summaryrefslogtreecommitdiffstatshomepage
path: root/src/mame/drivers/hp80.cpp
blob: e4b67eaab56b04073a377d9e5e41b2eee9803eaa (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
// license:BSD-3-Clause
// copyright-holders:F. Ulivi
//
// *******************************
// Driver for HP series 80 systems
// *******************************
//
// This driver currently emulates the HP85A & HP86B machines.
//
// What's in HP85A emulation:
// - Capricorn CPU @613 kHz
// - 32K of system ROMs
// - Optional ROMs
// - 16K of RAM
// - Alpha/graphic video
// - Internal timers
// - DC100 tape drive
// - Integrated thermal printer
// - Beeper & 1-bit bitbanged sound
// - I/O slots
//
// What's in HP86B emulation:
// - Capricorn CPU @613 kHz
// - 56K of system ROMs
// - Optional ROMs
// - 128K of RAM (through Extended Memory Controller)
// - Alpha/graphic video (with correct aspect ratio for 82913A 12" monitor)
// - Run light
// - Internal timers
// - Integrated HPIB interface (which is basically a built-in 82937 module)
// - Beeper & 1-bit bitbanged sound
// - I/O slots
//
// The HP86B was also produced with support for various non-English European languages.
// There were 3 major differences between standard (i.e. English only) and international models:
// - The keyboard controller IC translated from the matrix position to key code in the
//   standard model whereas it only reported the row/column position in the international models.
//   In the latter case the decoding was done in software.
// - The international models had an extra built-in ROM (the "Language" ROM) that handled the
//   decoding of various keyboard layouts and also provided some extra BASIC instructions to
//   deal with non-English text.
// - There were 3 video controllers that displayed different character shapes in the 00..1b range.
//
// This table summarizes the differences between hp86b models.
//
// | Model   | Kb layout        | Kb controller | Has           | Video controller | Emulator  |
// |         |                  | decodes key?  | Language ROM? | version          |           |
// |---------+------------------+---------------+---------------+------------------+-----------|
// | Std     | English          | Yes           | No            | 1st              | hp86b     |
// | Opt 001 | Swedish/Finnish  | No            | Yes           | 2nd              | hp86b_001 |
// | Opt 002 | Danish/Norwegian | No            | Yes           | 2nd              | hp86b_001 |
// | Opt 004 | German           | No            | Yes           | 3rd              | hp86b_004 |
// | Opt 006 | Spanish          | No            | Yes           | 2nd              | hp86b_001 |
// | Opt 008 | French           | No            | Yes           | 3rd              | hp86b_004 |
// | Opt 009 | Italian          | No            | Yes           | 3rd              | hp86b_004 |
// | Opt 010 | Dutch            | No            | Yes           | 3rd              | hp86b_004 |
// | Opt 020 | Swiss German     | No            | Yes           | 3rd              | hp86b_004 |
// | Opt 021 | Swiss French     | No            | Yes           | 3rd              | hp86b_004 |
//
// Special thanks to Everett Kaser for his excellent reverse engineering of Language ROM and for
// all his support.
//
// Thanks to all the people who made docs available & dumped the various ROMs.
//
// References for these systems:
// https://groups.io/g/hpseries80 - Site with tons of info on HP80 systems
// http://www.kaser.com/hp85.html - A Windows-based emulator of HP80 systems
// https://sites.google.com/site/olivier2smet2/hpseries80 - Another Windows-based emulator
// http://www.series80.org/ - *The* reference site for these machines
// http://www.akso.de/index.php?id=hp_series_80&L=-1%27 - Another interesting site
// http://www.hpmuseum.net/exhibit.php?class=1&cat=9 - Last but not least: HP museum pages for HP80

#include "emu.h"
#include "emupal.h"
#include "screen.h"
#include "cpu/capricorn/capricorn.h"
#include "speaker.h"
#include "machine/timer.h"
#include "sound/beep.h"
#include "sound/dac.h"
#include "sound/volt_reg.h"
#include "machine/1ma6.h"
#include "machine/hp80_optrom.h"
#include "machine/ram.h"
#include "softlist.h"
#include "machine/bankdev.h"
#include "bus/hp80_io/hp80_io.h"
#include "bus/hp80_io/82937.h"
#include "imagedev/bitbngr.h"
#include "hp86b.lh"

// Debugging
#include "logmacro.h"
#define LOG_EMC_MASK (LOG_GENERAL << 1)
#define LOG_EMC(...) LOGMASKED(LOG_EMC_MASK, __VA_ARGS__)
#define LOG_IRQ_MASK (LOG_EMC_MASK << 1)
#define LOG_IRQ(...) LOGMASKED(LOG_IRQ_MASK, __VA_ARGS__)
#undef VERBOSE
//#define VERBOSE (LOG_GENERAL|LOG_EMC_MASK|LOG_IRQ_MASK)
#define VERBOSE LOG_GENERAL

// Bit manipulation
namespace {
	template<typename T> constexpr T BIT_MASK(unsigned n)
	{
		return (T)1U << n;
	}

	template<typename T> void BIT_CLR(T& w , unsigned n)
	{
		w &= ~BIT_MASK<T>(n);
	}

	template<typename T> void BIT_SET(T& w , unsigned n)
	{
		w |= BIT_MASK<T>(n);
	}

	template<typename T> void COPY_BIT(bool bit , T& w , unsigned n)
	{
		if (bit) {
			BIT_SET(w , n);
		} else {
			BIT_CLR(w , n);
		}
	}
}

// **** Constants ****
static constexpr unsigned CPU_CLOCK = 613000;
// Time taken by hw timer updating (semi-made up) (in µsec)
static constexpr unsigned TIMER_BUSY_USEC   = 128;
static constexpr unsigned IRQ_KEYBOARD_BIT  = 0;
static constexpr unsigned IRQ_INTKEYB_BIT   = 1;
static constexpr unsigned IRQ_TIMER0_BIT    = 2;
static constexpr unsigned TIMER_COUNT       = 4;
static constexpr unsigned IRQ_IOP0_BIT      = IRQ_TIMER0_BIT + TIMER_COUNT;
// Maximum count of I/O processors (the same thing as count of I/O slots)
static constexpr unsigned IOP_COUNT         = 4;
static constexpr unsigned IRQ_BIT_COUNT     = IRQ_IOP0_BIT + IOP_COUNT;
static constexpr unsigned NO_IRQ            = IRQ_BIT_COUNT;

// *****************
//  hp80_base_state
// *****************
class hp80_base_state : public driver_device
{
public:
	hp80_base_state(const machine_config &mconfig, device_type type, const char *tag, bool has_int_keyb = false);

protected:
	void hp80_base(machine_config &config);

	virtual void cpu_mem_map(address_map &map);
	virtual void rombank_mem_map(address_map &map);
	virtual void unmap_optroms(address_space &space);

	virtual void machine_start() override;
	virtual void machine_reset() override;

	uint8_t intack_r();

	void ginten_w(uint8_t data);
	void gintdis_w(uint8_t data);
	uint8_t keysts_r();
	void keysts_w(uint8_t data);
	uint8_t keycod_r();
	void keycod_w(uint8_t data);
	uint8_t clksts_r();
	void clksts_w(uint8_t data);
	uint8_t clkdat_r();
	void clkdat_w(uint8_t data);
	void rselec_w(uint8_t data);
	uint8_t intrsc_r();
	void intrsc_w(uint8_t data);

	TIMER_DEVICE_CALLBACK_MEMBER(kb_scan);
	TIMER_DEVICE_CALLBACK_MEMBER(timer_update);
	TIMER_DEVICE_CALLBACK_MEMBER(clk_busy_timer);

	void irl_w(offs_t offset, uint8_t data);
	void halt_w(offs_t offset, uint8_t data);

	required_device<capricorn_cpu_device> m_cpu;
	required_device<timer_device> m_clk_busy_timer;
	required_device<beep_device> m_beep;
	required_device<dac_1bit_device> m_dac;
	required_ioport m_io_key0;
	required_ioport m_io_key1;
	required_ioport m_io_key2;
	required_ioport m_io_modkeys;
	optional_ioport m_io_language;
	required_device_array<hp80_optrom_device , 6> m_rom_drawers;
	required_device<address_map_bank_device> m_rombank;
	required_device_array<hp80_io_slot_device , IOP_COUNT> m_io_slots;

	bool m_global_int_en;
	uint16_t m_int_serv;
	uint16_t m_int_acked;
	unsigned m_top_acked;
	unsigned m_top_pending;
	uint16_t m_int_en;
	uint8_t m_halt_lines;

	// State of keyboard
	ioport_value m_kb_state[ 3 ];
	bool m_kb_enable;
	bool m_kb_pressed;
	bool m_kb_flipped;
	bool m_kb_lang_readout;
	bool m_kb_raw_readout;
	uint8_t m_kb_keycode;
	uint8_t m_raw_keycode;
	const bool m_has_int_keyb;

	// Timers
	typedef struct {
		uint8_t m_timer_cnt[ 4 ];
		uint8_t m_timer_reg[ 4 ];
		bool m_timer_en;
		bool m_timer_clr;
		uint8_t m_digit_to_match;
	} hw_timer_t;
	hw_timer_t m_hw_timer[ TIMER_COUNT ];
	uint8_t m_timer_idx;
	bool m_clk_busy;

	bool kb_scan_ioport(ioport_value pressed , unsigned idx_base , uint8_t& row , uint8_t& col);
	unsigned get_kb_irq() const;

	void irq_w(unsigned n_irq , bool state);
	void irq_en_w(unsigned n_irq , bool state);
	void release_irq(unsigned n_irq);
	static unsigned get_top_irq(uint16_t irqs);
	void update_int_bits();
	void update_irl();
};

hp80_base_state::hp80_base_state(const machine_config &mconfig, device_type type, const char *tag, bool has_int_keyb)
	: driver_device(mconfig , type , tag)
	, m_cpu(*this , "cpu")
	, m_clk_busy_timer(*this , "clk_busy_timer")
	, m_beep(*this , "beeper")
	, m_dac(*this , "dac")
	, m_io_key0(*this , "KEY0")
	, m_io_key1(*this , "KEY1")
	, m_io_key2(*this , "KEY2")
	, m_io_modkeys(*this, "MODKEYS")
	, m_io_language(*this , "LANGUAGE")
	, m_rom_drawers(*this , "drawer%u" , 1)
	, m_rombank(*this , "rombank")
	, m_io_slots(*this , "slot%u" , 1)
	, m_has_int_keyb(has_int_keyb)
{
}

void hp80_base_state::hp80_base(machine_config &config)
{
	HP_CAPRICORN(config, m_cpu, CPU_CLOCK);
	m_cpu->set_addrmap(AS_PROGRAM, &hp80_base_state::cpu_mem_map);
	m_cpu->intack_cb().set(FUNC(hp80_base_state::intack_r));
	config.set_perfect_quantum(m_cpu);

	ADDRESS_MAP_BANK(config, "rombank").set_map(&hp80_base_state::rombank_mem_map).set_options(ENDIANNESS_LITTLE, 8, 21, HP80_OPTROM_SIZE);

	// No idea at all about the actual keyboard scan frequency
	TIMER(config, "kb_timer").configure_periodic(FUNC(hp80_base_state::kb_scan), attotime::from_hz(100));

	// Hw timers are updated at 1 kHz rate
	TIMER(config, "hw_timer").configure_periodic(FUNC(hp80_base_state::timer_update), attotime::from_hz(1000));
	TIMER(config, m_clk_busy_timer).configure_generic(FUNC(hp80_base_state::clk_busy_timer));

	// Beeper
	SPEAKER(config, "mono").front_center();
	DAC_1BIT(config, m_dac , 0).add_route(ALL_OUTPUTS, "mono", 0.5, AUTO_ALLOC_INPUT, 0);
	voltage_regulator_device &vref(VOLTAGE_REGULATOR(config, "vref"));
	vref.add_route(0, "dac", 1.0, DAC_VREF_POS_INPUT);
	BEEP(config, m_beep, CPU_CLOCK / 512).add_route(ALL_OUTPUTS, "mono", 0.5, AUTO_ALLOC_INPUT, 0);

	// Optional ROMs
	for (auto& finder : m_rom_drawers) {
		HP80_OPTROM(config, finder);
	}

