);
		}

		// increment address, decrement count
		m_dma_reg[(channel << 2) + REG_ADDRESS]++;
		m_dma_reg[(channel << 2) + REG_COUNT]--;

		// set terminal count flag
		if (!m_dma_reg[(channel << 2) + REG_COUNT])
		{
			m_dma_reg[(channel << 2) + REG_ENABLE] |= DMA_TERMINAL_COUNT;

			// TODO: dma interrupts
			if (m_dma_reg[(channel << 2) + REG_ENABLE] & DMA_INTERRUPT_ENABLE)
				logerror("dma interrupt enable - interrupt expected\n");
		}

		if (m_drq_active[channel])
			active = true;
	}

	if (active)
		m_dma_check->adjust(attotime::zero);
}

u32 mct_adr_device::translate_address(u32 logical_address)
{
	u32 page = logical_address >> 12;
	if (page < (m_trans_tbl_limit) >> 3)
	{
		u32 entry_address = (m_trans_tbl_base & 0x7fffffff) + page * 8;

		return space(0).read_dword(entry_address) | (logical_address & 0xfff);
	}
	else
	{
		logerror("failed to translate address 0x%08x\n", logical_address);

		return 0; // FIXME: address error
	}
}

u32 mct_adr_device::dma_r(offs_t offset, u32 mem_mask)
{
	u32 const address = translate_address(offset << 2);

	return space(0).read_dword(address, mem_mask);
}

void mct_adr_device::dma_w(offs_t offset, u32 data, u32 mem_mask)
{
	u32 const address = translate_address(offset << 2);

	space(0).write_dword(address, data, mem_mask);
}