	// I/O slots
	for (unsigned slot = 0; slot < 4; slot++) {
		auto& finder = m_io_slots[ slot ];
		HP80_IO_SLOT(config, finder).set_slot_no(slot);
		finder->irl_cb().set(FUNC(hp80_base_state::irl_w));
		finder->halt_cb().set(FUNC(hp80_base_state::halt_w));
	}
}

void hp80_base_state::cpu_mem_map(address_map &map)
{
	map.unmap_value_high();
	map(0x0000, 0x5fff).rom();
	map(0x6000, 0x7fff).m(m_rombank, FUNC(address_map_bank_device::amap8));
	map(0xff00, 0xff00).w(FUNC(hp80_base_state::ginten_w));
	map(0xff01, 0xff01).w(FUNC(hp80_base_state::gintdis_w));
	map(0xff02, 0xff02).rw(FUNC(hp80_base_state::keysts_r), FUNC(hp80_base_state::keysts_w));
	map(0xff03, 0xff03).rw(FUNC(hp80_base_state::keycod_r), FUNC(hp80_base_state::keycod_w));
	map(0xff0a, 0xff0a).rw(FUNC(hp80_base_state::clksts_r), FUNC(hp80_base_state::clksts_w));
	map(0xff0b, 0xff0b).rw(FUNC(hp80_base_state::clkdat_r), FUNC(hp80_base_state::clkdat_w));
	map(0xff18, 0xff18).w(FUNC(hp80_base_state::rselec_w));
	map(0xff40, 0xff40).rw(FUNC(hp80_base_state::intrsc_r), FUNC(hp80_base_state::intrsc_w));
}

void hp80_base_state::rombank_mem_map(address_map &map)
{
	map.unmap_value_high();
	// ROM in bank 0 is always present (it's part of system ROMs)
	map(0x0000, 0x1fff).rom();
}

void hp80_base_state::unmap_optroms(address_space &space)
{
}

void hp80_base_state::machine_start()
{
	save_item(NAME(m_global_int_en));
	save_item(NAME(m_int_serv));
	save_item(NAME(m_int_acked));
	save_item(NAME(m_top_acked));
	save_item(NAME(m_top_pending));
	save_item(NAME(m_int_en));
	save_item(NAME(m_halt_lines));
	save_pointer(NAME(m_kb_state) , 3);
	save_item(NAME(m_kb_enable));
	save_item(NAME(m_kb_pressed));
	save_item(NAME(m_kb_flipped));
	save_item(NAME(m_kb_lang_readout));
	save_item(NAME(m_kb_raw_readout));
	save_item(NAME(m_kb_keycode));
	save_item(NAME(m_raw_keycode));
}

void hp80_base_state::machine_reset()
{
	m_int_serv = 0;
	m_int_acked = 0;
	m_top_acked = NO_IRQ;
	m_top_pending = NO_IRQ;
	m_int_en = 0;
	m_global_int_en = false;
	m_kb_state[ 0 ] = 0;
	m_kb_state[ 1 ] = 0;
	m_kb_state[ 2 ] = 0;
	m_kb_keycode = 0xff;
	m_kb_enable = true;
	m_kb_pressed = false;
	m_kb_flipped = false;
	m_kb_lang_readout = false;
	m_kb_raw_readout = false;
	for (auto& timer : m_hw_timer) {
		for (unsigned i = 0; i < 4; i++) {
			timer.m_timer_cnt[ i ] = 0;
			timer.m_timer_reg[ i ] = 0;
		}
		timer.m_timer_en = false;
		timer.m_timer_clr = false;
		timer.m_digit_to_match = 0;
	}
	m_timer_idx = 0;
	m_clk_busy = false;
	update_irl();
	m_halt_lines = 0;
	m_cpu->set_input_line(INPUT_LINE_HALT , CLEAR_LINE);

	// Load optional ROMs (if any)
	unmap_optroms(m_rombank->space(AS_PROGRAM));
	for (auto& draw : m_rom_drawers) {
		LOG("Loading opt ROM in drawer %s\n" , draw->tag());
		draw->install_read_handler(m_rombank->space(AS_PROGRAM));
	}

	// Clear RSELEC
	m_rombank->set_bank(0xff);

	// Mount I/O slots in address space
	m_cpu->space(AS_PROGRAM).unmap_readwrite(0xff50 , 0xff5f);
	for (auto& io : m_io_slots) {
		io->install_read_write_handlers(m_cpu->space(AS_PROGRAM));
	}
}

// Vector table (indexed by bit no. in m_int_serv)
static const uint8_t vector_table[] = {
	0x04,   // Keyboard
	0x12,   // International keyboard (or is it 0x14?)
	0x08,   // Timer 0
	0x0a,   // Timer 1
	0x0c,   // Timer 2
	0x0e,   // Timer 3
	0x10,   // Slot 1
	0x10,   // Slot 2
	0x10,   // Slot 3
	0x10,   // Slot 4
	0x00    // No IRQ
};

uint8_t hp80_base_state::intack_r()
{
	LOG_IRQ("INTACK %u %u\n" , m_top_pending , m_top_acked);
	BIT_SET(m_int_acked , m_top_pending);
	m_top_acked = m_top_pending;
	if (m_top_pending > IRQ_IOP0_BIT && m_top_pending < IRQ_BIT_COUNT) {
		// Interrupts are disabled in all I/O translators of higher priority than
		// the one being serviced
		for (unsigned i = m_top_pending - 1; i >= IRQ_IOP0_BIT; i--) {
			irq_en_w(i , false);
		}
	}
	update_irl();
	return vector_table[ m_top_pending ];
}

void hp80_base_state::ginten_w(uint8_t data)
{
	LOG_IRQ("GINTEN\n");
	m_global_int_en = true;
	update_irl();
}

void hp80_base_state::gintdis_w(uint8_t data)
{
	LOG_IRQ("GINTDIS\n");
	m_global_int_en = false;
	update_irl();
}

uint8_t hp80_base_state::keysts_r()
{
	uint8_t res = 0;
	if (BIT(m_int_en , get_kb_irq())) {
		BIT_SET(res , 0);
	}
	if (m_kb_pressed) {
		BIT_SET(res , 1);
	}
	if (m_has_int_keyb) {
		if (m_kb_flipped) {
			BIT_SET(res , 2);
		}
		if (BIT(m_io_modkeys->read() , 2)) {
			BIT_SET(res , 6);
		}
	}
	if (BIT(m_io_modkeys->read() , 0)) {
		BIT_SET(res , 3);
	}
	if (m_global_int_en) {
		BIT_SET(res , 7);
	}
	return res;
}

void hp80_base_state::keysts_w(uint8_t data)
{
	if (BIT(data , 0)) {
		irq_en_w(get_kb_irq() , true);
	} else if (BIT(data , 1)) {
		irq_en_w(get_kb_irq() , false);
	}
	if (m_has_int_keyb) {
		m_kb_lang_readout = BIT(data , 2);
		m_kb_raw_readout = BIT(data , 3);
	}
	m_dac->write(BIT(data , 5));
	m_beep->set_state(BIT(data , 6));
	if (BIT(data , 7)) {
		m_kb_flipped = !m_kb_flipped;
	}
}

uint8_t hp80_base_state::keycod_r()
{
	if (m_kb_lang_readout && m_io_language) {
		return m_io_language->read();
	} else if (m_kb_raw_readout) {
		return m_raw_keycode;
	} else {
		return m_kb_keycode;
	}
}

void hp80_base_state::keycod_w(uint8_t data)
{
	if (m_kb_raw_readout) {
		m_kb_keycode = data;
	} else if (data == 1) {
		unsigned irq = get_kb_irq();
		irq_w(irq , false);
		m_kb_enable = true;
		release_irq(irq);
	}
}

uint8_t hp80_base_state::clksts_r()
{
	uint8_t res = 0;
	for (unsigned i = 0; i < TIMER_COUNT; i++) {
		if (BIT(m_int_en , IRQ_TIMER0_BIT + i)) {
			BIT_SET(res , i);
		}
	}
	if (!m_clk_busy) {
		BIT_SET(res , 7);
	}
	return res;
}

void hp80_base_state::clksts_w(uint8_t data)
{
	if (data == 0x0c) {
		// Set test mode (see timer_update)
		auto& timer = m_hw_timer[ m_timer_idx ];
		timer.m_digit_to_match = 1;
		timer.m_timer_cnt[ 0 ] = timer.m_timer_reg[ 0 ];
		timer.m_timer_cnt[ 1 ] = timer.m_timer_reg[ 1 ];
		timer.m_timer_cnt[ 2 ] = timer.m_timer_reg[ 2 ];
		timer.m_timer_cnt[ 3 ] = timer.m_timer_reg[ 3 ];
		LOG("Test mode enabled for timer %u\n" , m_timer_idx);
	} else {
		m_timer_idx = (data >> 6) & 3;
		auto& timer = m_hw_timer[ m_timer_idx ];
		if (BIT(data , 0)) {
			// Disable timer irq
			irq_en_w(IRQ_TIMER0_BIT + m_timer_idx , false);
		} else if (BIT(data , 1)) {
			// Enable timer irq
			irq_en_w(IRQ_TIMER0_BIT + m_timer_idx , true);
		}
		if (BIT(data , 2)) {
			// Stop timer
			timer.m_timer_en = false;
		} else if (BIT(data , 3)) {
			// Start timer
			timer.m_timer_en = true;
		}
		if (BIT(data , 4) || (BIT(data , 3) && timer.m_digit_to_match)) {
			// Clear timer
			timer.m_timer_clr = true;
			// Disable test mode
			timer.m_digit_to_match = 0;
		}
		if (BIT(data , 5)) {
			// Clear timer irq
			unsigned irq_n = IRQ_TIMER0_BIT + m_timer_idx;
			irq_w(irq_n , false);
			release_irq(irq_n);
		}
	}
}

uint8_t hp80_base_state::clkdat_r()
{
	uint8_t res;
	unsigned burst_idx = m_cpu->flatten_burst();
	if (burst_idx < 4) {
		res = m_hw_timer[ m_timer_idx ].m_timer_cnt[ burst_idx ];
	} else {
		// What happens when loading more than 4 bytes from timers?
		LOG("Reading more than 4 bytes from timer %u\n" , m_timer_idx);
		res = 0;
	}
	return res;
}

void hp80_base_state::clkdat_w(uint8_t data)
{
	unsigned burst_idx = m_cpu->flatten_burst();
	if (burst_idx < 4) {
		m_hw_timer[ m_timer_idx ].m_timer_reg[ burst_idx ] = data;
	} else {
		// What happens when storing more than 4 bytes into timers?
		LOG("Writing more than 4 bytes into timer %u\n" , m_timer_idx);
	}
}

void hp80_base_state::rselec_w(uint8_t data)
{
	m_rombank->set_bank(data);
}

uint8_t hp80_base_state::intrsc_r()
{
	if (m_top_acked >= IRQ_IOP0_BIT && m_top_acked < IRQ_BIT_COUNT) {
		LOG_IRQ("INTRSC %u\n" , m_top_acked);
		// Clear interrupt request in the slot being serviced
		m_io_slots[ m_top_acked - IRQ_IOP0_BIT ]->clear_service();
		return (uint8_t)m_io_slots[ m_top_acked - IRQ_IOP0_BIT ]->get_base_addr();
	} else {
		// Probably..
		return 0xff;
	}
}

void hp80_base_state::intrsc_w(uint8_t data)
{
	LOG_IRQ("INTRSC W %u %03x %03x %03x\n" , m_top_acked , m_int_serv , m_int_en , m_int_acked);
	for (auto& iop: m_io_slots) {
		iop->inten();
	}
	for (unsigned i = IRQ_IOP0_BIT; i < (IRQ_IOP0_BIT + IOP_COUNT); i++) {
		irq_en_w(i , true);
	}
	m_int_acked &= ~(((1U << IOP_COUNT) - 1) << IRQ_IOP0_BIT);
	update_int_bits();
}

// Outer index: key position [0..79] = r * 8 + c
// Inner index: SHIFT state (0 = no SHIFT, 1 = SHIFT)
static const uint8_t keyboard_table[ 80 ][ 2 ] = {
	// --    SHIFT              HP85            HP86
	{ 0xa2 , 0xac },    // 0,0: Down / Auto     k6 / k13
	{ 0xa1 , 0xa5 },    // 0,1: Up / Home       k5 / k12
	{ 0x83 , 0x87 },    // 0,2: k4 / k8         k4 / k11
	{ 0x82 , 0x86 },    // 0,3: k3 / k7         k3 / k10
	{ 0x81 , 0x85 },    // 0,4: k2 / k6         k2 / k9
	{ 0x80 , 0x84 },    // 0,5: k1 / k5         k1 / k8
	{ 0x96 , 0x60 },    // 0,6: LABEL KEY
	{ 0xff , 0xff },    // 0,7: N/U
	{ 0x38 , 0x2a },    // 1,0: 8
	{ 0x37 , 0x26 },    // 1,1: 7
	{ 0x36 , 0x5e },    // 1,2: 6
	{ 0x35 , 0x25 },    // 1,3: 5
	{ 0x34 , 0x24 },    // 1,4: 4
	{ 0x33 , 0x23 },    // 1,5: 3
	{ 0x32 , 0x40 },    // 1,6: 2
	{ 0x31 , 0x21 },    // 1,7: 1
	{ 0x49 , 0x69 },    // 2,0: I
	{ 0x55 , 0x75 },    // 2,1: U
	{ 0x59 , 0x79 },    // 2,2: Y
	{ 0x54 , 0x74 },    // 2,3: T
	{ 0x52 , 0x72 },    // 2,4: R
	{ 0x45 , 0x65 },    // 2,5: E
	{ 0x57 , 0x77 },    // 2,6: W
	{ 0x51 , 0x71 },    // 2,7: Q
	{ 0x4b , 0x6b },    // 3,0: K
	{ 0x4a , 0x6a },    // 3,1: J
	{ 0x48 , 0x68 },    // 3,2: H
	{ 0x47 , 0x67 },    // 3,3: G
	{ 0x46 , 0x66 },    // 3,4: F
	{ 0x44 , 0x64 },    // 3,5: D
	{ 0x53 , 0x73 },    // 3,6: S
	{ 0x41 , 0x61 },    // 3,7: A
	{ 0x4d , 0x6d },    // 4,0: M
	{ 0x4e , 0x6e },    // 4,1: N
	{ 0x42 , 0x62 },    // 4,2: B
	{ 0x56 , 0x76 },    // 4,3: V
	{ 0x43 , 0x63 },    // 4,4: C
	{ 0x58 , 0x78 },    // 4,5: X
	{ 0x5a , 0x7a },    // 4,6: Z
	{ 0x20 , 0x20 },    // 4,7: Space
	{ 0x2c , 0x3c },    // 5,0: , <
	{ 0x2e , 0x3e },    // 5,1: . >
	{ 0x2f , 0x3f },    // 5,2: / ?
	{ 0x8e , 0x90 },    // 5,3: PAUSE / STEP
	{ 0x8d , 0x8d },    // 5,4: RUN
	{ 0x2b , 0x7f },    // 5,5: KP +
	{ 0x2d , 0x7d },    // 5,6: KP -
	{ 0x2a , 0x7e },    // 5,7: KP *            N/U
	{ 0x4c , 0x6c },    // 6,0: L
	{ 0x3b , 0x3a },    // 6,1: ; :
	{ 0x27 , 0x22 },    // 6,2: ' "
	{ 0x9a , 0x9a },    // 6,3: END LINE
	{ 0x94 , 0x95 },    // 6,4: LIST / P LST
	{ 0xff , 0xff },    // 6,5: N/U
	{ 0x2a , 0x7e },    // 6,6: N/U             KP *
	{ 0x2f , 0x7b },    // 6,7: KP /
	{ 0x4f , 0x6f },    // 7,0: O
	{ 0x50 , 0x70 },    // 7,1: P
	{ 0x28 , 0x5b },    // 7,2: ( [
	{ 0x29 , 0x5d },    // 7,3: ) ]
	{ 0x8f , 0xad },    // 7,4: CONT / SCRATCH  CONT / TR/NORM
	{ 0xa0 , 0x92 },    // 7,5: -LINE / CLEAR   E / TEST
	{ 0x29 , 0x8c },    // 7,6: ) INIT
	{ 0xff , 0xff },    // 7,7: N/U
	{ 0x39 , 0x28 },    // 8,0: 9
	{ 0x30 , 0x29 },    // 8,1: 0
	{ 0x2d , 0x5f },    // 8,2: - _
	{ 0x3d , 0x2b },    // 8,3: = +
	{ 0x5c , 0x7c },    // 8,4: \ |
	{ 0x99 , 0x9b },    // 8,5: BS
	{ 0x28 , 0x8b },    // 8,6: ( RESET
	{ 0x5e , 0xa6 },    // 8,7: ^ / RESLT
	{ 0x9c , 0x93 },    // 9,0: LEFT / GRAPH    k7 / k14
	{ 0x9d , 0x89 },    // 9,1: RIGHT / COPY    -LINE / CLEAR
	{ 0xa3 , 0xa3 },    // 9,2: RPL / INS       UP / HOME
	{ 0xa4 , 0xa8 },    // 9,3: -CHAR / DEL     DOWN / A/G
	{ 0x9f , 0x9e },    // 9,4: ROLL            LEFT / I/R
	{ 0xaa , 0x88 },    // 9,5: LOAD / REW      RIGHT / -CHAR
	{ 0xa9 , 0x91 },    // 9,6: STORE / TEST    ROLL
	{ 0x8a , 0x8a }     // 9,7: PAPER ADVANCE   N/U
};

bool hp80_base_state::kb_scan_ioport(ioport_value pressed , unsigned idx_base , uint8_t& row , uint8_t& col)
{
	if (pressed) {
		unsigned bit_no = 31 - count_leading_zeros(pressed);
		row = (idx_base + bit_no) / 8;
		col = (idx_base + bit_no) % 8;
		return true;
	} else {
		return false;
	}
}

unsigned hp80_base_state::get_kb_irq() const
{
	return m_has_int_keyb ? IRQ_INTKEYB_BIT : IRQ_KEYBOARD_BIT;
}

TIMER_DEVICE_CALLBACK_MEMBER(hp80_base_state::kb_scan)
{
	ioport_value input[ 3 ];
	input[ 0 ] = m_io_key0->read();
	input[ 1 ] = m_io_key1->read();
	input[ 2 ] = m_io_key2->read();

	if (m_kb_enable) {
		uint8_t row;
		uint8_t col;

		bool got_key = kb_scan_ioport(input[ 0 ] & ~m_kb_state[ 0 ] , 0 , row , col) ||
			kb_scan_ioport(input[ 1 ] & ~m_kb_state[ 1 ] , 32 , row , col) ||
			kb_scan_ioport(input[ 2 ] & ~m_kb_state[ 2 ] , 64 , row , col);

		if (got_key) {
			if (m_has_int_keyb) {
				m_raw_keycode = (row << 4) + col;
			} else {
				uint8_t keycode = (row << 3) + col;
				uint8_t unshifted = keyboard_table[ keycode ][ 0 ];
				bool isalpha = unshifted >= 'A' && unshifted <= 'Z';
				ioport_value modifiers = m_io_modkeys->read();
				bool shift = BIT(modifiers , 0);
				bool caps_lock = BIT(modifiers , 1);
				bool control = BIT(modifiers , 2);
				if (isalpha) {
					shift = shift ^ caps_lock ^ m_kb_flipped;
				}
				keycode = keyboard_table[ keycode ][ shift ];
				uint8_t tmp = isalpha ? unshifted : keycode;
				if (control && (tmp & 0xe0) == 0x40) {
					keycode &= ~0xe0;
				}
				m_kb_keycode = keycode;
			}
			irq_w(get_kb_irq() , true);
			m_kb_enable = false;
		}
	}
	m_kb_pressed = input[ 0 ] != 0 ||
		input[ 1 ] != 0 ||
		input[ 2 ] != 0;

	m_kb_state[ 0 ] = input[ 0 ];
	m_kb_state[ 1 ] = input[ 1 ];
	m_kb_state[ 2 ] = input[ 2 ];
}

TIMER_DEVICE_CALLBACK_MEMBER(hp80_base_state::timer_update)
{
	for (unsigned i = 0; i < TIMER_COUNT; i++) {
		auto& timer = m_hw_timer[ i ];
		if (timer.m_timer_clr) {
			timer.m_timer_clr = false;
			timer.m_timer_cnt[ 0 ] = 0;
			timer.m_timer_cnt[ 1 ] = 0;
			timer.m_timer_cnt[ 2 ] = 0;
			timer.m_timer_cnt[ 3 ] = 0;
		} else if (timer.m_timer_en) {
			if (timer.m_digit_to_match) {
				// Timers have an undocumented mode (used by test "J" of service ROM)
				// where the counter has to match in sequence all digits of register
				// in order to raise an interrupt. In other words interrupt is generated
				// after a number of updates that's equal to the sum of all digits in
				// register + 1. My opinion is that people at HP designed this mode to
				// allow all digits in a timer to be tested quickly. Without this special
				// mode it takes more than 27 hours to check that all digits increment
				// correctly and that there are no stuck bits.
				// From an operative point of view, we copy register into counter when
				// this special mode is activated (see clksts_w). Then, at each update,
				// we decrement the digit of counter pointed to by m_digit_to_match (1 =
				// least significant digit). Each time a digit "borrows" (i.e. it decrements
				// from 0 to 9), we move on to digit at left. When m_digit_to_match reaches
				// 9, interrupt is raised and the timer stops.
				// At this point counter is always "99999999".
				if (timer.m_digit_to_match < 9) {
					while (true) {
						bool borrow = false;
						uint8_t b = timer.m_timer_cnt[ (timer.m_digit_to_match - 1) / 2 ];
						if (BIT(timer.m_digit_to_match , 0)) {
							// Least significant digit in b
							if (b & 0x0f) {
								b--;
							} else {
								b = (b & 0xf0) | 9;
								borrow = true;
							}
						} else {
							// Most significant digit in b
							if (b & 0xf0) {
								b -= 0x10;
							} else {
								b = 0x99;
								borrow = true;
							}
						}
						timer.m_timer_cnt[ (timer.m_digit_to_match - 1) / 2 ] = b;
						if (borrow) {
							timer.m_digit_to_match++;
							if (timer.m_digit_to_match == 9) {
								irq_w(IRQ_TIMER0_BIT + i , true);
								break;
							}
						} else {
							break;
						}
					}
				}
			} else {
				// Standard timer mode
				// Increment all active timers by 1
				bool carry = true;
				for (unsigned idx = 0; idx < 4 && carry; idx++) {
					carry = false;
					uint8_t b = timer.m_timer_cnt[ idx ];
					b++;
					if ((b & 0xf) > 9) {
						b += 6;
						if (b >= 0xa0) {
							b += 0x60;
							carry = true;
						}
					}
					timer.m_timer_cnt[ idx ] = b;
				}
				if (timer.m_timer_cnt[ 0 ] == timer.m_timer_reg[ 0 ] &&
					timer.m_timer_cnt[ 1 ] == timer.m_timer_reg[ 1 ] &&
					timer.m_timer_cnt[ 2 ] == timer.m_timer_reg[ 2 ] &&
					timer.m_timer_cnt[ 3 ] == timer.m_timer_reg[ 3 ]) {
					timer.m_timer_cnt[ 0 ] = 0;
					timer.m_timer_cnt[ 1 ] = 0;
					timer.m_timer_cnt[ 2 ] = 0;
					timer.m_timer_cnt[ 3 ] = 0;
					irq_w(IRQ_TIMER0_BIT + i , true);
				}
			}
		}
	}
	m_clk_busy = true;
	m_clk_busy_timer->adjust(attotime::from_usec(TIMER_BUSY_USEC));
}

TIMER_DEVICE_CALLBACK_MEMBER(hp80_base_state::clk_busy_timer)
{
	m_clk_busy = false;
}

void hp80_base_state::irl_w(offs_t offset, uint8_t data)
{
	irq_w(offset + IRQ_IOP0_BIT , data != 0);
}

void hp80_base_state::halt_w(offs_t offset, uint8_t data)
{
	bool prev_halt = m_halt_lines != 0;
	COPY_BIT(data != 0 , m_halt_lines , offset);
	bool new_halt = m_halt_lines != 0;
	if (prev_halt != new_halt) {
		LOG_IRQ("halt=%d hl=%x\n" , new_halt , m_halt_lines);
		m_cpu->set_input_line(INPUT_LINE_HALT , new_halt);
	}
}

void hp80_base_state::irq_w(unsigned n_irq , bool state)
{
	LOG_IRQ("IRQ_W %u %d\n" , n_irq , state);
	COPY_BIT(state , m_int_serv , n_irq);
	update_int_bits();
}

void hp80_base_state::irq_en_w(unsigned n_irq , bool state)
{
	LOG_IRQ("IRQ_EN_W %u %d\n" , n_irq , state);
	COPY_BIT(state , m_int_en , n_irq);
	update_int_bits();
}

void hp80_base_state::release_irq(unsigned n_irq)
{
	if (BIT(m_int_acked , n_irq)) {
		BIT_CLR(m_int_acked , n_irq);
		update_int_bits();
	}
}

unsigned hp80_base_state::get_top_irq(uint16_t irqs)
{
	unsigned top;
	for (top = 0; top < IRQ_BIT_COUNT && !BIT(irqs , 0); top++ , irqs >>= 1) {
	}
	return top;
}

void hp80_base_state::update_int_bits()
{
	m_top_pending = get_top_irq(m_int_en & m_int_serv);
	m_top_acked = get_top_irq(m_int_acked);
	update_irl();
}

void hp80_base_state::update_irl()
{
	m_cpu->set_input_line(0 , m_global_int_en && m_top_pending < m_top_acked);
}

// ************
//  hp85_state
// ************
class hp85_state : public hp80_base_state
{
public:
	hp85_state(const machine_config &mconfig, device_type type, const char *tag);

	// **** Constants of HP85 ****
	static constexpr unsigned MASTER_CLOCK  = 9808000;
	// Video memory is actually made of 16384 4-bit nibbles
	static constexpr unsigned VIDEO_MEM_SIZE    = 8192;
	static constexpr unsigned ALPHA_MEM_SIZE    = 4096;
	static constexpr unsigned GRAPH_MEM_SIZE    = 16384;
	static constexpr unsigned CRT_STS_READY_BIT     = 0;
	static constexpr unsigned CRT_STS_DISPLAY_BIT   = 1;
	static constexpr unsigned CRT_STS_BUSY_BIT      = 7;
	static constexpr unsigned CRT_CTL_RD_RQ_BIT     = 0;
	static constexpr unsigned CRT_CTL_WIPEOUT_BIT   = 1;
	static constexpr unsigned CRT_CTL_POWERDN_BIT   = 2;
	static constexpr unsigned CRT_CTL_GRAPHICS_BIT  = 7;
	// Time to read/write a byte in video memory (in master clock cycles)
	static constexpr unsigned CRT_RW_TIME           = 96;
	// Internal printer has a moving printhead with 8 vertically-arranged resistors that print dots
	// by heating thermal paper. The horizontal span of the printhead covers 224 columns.
	// In alpha mode, each sweep prints up to 32 characters. Each character has a 8x7 cell.
	// 8 pixels of cell height are covered by the printhead height, whereas 7 pixels of width
	// allow for 32 characters on a row (224 = 32 * 7).
	// After an alpha line is printed the paper advances by 10 pixel lines, so that a space of
	// 2 lines is left between alpha lines.
	// In graphic mode, printing starts at column 16 and covers 192 columns. So on each side of
	// the printed area there's a 16-column wide margin (224 = 192 + 2 * 16).
	// Once a graphic line is printed, paper advances by 8 pixel lines so that no space is inserted
	// between successive sweeps.
	// A full image of the graphic screen (256 x 192) is printed rotated 90 degrees clockwise.
	// The printer controller chip (1MA9) has an embedded character generator ROM that is used
	// when printing alpha lines. This ROM is also read by the CPU when drawing text on the graphic
	// screen (BASIC "LABEL" instruction).
	static constexpr unsigned PRT_BUFFER_SIZE      = 192;
	static constexpr unsigned PRTSTS_PAPER_OK_BIT  = 7;
	static constexpr unsigned PRTSTS_DATARDY_BIT   = 6;
	static constexpr unsigned PRTSTS_PRTRDY_BIT    = 0;
	static constexpr unsigned PRTCTL_GRAPHIC_BIT   = 7;
	//constexpr unsigned PRTCTL_POWERUP_BIT = 6;
	static constexpr unsigned PRTCTL_READGEN_BIT   = 5;
	// Time to print a line (nominal speed is 2 lines/s)
	static constexpr unsigned PRT_BUSY_MSEC        = 500;
	// Horizontal start position of graphic print (16 columns from left-hand side)
	static constexpr unsigned PRT_GRAPH_OFFSET     = 16;
	// Height of printhead
	static constexpr unsigned PRT_PH_HEIGHT        = 8;
	// Height of alpha rows
	static constexpr unsigned PRT_ALPHA_HEIGHT     = 10;
	// Width of character cells
	static constexpr unsigned PRT_CELL_WIDTH       = 7;
	// Height of graphic rows
	//constexpr unsigned PRT_GRAPH_HEIGHT   = 8;
	// Width of graphic sweeps
	static constexpr unsigned PRT_GRAPH_WIDTH      = 192;
	// Width of printhead sweeps
	static constexpr unsigned PRT_WIDTH            = 224;

	void hp85(machine_config &config);

private:
	virtual void machine_start() override;
	virtual void machine_reset() override;

	uint32_t screen_update(screen_device &screen, bitmap_rgb32 &bitmap, const rectangle &cliprect);
	DECLARE_WRITE_LINE_MEMBER(vblank_w);

	uint8_t crtc_r(offs_t offset);
	void crtc_w(offs_t offset, uint8_t data);
	void prtlen_w(uint8_t data);
	uint8_t prchar_r();
	void prchar_w(uint8_t data);
	uint8_t prtsts_r();
	void prtctl_w(uint8_t data);
	void prtdat_w(uint8_t data);

	TIMER_DEVICE_CALLBACK_MEMBER(vm_timer);
	TIMER_DEVICE_CALLBACK_MEMBER(prt_busy_timer);

	virtual void cpu_mem_map(address_map &map) override;
	virtual void unmap_optroms(address_space &space) override;

	required_device<screen_device> m_screen;
	required_device<palette_device> m_palette;
	required_device<timer_device> m_vm_timer;
	required_device<timer_device> m_prt_busy_timer;
	required_device<bitbanger_device> m_prt_graph_out;
	required_device<bitbanger_device> m_prt_alpha_out;

	// Character generators
	required_region_ptr<uint8_t> m_chargen;
	required_region_ptr<uint8_t> m_prt_chargen;

	bitmap_rgb32 m_bitmap;
	std::vector<uint8_t> m_video_mem;
	uint16_t m_crt_sad;
	uint16_t m_crt_bad;
	uint8_t m_crt_sts;
	uint8_t m_crt_ctl;
	uint8_t m_crt_read_byte;
	uint8_t m_crt_write_byte;

	// Printer
	uint8_t m_prtlen;
	uint8_t m_prt_idx;
	uint8_t m_prchar_r;
	uint8_t m_prchar_w;
	uint8_t m_prtsts;
	uint8_t m_prtctl;
	uint8_t m_prt_buffer[ PRT_BUFFER_SIZE ];

	attotime time_to_video_mem_availability() const;
	static void get_video_addr(uint16_t addr , uint16_t& byte_addr , bool& lsb_nibble);
	uint8_t video_mem_r(uint16_t addr , uint16_t addr_mask) const;
	void video_mem_w(uint16_t addr , uint16_t addr_mask , uint8_t data);
	void video_mem_read();
	void video_mem_write();

	uint8_t get_prt_font(uint8_t ch , unsigned col) const;
	void prt_format_alpha(unsigned row , uint8_t *pixel_row) const;
	void prt_format_graphic(unsigned row , uint8_t *pixel_row) const;
	void prt_output_row(const uint8_t *pixel_row);
	void prt_do_printing();
};

hp85_state::hp85_state(const machine_config &mconfig, device_type type, const char *tag)
	: hp80_base_state(mconfig , type , tag),
	  m_screen(*this , "screen"),
	  m_palette(*this , "palette"),
	  m_vm_timer(*this , "vm_timer"),
	  m_prt_busy_timer(*this , "prt_busy_timer"),
	  m_prt_graph_out(*this , "prt_graphic"),
	  m_prt_alpha_out(*this , "prt_alpha"),
	  m_chargen(*this , "chargen"),
	  m_prt_chargen(*this , "prt_chargen")
{
}

void hp85_state::machine_start()
{
	hp80_base_state::machine_start();
	m_screen->register_screen_bitmap(m_bitmap);
	m_video_mem.resize(VIDEO_MEM_SIZE);
}

void hp85_state::machine_reset()
{
	hp80_base_state::machine_reset();

	m_crt_sad = 0;
	m_crt_bad = 0;
	m_crt_sts = 0x7c;
	m_crt_ctl = BIT_MASK<uint8_t>(CRT_CTL_POWERDN_BIT) | BIT_MASK<uint8_t>(CRT_CTL_WIPEOUT_BIT);
	m_crt_read_byte = 0;
	m_crt_write_byte = 0;
	m_prtlen = 0;
	m_prt_idx = PRT_BUFFER_SIZE;
	m_prchar_r = 0;
	m_prchar_w = 0;
	m_prtsts = BIT_MASK<uint8_t>(PRTSTS_PAPER_OK_BIT) | BIT_MASK<uint8_t>(PRTSTS_PRTRDY_BIT);
	m_prtctl = 0;
}

uint32_t hp85_state::screen_update(screen_device &screen, bitmap_rgb32 &bitmap, const rectangle &cliprect)
{
	copybitmap(bitmap, m_bitmap, 0, 0, 0, 0, cliprect);
	return 0;
}

WRITE_LINE_MEMBER(hp85_state::vblank_w)
{
	COPY_BIT(!state , m_crt_sts , CRT_STS_DISPLAY_BIT);
	if (state) {
		if (BIT(m_crt_ctl , CRT_CTL_WIPEOUT_BIT) || BIT(m_crt_ctl , CRT_CTL_POWERDN_BIT)) {
			// Blank video
			m_bitmap.fill(rgb_t::black());
		} else if (BIT(m_crt_ctl , CRT_CTL_GRAPHICS_BIT)) {
			// Render graphic video
			uint16_t video_start = m_crt_sad;
			for (unsigned y = 0; y < 192; y++) {
				for (unsigned x = 0; x < 256; x += 8) {
					uint8_t pixels = video_mem_r(video_start , GRAPH_MEM_SIZE / 2 - 1);
					video_start += 2;
					for (unsigned sub_x = 0; sub_x < 8; sub_x++) {
						m_bitmap.pix32(y , x + sub_x) = m_palette->pen(BIT(pixels , 7));
						pixels <<= 1;
					}
				}
			}
		} else {
			// Render alpha video
			uint16_t video_start = m_crt_sad;
			for (unsigned row = 0; row < 192; row += 12) {
				for (unsigned col = 0; col < 256; col += 8) {
					uint8_t ch = video_mem_r(video_start , ALPHA_MEM_SIZE / 2 - 1);
					video_start += 2;
					for (unsigned sub_row = 0; sub_row < 12; sub_row++) {
						uint8_t pixels;
						if (sub_row < 8) {
							pixels = m_chargen[ (ch & 0x7f) * 8 + sub_row ];
						} else if (BIT(ch , 7) && (sub_row == 9 || sub_row == 10)) {
							// Underline
							pixels = 0xfe;
						} else {
							pixels = 0;
						}
						for (unsigned sub_x = 0; sub_x < 8; sub_x++) {
							m_bitmap.pix32(row + sub_row , col + sub_x) = m_palette->pen(BIT(pixels , 7));
							pixels <<= 1;
						}
					}
				}
			}
		}
	}
}

uint8_t hp85_state::crtc_r(offs_t offset)
{
	uint8_t res = 0xff;

	// Read from CRT controller (1MA5)
	switch (offset) {
	case 0:
		// CRTSAD: write-only
		break;

	case 1:
		// CRTBAD: write-only
		break;

	case 2:
		// CRTSTS
		res = m_crt_sts;
		break;

	case 3:
		// CRTDAT
		res = m_crt_read_byte;
		break;
	}
	return res;
}

void hp85_state::crtc_w(offs_t offset, uint8_t data)
{
	// Write to CRT controller (1MA5)
	uint8_t burst_idx = m_cpu->flatten_burst();
	switch (offset) {
	case 0:
		// CRTSAD
		if (burst_idx == 1) {
			m_crt_sad = ((uint16_t)data << 8) | (m_crt_sad & 0xff);
		} else if (burst_idx == 0) {
			m_crt_sad = (m_crt_sad & 0xff00) | data;
		}
		break;

	case 1:
		// CRTBAD
		if (burst_idx == 1) {
			m_crt_bad = ((uint16_t)data << 8) | (m_crt_bad & 0xff);
		} else if (burst_idx == 0) {
			m_crt_bad = (m_crt_bad & 0xff00) | data;
		}
		break;

	case 2:
		// CRTCTL
		m_crt_ctl = data;
		if (BIT(m_crt_ctl , CRT_CTL_RD_RQ_BIT)) {
			BIT_CLR(m_crt_sts , CRT_STS_READY_BIT);
			BIT_SET(m_crt_sts , CRT_STS_BUSY_BIT);
			attotime vm_av = time_to_video_mem_availability();
			m_vm_timer->adjust(vm_av + attotime::from_ticks(CRT_RW_TIME , MASTER_CLOCK));
		}
		break;

	case 3:
		// CRTDAT
		{
			m_crt_write_byte = data;
			BIT_CLR(m_crt_sts , CRT_STS_READY_BIT);
			BIT_SET(m_crt_sts , CRT_STS_BUSY_BIT);
			attotime vm_av = time_to_video_mem_availability();
			m_vm_timer->adjust(vm_av + attotime::from_ticks(CRT_RW_TIME , MASTER_CLOCK));
		}
		break;
	}
}

void hp85_state::prtlen_w(uint8_t data)
{
	if (data == 0) {
		// Advance paper
		memset(m_prt_buffer , 0 , sizeof(m_prt_buffer));
		m_prt_idx = 0;
		prt_do_printing();
	} else {
		m_prtlen = data;
		if (!BIT(m_prtctl , PRTCTL_GRAPHIC_BIT)) {
			m_prt_idx = 0;
		}
	}
}

uint8_t hp85_state::prchar_r()
{
	return m_prchar_r;
}

void hp85_state::prchar_w(uint8_t data)
{
	m_prchar_w = data;
}

uint8_t hp85_state::prtsts_r()
{
	return m_prtsts;
}

void hp85_state::prtctl_w(uint8_t data)
{
	m_prtctl = data;
	BIT_SET(m_prtsts , PRTSTS_PRTRDY_BIT);
	if (BIT(m_prtctl , PRTCTL_READGEN_BIT)) {
		// Reading printer char. gen.
		m_prchar_r = get_prt_font(m_prchar_w , m_prtctl & 7);
		BIT_SET(m_prtsts , PRTSTS_DATARDY_BIT);
	} else {
		BIT_CLR(m_prtsts , PRTSTS_DATARDY_BIT);
	}
	if (BIT(m_prtctl , PRTCTL_GRAPHIC_BIT)) {
		m_prt_idx = 0;
	}
}

void hp85_state::prtdat_w(uint8_t data)
{
	m_cpu->flatten_burst();
	if (m_prt_idx < PRT_BUFFER_SIZE) {
		m_prt_buffer[ m_prt_idx++ ] = data;
		if (m_prt_idx == PRT_BUFFER_SIZE || (!BIT(m_prtctl , PRTCTL_GRAPHIC_BIT) && m_prt_idx >= m_prtlen)) {
			prt_do_printing();
			m_prt_idx = PRT_BUFFER_SIZE;
		}
	}
}

TIMER_DEVICE_CALLBACK_MEMBER(hp85_state::prt_busy_timer)
{
	BIT_SET(m_prtsts , PRTSTS_PRTRDY_BIT);
}

TIMER_DEVICE_CALLBACK_MEMBER(hp85_state::vm_timer)
{
	if (BIT(m_crt_ctl , CRT_CTL_RD_RQ_BIT)) {
		video_mem_read();
	} else {
		video_mem_write();
	}
	BIT_CLR(m_crt_sts , CRT_STS_BUSY_BIT);
}

attotime hp85_state::time_to_video_mem_availability() const
{
	if (BIT(m_crt_ctl , CRT_CTL_WIPEOUT_BIT) || BIT(m_crt_ctl , CRT_CTL_POWERDN_BIT)) {
		// Blank video, immediate access
		return attotime::zero;
	} else if (m_screen->vblank()) {
		// Vertical blanking, immediate access
		return attotime::zero;
	} else {
		// In the active part, wait until vertical blanking
		return m_screen->time_until_vblank_start();
	}
}

void hp85_state::get_video_addr(uint16_t addr , uint16_t& byte_addr , bool& lsb_nibble)
{
	byte_addr = (addr / 2) & (VIDEO_MEM_SIZE - 1);
	lsb_nibble = BIT(addr , 0);
}

uint8_t hp85_state::video_mem_r(uint16_t addr , uint16_t addr_mask) const
{
	uint16_t byte_addr;
	bool lsb_nibble;

	get_video_addr(addr , byte_addr , lsb_nibble);

	byte_addr &= addr_mask;

	uint8_t res;

	if (lsb_nibble) {
		res = (m_video_mem[ byte_addr ] & 0x0f) << 4;
		byte_addr = (byte_addr + 1) & addr_mask;
		res |= (m_video_mem[ byte_addr ] & 0xf0) >> 4;
	} else {
		res = m_video_mem[ byte_addr ];
	}

	return res;
}

void hp85_state::video_mem_w(uint16_t addr , uint16_t addr_mask , uint8_t data)
{
	uint16_t byte_addr;
	bool lsb_nibble;

	get_video_addr(addr , byte_addr , lsb_nibble);

	byte_addr &= addr_mask;

	if (lsb_nibble) {
		m_video_mem[ byte_addr ] = (m_video_mem[ byte_addr ] & 0xf0) | (data >> 4);
		byte_addr = (byte_addr + 1) & addr_mask;
		m_video_mem[ byte_addr ] = (m_video_mem[ byte_addr ] & 0x0f) | (data << 4);
	} else {
		m_video_mem[ byte_addr ] = data;
	}
}

void hp85_state::video_mem_read()
{
	uint16_t mask;

	if (BIT(m_crt_ctl , CRT_CTL_GRAPHICS_BIT)) {
		mask = GRAPH_MEM_SIZE / 2 - 1;
	} else {
		mask = ALPHA_MEM_SIZE / 2 - 1;
	}
	m_crt_read_byte = video_mem_r(m_crt_bad , mask);
	m_crt_bad += 2;
	BIT_CLR(m_crt_ctl , CRT_CTL_RD_RQ_BIT);
	BIT_SET(m_crt_sts , CRT_STS_READY_BIT);
}

void hp85_state::video_mem_write()
{
	uint16_t mask;

	if (BIT(m_crt_ctl , CRT_CTL_GRAPHICS_BIT)) {
		mask = GRAPH_MEM_SIZE / 2 - 1;
	} else {
		mask = ALPHA_MEM_SIZE / 2 - 1;
	}
	video_mem_w(m_crt_bad , mask , m_crt_write_byte);
	m_crt_bad += 2;
}

uint8_t hp85_state::get_prt_font(uint8_t ch , unsigned col) const
{
	// Bit 7: pixel @ top
	// Bit 0: pixel @ bottom
	uint8_t column = m_prt_chargen[ (((unsigned)ch & 0x7f) << 3) | col ];
	if (BIT(ch , 7)) {
		// Underline
		BIT_SET(column , 0);
	}
	return column;
}

void hp85_state::prt_format_alpha(unsigned row , uint8_t *pixel_row) const
{
	memset(pixel_row , 0 , PRT_WIDTH);
	for (unsigned i = 0; i < m_prt_idx; i++) {
		for (unsigned j = 0; j < PRT_CELL_WIDTH; j++) {
			uint8_t pixel_col = get_prt_font(m_prt_buffer[ i ] , j);
			*pixel_row++ = BIT(pixel_col , 7 - row);
		}
	}
}

void hp85_state::prt_format_graphic(unsigned row , uint8_t *pixel_row) const
{
	memset(pixel_row , 0 , PRT_WIDTH);
	pixel_row += PRT_GRAPH_OFFSET;
	for (unsigned i = 0; i < PRT_GRAPH_WIDTH; i++) {
		*pixel_row++ = BIT(m_prt_buffer[ i ] , 7 - row);
	}
}

void hp85_state::prt_output_row(const uint8_t *pixel_row)
{
	for (unsigned i = 0; i < PRT_WIDTH; i++) {
		m_prt_graph_out->output(*pixel_row++ != 0 ? '*' : ' ');
	}
	m_prt_graph_out->output('\n');
}

void hp85_state::prt_do_printing()
{
	uint8_t pixel_row[ PRT_WIDTH ];
	for (unsigned row = 0; row < PRT_PH_HEIGHT; row++) {
		if (BIT(m_prtctl , PRTCTL_GRAPHIC_BIT)) {
			prt_format_graphic(row , pixel_row);
		} else {
			prt_format_alpha(row , pixel_row);
		}
		prt_output_row(pixel_row);
	}
	if (!BIT(m_prtctl , PRTCTL_GRAPHIC_BIT)) {
		// Dump the text line to alpha bitbanger
		for (unsigned i = 0; i < m_prt_idx; i++) {
			m_prt_alpha_out->output(m_prt_buffer[ i ]);
		}
		m_prt_alpha_out->output('\n');
		// Add 2 empty lines
		memset(pixel_row , 0 , PRT_WIDTH);
		for (unsigned i = 0; i < (PRT_ALPHA_HEIGHT - PRT_PH_HEIGHT); i++) {
			prt_output_row(pixel_row);
		}
	}
	// Start busy timer
	BIT_CLR(m_prtsts , PRTSTS_PRTRDY_BIT);
	m_prt_busy_timer->adjust(attotime::from_msec(PRT_BUSY_MSEC));
}

#define IOP_MASK(x) BIT_MASK<ioport_value>((x))

static INPUT_PORTS_START(hp85)
	// Keyboard is arranged in a matrix of 10 rows and 8 columns. In addition there are 3 keys with
	// dedicated input lines: SHIFT, SHIFT LOCK & CONTROL.
	// A key on row "r"=[0..9] and column "c"=[0..7] is mapped to bit "b" of KEY"n" input, where
	// n = r / 4
	// b = (r % 4) * 8 + c
	PORT_START("KEY0")
	PORT_BIT(IOP_MASK(0) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_DOWN) PORT_CHAR(UCHAR_MAMEKEY(DOWN)) PORT_NAME("Down AUTO") // 0,0: Down / Auto
	PORT_BIT(IOP_MASK(1) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_UP) PORT_CHAR(UCHAR_MAMEKEY(UP)) PORT_NAME("Up Home")       // 0,1: Up / Home
	PORT_BIT(IOP_MASK(2) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F4) PORT_CHAR(UCHAR_MAMEKEY(F4)) PORT_NAME("k4 k8")         // 0,2: k4 / k8
	PORT_BIT(IOP_MASK(3) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F3) PORT_CHAR(UCHAR_MAMEKEY(F3)) PORT_NAME("k3 k7")         // 0,3: k3 / k7
	PORT_BIT(IOP_MASK(4) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F2) PORT_CHAR(UCHAR_MAMEKEY(F2)) PORT_NAME("k2 k6")         // 0,4: k2 / k6
	PORT_BIT(IOP_MASK(5) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F1) PORT_CHAR(UCHAR_MAMEKEY(F1)) PORT_NAME("k1 k5")         // 0,5: k1 / k5
	PORT_BIT(IOP_MASK(6) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("LABEL KEY")                                                        // 0,6: LABEL KEY
	PORT_BIT(IOP_MASK(7) , IP_ACTIVE_HIGH , IPT_UNUSED)                                                                                 // 0,7: N/U
	PORT_BIT(IOP_MASK(8) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_8) PORT_CHAR('8') PORT_CHAR('*')                            // 1,0: 8
	PORT_BIT(IOP_MASK(9) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_7) PORT_CHAR('7') PORT_CHAR('&')                            // 1,1: 7
	PORT_BIT(IOP_MASK(10) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_6) PORT_CHAR('6') PORT_CHAR('^')                           // 1,2: 6
	PORT_BIT(IOP_MASK(11) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_5) PORT_CHAR('5') PORT_CHAR('%')                           // 1,3: 5
	PORT_BIT(IOP_MASK(12) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_4) PORT_CHAR('4') PORT_CHAR('$')                           // 1,4: 4
	PORT_BIT(IOP_MASK(13) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_3) PORT_CHAR('3') PORT_CHAR('#')                           // 1,5: 3
	PORT_BIT(IOP_MASK(14) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_2) PORT_CHAR('2') PORT_CHAR('@')                           // 1,6: 2
	PORT_BIT(IOP_MASK(15) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_1) PORT_CHAR('1') PORT_CHAR('!')                           // 1,7: 1
	PORT_BIT(IOP_MASK(16) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_I) PORT_CHAR('I') PORT_CHAR('i')                           // 2,0: I
	PORT_BIT(IOP_MASK(17) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_U) PORT_CHAR('U') PORT_CHAR('u')                           // 2,1: U
	PORT_BIT(IOP_MASK(18) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_Y) PORT_CHAR('Y') PORT_CHAR('y')                           // 2,2: Y
	PORT_BIT(IOP_MASK(19) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_T) PORT_CHAR('T') PORT_CHAR('t')                           // 2,3: T
	PORT_BIT(IOP_MASK(20) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_R) PORT_CHAR('R') PORT_CHAR('r')                           // 2,4: R
	PORT_BIT(IOP_MASK(21) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_E) PORT_CHAR('E') PORT_CHAR('e')                           // 2,5: E
	PORT_BIT(IOP_MASK(22) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_W) PORT_CHAR('W') PORT_CHAR('w')                           // 2,6: W
	PORT_BIT(IOP_MASK(23) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_Q) PORT_CHAR('Q') PORT_CHAR('q')                           // 2,7: Q
	PORT_BIT(IOP_MASK(24) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_K) PORT_CHAR('K') PORT_CHAR('k')                           // 3,0: K
	PORT_BIT(IOP_MASK(25) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_J) PORT_CHAR('J') PORT_CHAR('j')                           // 3,1: J
	PORT_BIT(IOP_MASK(26) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_H) PORT_CHAR('H') PORT_CHAR('h')                           // 3,2: H
	PORT_BIT(IOP_MASK(27) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_G) PORT_CHAR('G') PORT_CHAR('g')                           // 3,3: G
	PORT_BIT(IOP_MASK(28) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F) PORT_CHAR('F') PORT_CHAR('f')                           // 3,4: F
	PORT_BIT(IOP_MASK(29) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_D) PORT_CHAR('D') PORT_CHAR('d')                           // 3,5: D
	PORT_BIT(IOP_MASK(30) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_S) PORT_CHAR('S') PORT_CHAR('s')                           // 3,6: S
	PORT_BIT(IOP_MASK(31) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_A) PORT_CHAR('A') PORT_CHAR('a')                           // 3,7: A

	PORT_START("KEY1")
	PORT_BIT(IOP_MASK(0) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_M) PORT_CHAR('M') PORT_CHAR('m')                            // 4,0: M
	PORT_BIT(IOP_MASK(1) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_N) PORT_CHAR('N') PORT_CHAR('n')                            // 4,1: N
	PORT_BIT(IOP_MASK(2) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_B) PORT_CHAR('B') PORT_CHAR('b')                            // 4,2: B
	PORT_BIT(IOP_MASK(3) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_V) PORT_CHAR('V') PORT_CHAR('v')                            // 4,3: V
	PORT_BIT(IOP_MASK(4) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_C) PORT_CHAR('C') PORT_CHAR('c')                            // 4,4: C
	PORT_BIT(IOP_MASK(5) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_X) PORT_CHAR('X') PORT_CHAR('x')                            // 4,5: X
	PORT_BIT(IOP_MASK(6) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_Z) PORT_CHAR('Z') PORT_CHAR('z')                            // 4,6: Z
	PORT_BIT(IOP_MASK(7) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_SPACE) PORT_CHAR(' ')                                       // 4,7: Space
	PORT_BIT(IOP_MASK(8) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_COMMA) PORT_CHAR(',') PORT_CHAR('<')                        // 5,0: ,
	PORT_BIT(IOP_MASK(9) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_STOP) PORT_CHAR('.') PORT_CHAR('>')                         // 5,1: .
	PORT_BIT(IOP_MASK(10) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_SLASH) PORT_CHAR('/') PORT_CHAR('?')                       // 5,2: / ?
	PORT_BIT(IOP_MASK(11) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("PAUSE STEP")                                                      // 5,3: PAUSE / STEP
	PORT_BIT(IOP_MASK(12) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("RUN")                                                             // 5,4: RUN
	PORT_BIT(IOP_MASK(13) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_PLUS_PAD) PORT_NAME("KP +")                                // 5,5: KP +
	PORT_BIT(IOP_MASK(14) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_MINUS_PAD) PORT_NAME("KP -")                               // 5,6: KP -
	PORT_BIT(IOP_MASK(15) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_ASTERISK) PORT_NAME("KP *")                                // 5,7: KP * (not sure)
	PORT_BIT(IOP_MASK(16) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_L) PORT_CHAR('L') PORT_CHAR('l')                           // 6,0: L
	PORT_BIT(IOP_MASK(17) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_COLON) PORT_CHAR(';') PORT_CHAR(':')                       // 6,1: ;
	PORT_BIT(IOP_MASK(18) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_QUOTE) PORT_CHAR('\'') PORT_CHAR('"')                      // 6,2: ' "
	PORT_BIT(IOP_MASK(19) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_ENTER) PORT_CHAR(13) PORT_NAME("END LINE")                 // 6,3: END LINE
	PORT_BIT(IOP_MASK(20) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("LIST P LST")                                                      // 6,4: LIST / P LST
	PORT_BIT(IOP_MASK(21) , IP_ACTIVE_HIGH , IPT_UNUSED)                                                                                // 6,5: N/U
	PORT_BIT(IOP_MASK(22) , IP_ACTIVE_HIGH , IPT_UNUSED)                                                                                // 6,6: N/U
	PORT_BIT(IOP_MASK(23) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_SLASH_PAD) PORT_NAME("KP /")                               // 6,7: KP /
	PORT_BIT(IOP_MASK(24) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_O) PORT_CHAR('O') PORT_CHAR('o')                           // 7,0: O
	PORT_BIT(IOP_MASK(25) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_P) PORT_CHAR('P') PORT_CHAR('p')                           // 7,1: P
	PORT_BIT(IOP_MASK(26) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_OPENBRACE) PORT_CHAR('(') PORT_CHAR('[')                   // 7,2: ( [
	PORT_BIT(IOP_MASK(27) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_CLOSEBRACE) PORT_CHAR(')') PORT_CHAR(']')                  // 7,3: ) ]
	PORT_BIT(IOP_MASK(28) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("CONT SCRATCH")                                                    // 7,4: CONT / SCRATCH
	PORT_BIT(IOP_MASK(29) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("-LINE CLEAR")                                                     // 7,5: -LINE / CLEAR
	PORT_BIT(IOP_MASK(30) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME(") INIT")                                                          // 7,6: ) INIT
	PORT_BIT(IOP_MASK(31) , IP_ACTIVE_HIGH , IPT_UNUSED)                                                                                // 7,7: N/U

	PORT_START("KEY2")
	PORT_BIT(IOP_MASK(0) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_9) PORT_CHAR('9')                                           // 8,0: 9
	PORT_BIT(IOP_MASK(1) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_0) PORT_CHAR('0')                                           // 8,1: 0
	PORT_BIT(IOP_MASK(2) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_MINUS) PORT_CHAR('-') PORT_CHAR('_')                        // 8,2: - _
	PORT_BIT(IOP_MASK(3) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_EQUALS) PORT_CHAR('=') PORT_CHAR('+')                       // 8,3: = +
	PORT_BIT(IOP_MASK(4) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_TILDE) PORT_CHAR('\\') PORT_CHAR('|')                       // 8,4: \ |
	PORT_BIT(IOP_MASK(5) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_BACKSPACE) PORT_CHAR(8)                                     // 8,5: BS
	PORT_BIT(IOP_MASK(6) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("( RESET")                                                          // 8,6: ( RESET
	PORT_BIT(IOP_MASK(7) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("^ RESLT")                                                          // 8,7: ^ / RESLT
	PORT_BIT(IOP_MASK(8) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_LEFT) PORT_CHAR(UCHAR_MAMEKEY(LEFT))    PORT_NAME("Left GRAPH") // 9,0: LEFT / GRAPH
	PORT_BIT(IOP_MASK(9) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_RIGHT) PORT_CHAR(UCHAR_MAMEKEY(RIGHT)) PORT_NAME("Right COPY")  // 9,1: RIGHT / COPY
	PORT_BIT(IOP_MASK(10) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_INSERT) PORT_NAME("RPL INS")                               // 9,2: RPL / INS
	PORT_BIT(IOP_MASK(11) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_DEL) PORT_NAME("-CHAR DEL")                                // 9,3: -CHAR / DEL
	PORT_BIT(IOP_MASK(12) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_PGDN) PORT_NAME("ROLL")                                    // 9,4: ROLL
	PORT_BIT(IOP_MASK(13) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("LOAD REW")                                                        // 9,5: LOAD / REW
	PORT_BIT(IOP_MASK(14) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("STORE TEST")                                                      // 9,6: STORE / TEST
	PORT_BIT(IOP_MASK(15) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("PAPER ADVANCE")                                                   // 9,7: PAPER ADVANCE

	PORT_START("MODKEYS")
	PORT_BIT(IOP_MASK(0) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_LSHIFT) PORT_CHAR(UCHAR_SHIFT_1)                // Shift
	PORT_BIT(IOP_MASK(1) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_CAPSLOCK) PORT_TOGGLE PORT_NAME("Shift lock")   // Shift lock
	PORT_BIT(IOP_MASK(2) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_LCONTROL) PORT_CHAR(UCHAR_SHIFT_2)              // Control

INPUT_PORTS_END

void hp85_state::cpu_mem_map(address_map &map)
{
	hp80_base_state::cpu_mem_map(map);
	map(0x8000, 0xbfff).ram();
	map(0xff04, 0xff07).rw(FUNC(hp85_state::crtc_r), FUNC(hp85_state::crtc_w));
	map(0xff08, 0xff09).rw("tape", FUNC(hp_1ma6_device::reg_r), FUNC(hp_1ma6_device::reg_w));
	map(0xff0c, 0xff0c).w(FUNC(hp85_state::prtlen_w));
	map(0xff0d, 0xff0d).rw(FUNC(hp85_state::prchar_r), FUNC(hp85_state::prchar_w));
	map(0xff0e, 0xff0e).rw(FUNC(hp85_state::prtsts_r), FUNC(hp85_state::prtctl_w));
	map(0xff0f, 0xff0f).w(FUNC(hp85_state::prtdat_w));
}

void hp85_state::unmap_optroms(address_space &space)
{
	// OptROMs are in rombanks [01..FF]
	space.unmap_read(HP80_OPTROM_SIZE * 1 , HP80_OPTROM_SIZE * 0x100 - 1);
}

void hp85_state::hp85(machine_config &config)
{
	hp80_base(config);

	m_cpu->set_addrmap(AS_PROGRAM, &hp85_state::cpu_mem_map);

	SCREEN(config, m_screen, SCREEN_TYPE_RASTER);
	m_screen->set_raw(MASTER_CLOCK / 2 , 312 , 0 , 256 , 256 , 0 , 192);
	m_screen->set_screen_update(FUNC(hp85_state::screen_update));
	m_screen->screen_vblank().set(FUNC(hp85_state::vblank_w));
	PALETTE(config, m_palette, palette_device::MONOCHROME);
	TIMER(config, m_vm_timer).configure_generic(FUNC(hp85_state::vm_timer));

	TIMER(config, m_prt_busy_timer).configure_generic(FUNC(hp85_state::prt_busy_timer));

	// Tape drive
	HP_1MA6(config, "tape", 0);

	// Printer output
	BITBANGER(config, m_prt_graph_out, 0);
	BITBANGER(config, m_prt_alpha_out, 0);

	SOFTWARE_LIST(config, "optrom_list").set_original("hp85_rom");
}

ROM_START(hp85)
	ROM_REGION(0x6000 , "cpu" , 0)
	ROM_LOAD("romsys1.bin" , 0x0000 , 0x2000 , CRC(7724b1e9) SHA1(7836195389de2ac0eab7199835f5dc8f7dc41729))
	ROM_LOAD("romsys2.bin" , 0x2000 , 0x2000 , CRC(50a85263) SHA1(3cf1d08749103ee245d572550ba1b053ffc7ef57))
	ROM_LOAD("romsys3.bin" , 0x4000 , 0x2000 , CRC(0df385f0) SHA1(4c5ce5afd28f6d776f16cabbbbcc09769ff306b7))

	ROM_REGION(0x2000 , "rombank" , 0)
	ROM_LOAD("rom000.bin" , 0 , 0x2000 , CRC(e13b8ae3) SHA1(2374618d25d1a000ddb534ae4f55ebd98ce0fff3))

	ROM_REGION(0x400 , "chargen" , 0)
	ROM_LOAD("chrgen.bin" , 0 , 0x400 , CRC(9c402544) SHA1(32634fc73c1544aeeefda62ebb10349c5b40729f))

	ROM_REGION(0x400 , "prt_chargen" , 0)
	ROM_LOAD("prt_chrgen.bin" , 0 , 0x400 , CRC(abeaba27) SHA1(fbf6bdd5d96df6aa5963f8cdfdeb180402b1cc85))
ROM_END

// ************
//  hp86_state
// ************
class hp86_state : public hp80_base_state
{
public:
	hp86_state(const machine_config &mconfig, device_type type, const char *tag, bool has_int_keyb = false);

	// **** Constants of HP86 ****
	static constexpr unsigned MASTER_CLOCK  = 12260000;
	static constexpr unsigned VIDEO_MEM_SIZE    = 16384;
	static constexpr uint16_t VIDEO_ADDR_MASK   = VIDEO_MEM_SIZE - 1;
	static constexpr uint16_t VIDEO_ALPHA_N_END = 0x10e0;
	static constexpr uint16_t VIDEO_ALPHA_A_END = 0x3fc0;
	static constexpr uint16_t VIDEO_GRAPH_START = 0x10e0;
	// Time to read/write a byte in video memory (in master clock cycles) TBC
	static constexpr unsigned CRT_RW_TIME       = 24;
	// Duration of on/off states of run light (ms)
	static constexpr unsigned RULITE_ON_MS      = 373;
	static constexpr unsigned RULITE_OFF_MS     = 187;

	void hp86(machine_config &config);

protected:
	virtual void machine_start() override;
	virtual void machine_reset() override;

	virtual void cpu_mem_map(address_map &map) override;
	virtual void rombank_mem_map(address_map &map) override;
	virtual void unmap_optroms(address_space &space) override;

private:
	uint32_t screen_update(screen_device &screen, bitmap_rgb32 &bitmap, const rectangle &cliprect);
	DECLARE_WRITE_LINE_MEMBER(vblank_w);
	attotime time_to_video_mem_availability() const;

	required_device<screen_device> m_screen;
	required_device<palette_device> m_palette;
	required_device<timer_device> m_vm_timer;
	required_device<ram_device> m_ram;
	output_finder<> m_run_light;
	required_device<timer_device> m_rulite_timer;

	// Character generator
	required_region_ptr<uint8_t> m_chargen;

	// Video
	bitmap_rgb32 m_bitmap;
	std::unique_ptr<uint8_t []> m_video_mem;
	uint16_t m_crt_sad;
	uint16_t m_crt_bad;
	uint8_t m_crt_sts;
	uint8_t m_crt_byte;
	bool m_crt_rdrq;

	// Extended RAM access
	uint32_t m_emc_ptr1;    // PTR1 (24 bits)
	uint32_t m_emc_ptr2;    // PTR2 (24 bits)
	uint8_t m_emc_disp;     // Displacement (3 bits)
	bool m_emc_mult;        // Multibyte access
	uint8_t m_emc_mode;     // Mode (3 bits)
	enum {
		  EMC_IDLE,
		  EMC_INDIRECT_1,
		  EMC_INDIRECT_2
	};
	int m_emc_state;        // EMC indirect access state
	bool m_lmard;           // LMARD cycles in progress

	// Run light
	bool m_rulite;

	void crtsad_w(uint8_t data);
	void crtbad_w(uint8_t data);
	uint8_t crtsts_r();
	void crtsts_w(uint8_t data);
	uint8_t crtdat_r();
	void crtdat_w(uint8_t data);
	TIMER_DEVICE_CALLBACK_MEMBER(vm_timer);
	uint16_t get_video_limit() const;
	void rulite_w(uint8_t data);
	TIMER_DEVICE_CALLBACK_MEMBER(rulite_timer);
	uint8_t direct_ram_r(offs_t offset);
	void direct_ram_w(offs_t offset, uint8_t data);
	uint8_t emc_r(offs_t offset);
	void emc_w(offs_t offset, uint8_t data);
	uint32_t& get_ptr();
	void ptr12_decrement();
	DECLARE_WRITE_LINE_MEMBER(lma_cycle);
	void opcode_cb(uint8_t opcode);
};

hp86_state::hp86_state(const machine_config &mconfig, device_type type, const char *tag, bool has_int_keyb)
	: hp80_base_state(mconfig , type , tag , has_int_keyb)
	, m_screen(*this , "screen")
	, m_palette(*this , "palette")
	, m_vm_timer(*this , "vm_timer")
	, m_ram(*this , "ram")
	, m_run_light(*this , "run_light")
	, m_rulite_timer(*this , "rulite_timer")
	, m_chargen(*this , "chargen")
{
}

void hp86_state::cpu_mem_map(address_map &map)
{
	hp80_base_state::cpu_mem_map(map);
	map(0x8000 , 0xfeff).rw(FUNC(hp86_state::direct_ram_r) , FUNC(hp86_state::direct_ram_w));
	map(0xffc0 , 0xffc0).w(FUNC(hp86_state::crtsad_w));
	map(0xffc1 , 0xffc1).w(FUNC(hp86_state::crtbad_w));
	map(0xffc2 , 0xffc2).rw(FUNC(hp86_state::crtsts_r) , FUNC(hp86_state::crtsts_w));
	map(0xffc3 , 0xffc3).rw(FUNC(hp86_state::crtdat_r) , FUNC(hp86_state::crtdat_w));
	map(0xffc4 , 0xffc4).w(FUNC(hp86_state::rulite_w));
	map(0xffc8 , 0xffcf).rw(FUNC(hp86_state::emc_r) , FUNC(hp86_state::emc_w));
}

void hp86_state::rombank_mem_map(address_map &map)
{
	hp80_base_state::rombank_mem_map(map);
	// rom001 (graphics)
	map(0x2000, 0x3fff).rom();
	// rom320 (mass memory)
	// rom321 (electronic disk)
	map(0x1a0000 , 0x1a3fff).rom();
}

void hp86_state::unmap_optroms(address_space &space)
{
	// OptROMs are in rombanks [02..CF] & [D2..FF]
	space.unmap_read(HP80_OPTROM_SIZE * 2 , HP80_OPTROM_SIZE * 0xd0 - 1);
	space.unmap_read(HP80_OPTROM_SIZE * 0xd2 , HP80_OPTROM_SIZE * 0x100 - 1);
}

void hp86_state::hp86(machine_config &config)
{
	hp80_base(config);

	m_cpu->opcode_cb().set(FUNC(hp86_state::opcode_cb));
	m_cpu->lma_cb().set(FUNC(hp86_state::lma_cycle));

	RAM(config , m_ram).set_default_size("128K");

	SCREEN(config, m_screen, SCREEN_TYPE_RASTER);
	m_screen->set_raw(MASTER_CLOCK , 784 , 0 , 640 , 261 , 0 , 240);
	m_screen->set_screen_update(FUNC(hp86_state::screen_update));
	m_screen->screen_vblank().set(FUNC(hp86_state::vblank_w));
	PALETTE(config, m_palette, palette_device::MONOCHROME);

	config.set_default_layout(layout_hp86b);

	TIMER(config, m_vm_timer).configure_generic(FUNC(hp86_state::vm_timer));
	TIMER(config, m_rulite_timer).configure_generic(FUNC(hp86_state::rulite_timer));

	m_io_slots[ 0 ]->option_set("hpib" , HP82937_IO_CARD);

	SOFTWARE_LIST(config, "optrom_list").set_original("hp86_rom");
}

void hp86_state::machine_start()
{
	hp80_base_state::machine_start();

	m_run_light.resolve();

	m_screen->register_screen_bitmap(m_bitmap);
	m_video_mem = std::make_unique<uint8_t[]>(VIDEO_MEM_SIZE);

	save_pointer(NAME(m_video_mem) , VIDEO_MEM_SIZE);
	save_item(NAME(m_crt_sad));
	save_item(NAME(m_crt_bad));
	save_item(NAME(m_emc_ptr1));
	save_item(NAME(m_emc_ptr2));
	save_item(NAME(m_emc_disp));
	save_item(NAME(m_emc_mult));
	save_item(NAME(m_emc_mode));
	save_item(NAME(m_rulite));
}

void hp86_state::machine_reset()
{
	hp80_base_state::machine_reset();

	m_crt_sad = 0;
	m_crt_sts = 0x06;
	m_crt_rdrq = false;
	m_emc_state = EMC_IDLE;
	m_rulite = true;
	m_run_light = true;
	m_rulite_timer->reset();
}

uint32_t hp86_state::screen_update(screen_device &screen, bitmap_rgb32 &bitmap, const rectangle &cliprect)
{
	copybitmap(bitmap, m_bitmap, 0, 0, 0, 0, cliprect);
	return 0;
}

WRITE_LINE_MEMBER(hp86_state::vblank_w)
{
	COPY_BIT(state , m_crt_sts , 4);
	if (state) {
		if (m_crt_sts & 0x06) {
			// Blank display
			m_bitmap.fill(rgb_t::black());
		} else {
			// Load palette for normal or inverse video
			if (BIT(m_crt_sts , 5)) {
				m_palette->set_pen_color(0 , rgb_t::green());
				m_palette->set_pen_color(1 , rgb_t::black());
			} else {
				m_palette->set_pen_color(1 , rgb_t::green());
				m_palette->set_pen_color(0 , rgb_t::black());
			}
			uint16_t limit = get_video_limit();
			if (BIT(m_crt_sts , 7)) {
				uint16_t video_ptr = VIDEO_GRAPH_START;
				unsigned dots_per_line;
				unsigned offset;
				if (BIT(m_crt_sts , 6)) {
					// GRAPH ALL mode
					dots_per_line = 544;
					offset = 48;
				} else {
					// GRAPH NORMAL mode
					dots_per_line = 400;
					offset = 120;
				}
				// Fill black bars on either side of the display
				m_bitmap.fill(m_palette->pen(0) , rectangle(0 , offset - 1 , 0 , 239));
				m_bitmap.fill(m_palette->pen(0) , rectangle(640 - offset , 639 , 0 , 239));

				for (unsigned y = 0; y < 240; y++) {
					for (unsigned x = offset; x < (dots_per_line + offset); x += 8) {
						uint8_t pixels = m_video_mem[ video_ptr ];
						if (++video_ptr >= limit) {
							video_ptr = 0;
						}
						m_bitmap.pix32(y , x) = m_palette->pen(BIT(pixels , 7));
						m_bitmap.pix32(y , x + 1) = m_palette->pen(BIT(pixels , 6));
						m_bitmap.pix32(y , x + 2) = m_palette->pen(BIT(pixels , 5));
						m_bitmap.pix32(y , x + 3) = m_palette->pen(BIT(pixels , 4));
						m_bitmap.pix32(y , x + 4) = m_palette->pen(BIT(pixels , 3));
						m_bitmap.pix32(y , x + 5) = m_palette->pen(BIT(pixels , 2));
						m_bitmap.pix32(y , x + 6) = m_palette->pen(BIT(pixels , 1));
						m_bitmap.pix32(y , x + 7) = m_palette->pen(BIT(pixels , 0));
					}
				}
			} else {
				unsigned rows;
				unsigned lines_per_row;
				if (BIT(m_crt_sts , 3)) {
					// 24 rows
					rows = 24;
					lines_per_row = 10;
				} else {
					// 16 rows
					rows = 16;
					lines_per_row = 15;
				}
				uint16_t video_ptr = m_crt_sad;
				for (unsigned row = 0; row < rows; row++) {
					for (unsigned col = 0; col < 640; col += 8) {
						uint8_t ch = m_video_mem[ video_ptr ];
						if (++video_ptr >= limit) {
							video_ptr = 0;
						}
						for (unsigned sub_row = 0; sub_row < lines_per_row; sub_row++) {
							uint8_t pixels;
							if (sub_row < 10) {
								pixels = m_chargen[ (ch & 0x7f) * 10 + sub_row ];
							} else {
								pixels = 0;
							}
							if (BIT(ch , 7)) {
								pixels = ~pixels;
							}
							unsigned y = row * lines_per_row + sub_row;
							m_bitmap.pix32(y , col) = m_palette->pen(BIT(pixels , 7));
							m_bitmap.pix32(y , col + 1) = m_palette->pen(BIT(pixels , 6));
							m_bitmap.pix32(y , col + 2) = m_palette->pen(BIT(pixels , 5));
							m_bitmap.pix32(y , col + 3) = m_palette->pen(BIT(pixels , 4));
							m_bitmap.pix32(y , col + 4) = m_palette->pen(BIT(pixels , 3));
							m_bitmap.pix32(y , col + 5) = m_palette->pen(BIT(pixels , 2));
							m_bitmap.pix32(y , col + 6) = m_palette->pen(BIT(pixels , 1));
							m_bitmap.pix32(y , col + 7) = m_palette->pen(BIT(pixels , 0));
						}
					}
				}
			}
		}
	}
}

attotime hp86_state::time_to_video_mem_availability() const
{
	if ((m_crt_sts & 0x06) != 0 || m_screen->vblank() || m_screen->hblank()) {
		// Blank video or vertical/horizontal retrace: immediate access
		return attotime::zero;
	} else {
		// In the active part, wait until next retrace
		return m_screen->time_until_pos(m_screen->vpos() , 640);
	}
}

void hp86_state::crtsad_w(uint8_t data)
{
	auto burst_idx = m_cpu->flatten_burst();
	if (burst_idx == 0) {
		m_crt_sad = (m_crt_sad & 0xff00) | data;
	} else if (burst_idx == 1) {
		m_crt_sad = (uint16_t(data) << 8) | (m_crt_sad & 0xff);
		m_crt_sad &= VIDEO_ADDR_MASK;
	}
}

void hp86_state::crtbad_w(uint8_t data)
{
	auto burst_idx = m_cpu->flatten_burst();
	if (burst_idx == 0) {
		m_crt_bad = (m_crt_bad & 0xff00) | data;
	} else if (burst_idx == 1) {
		m_crt_bad = (uint16_t(data) << 8) | (m_crt_bad & 0xff);
		m_crt_bad &= VIDEO_ADDR_MASK;
	}
}

uint8_t hp86_state::crtsts_r()
{
	return m_crt_sts;
}

void hp86_state::crtsts_w(uint8_t data)
{
	m_crt_sts = (m_crt_sts & 0x11) | (data & ~0x11);
	if (BIT(data , 0)) {
		// Read request
		BIT_SET(m_crt_sts , 0);
		m_crt_rdrq = true;
		attotime vm_av = time_to_video_mem_availability();
		m_vm_timer->adjust(vm_av + attotime::from_ticks(CRT_RW_TIME , MASTER_CLOCK));
	}
}

uint8_t hp86_state::crtdat_r()
{
	return m_crt_byte;
}

void hp86_state::crtdat_w(uint8_t data)
{
	m_crt_byte = data;
	BIT_SET(m_crt_sts , 0);
	m_crt_rdrq = false;
	attotime vm_av = time_to_video_mem_availability();
	m_vm_timer->adjust(vm_av + attotime::from_ticks(CRT_RW_TIME , MASTER_CLOCK));
}

TIMER_DEVICE_CALLBACK_MEMBER(hp86_state::vm_timer)
{
	if (m_crt_rdrq) {
		m_crt_rdrq = false;
		m_crt_byte = m_video_mem[ m_crt_bad ];
	} else {
		m_video_mem[ m_crt_bad ] = m_crt_byte;
	}
	BIT_CLR(m_crt_sts , 0);
	if (++m_crt_bad >= get_video_limit()) {
		m_crt_bad = 0;
	}
}

uint16_t hp86_state::get_video_limit() const
{
	if (BIT(m_crt_sts , 7)) {
		// Graphic mode
		return VIDEO_MEM_SIZE;
	} else if (BIT(m_crt_sts , 6)) {
		// ALPHA ALL mode
		return VIDEO_ALPHA_A_END;
	} else {
		// ALPHA NORMAL mode
		return VIDEO_ALPHA_N_END;
	}
}

void hp86_state::rulite_w(uint8_t data)
{
	bool new_rulite = !BIT(data , 0);

	if (m_rulite && !new_rulite) {
		m_run_light = false;
		m_rulite_timer->adjust(attotime::from_msec(RULITE_OFF_MS));
	} else if (!m_rulite && new_rulite) {
		m_run_light = true;
		m_rulite_timer->reset();
	}
	m_rulite = new_rulite;
}

TIMER_DEVICE_CALLBACK_MEMBER(hp86_state::rulite_timer)
{
	m_run_light = !m_run_light;
	m_rulite_timer->adjust(attotime::from_msec(m_run_light ? RULITE_ON_MS : RULITE_OFF_MS));
}

uint8_t hp86_state::direct_ram_r(offs_t offset)
{
	return m_ram->read(offset);
}

void hp86_state::direct_ram_w(offs_t offset, uint8_t data)
{
	m_ram->write(offset , data);
}

uint8_t hp86_state::emc_r(offs_t offset)
{
	auto idx = m_cpu->flatten_burst();
	uint8_t res = 0xff;

	if (m_emc_state == EMC_INDIRECT_2) {
		uint32_t& ptr = get_ptr();
		if (ptr >= 0x8000 && (ptr - 0x8000) < m_ram->size()) {
			res = m_ram->read(ptr - 0x8000);
		}
		LOG_EMC("EMC r @%06x=%02x\n" , ptr , res);
		ptr++;
	} else if (m_lmard) {
		m_emc_mode = uint8_t(offset);
		// During a LMARD pair, address 0xffc8 is returned to CPU and indirect mode is activated
		if (idx == 0) {
			res = 0xc8;
		} else if (idx == 1) {
			LOG_EMC("EMC access %u %06x\n" , m_emc_mode & 7 , get_ptr());
			m_emc_state = EMC_INDIRECT_1;
			if (BIT(m_emc_mode , 0)) {
				// Pre-decrement
				ptr12_decrement();
			}
		}
	} else {
		m_emc_mode = uint8_t(offset);
		// Read PTRx
		if (idx < 3) {
			res = uint8_t(get_ptr() >> (8 * idx));
		}
	}
	return res;
}

void hp86_state::emc_w(offs_t offset, uint8_t data)
{
	auto idx = m_cpu->flatten_burst();

	if (m_emc_state == EMC_INDIRECT_2) {
		uint32_t& ptr = get_ptr();
		LOG_EMC("EMC w @%06x=%02x\n" , ptr , data);
		if (ptr >= 0x8000 && (ptr - 0x8000) < m_ram->size()) {
			m_ram->write(ptr - 0x8000 , data);
		}
		ptr++;
	} else {
		m_emc_mode = uint8_t(offset);
		// Write PTRx
		if (idx < 3) {
			uint32_t& ptr = get_ptr();
			uint32_t mask = 0xffU << (8 * idx);
			ptr = (ptr & ~mask) | (uint32_t(data) << (8 * idx));
		}
	}
}

uint32_t& hp86_state::get_ptr()
{
	return BIT(m_emc_mode , 2) ? m_emc_ptr2 : m_emc_ptr1;
}

void hp86_state::ptr12_decrement()
{
	if (m_emc_mult) {
		get_ptr() -= m_emc_disp;
	} else {
		get_ptr()--;
	}
}

WRITE_LINE_MEMBER(hp86_state::lma_cycle)
{
	m_lmard = state;
	if (m_emc_state == EMC_INDIRECT_1) {
		m_emc_state = EMC_INDIRECT_2;
	} else if (m_emc_state == EMC_INDIRECT_2) {
		LOG_EMC("EMC close %u %06x\n" , m_emc_mode & 7 , get_ptr());
		if (!BIT(m_emc_mode , 1)) {
			// In PTRx & PTRx- cases, bring the PTR back to start
			ptr12_decrement();
		}
		m_emc_state = EMC_IDLE;
	}
}

void hp86_state::opcode_cb(uint8_t opcode)
{
	// Intercept DRP instructions & load displacement
	if ((opcode & 0xc0) == 0x40) {
		if (BIT(opcode , 5)) {
			m_emc_disp = 8 - (opcode & 7);
		} else {
			m_emc_disp = 2 - (opcode & 1);
		}
	}

	m_emc_mult = BIT(opcode , 0);
}

static INPUT_PORTS_START(hp86)
	// Keyboard is arranged in a matrix of 10 rows and 8 columns. In addition there are 3 keys with
	// dedicated input lines: SHIFT, SHIFT LOCK & CONTROL.
	// A key on row "r"=[0..9] and column "c"=[0..7] is mapped to bit "b" of KEY"n" input, where
	// n = r / 4
	// b = (r % 4) * 8 + c
	PORT_START("KEY0")
	PORT_BIT(IOP_MASK(0) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F6) PORT_CHAR(UCHAR_MAMEKEY(F6)) PORT_NAME("k6 k13")        // 0,0: k6 / k13
	PORT_BIT(IOP_MASK(1) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F5) PORT_CHAR(UCHAR_MAMEKEY(F5)) PORT_NAME("k5 k12")        // 0,1: k5 / k12
	PORT_BIT(IOP_MASK(2) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F4) PORT_CHAR(UCHAR_MAMEKEY(F4)) PORT_NAME("k4 k11")        // 0,2: k4 / k11
	PORT_BIT(IOP_MASK(3) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F3) PORT_CHAR(UCHAR_MAMEKEY(F3)) PORT_NAME("k3 k10")        // 0,3: k3 / k10
	PORT_BIT(IOP_MASK(4) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F2) PORT_CHAR(UCHAR_MAMEKEY(F2)) PORT_NAME("k2 k9")         // 0,4: k2 / k9
	PORT_BIT(IOP_MASK(5) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F1) PORT_CHAR(UCHAR_MAMEKEY(F1)) PORT_NAME("k1 k8")         // 0,5: k1 / k8
	PORT_BIT(IOP_MASK(6) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("LABEL KEY")                                                        // 0,6: LABEL KEY
	PORT_BIT(IOP_MASK(7) , IP_ACTIVE_HIGH , IPT_UNUSED)                                                                                 // 0,7: N/U
	PORT_BIT(IOP_MASK(8) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_8) PORT_CHAR('8') PORT_CHAR('*')                            // 1,0: 8
	PORT_BIT(IOP_MASK(9) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_7) PORT_CHAR('7') PORT_CHAR('&')                            // 1,1: 7
	PORT_BIT(IOP_MASK(10) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_6) PORT_CHAR('6') PORT_CHAR('^')                           // 1,2: 6
	PORT_BIT(IOP_MASK(11) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_5) PORT_CHAR('5') PORT_CHAR('%')                           // 1,3: 5
	PORT_BIT(IOP_MASK(12) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_4) PORT_CHAR('4') PORT_CHAR('$')                           // 1,4: 4
	PORT_BIT(IOP_MASK(13) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_3) PORT_CHAR('3') PORT_CHAR('#')                           // 1,5: 3
	PORT_BIT(IOP_MASK(14) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_2) PORT_CHAR('2') PORT_CHAR('@')                           // 1,6: 2
	PORT_BIT(IOP_MASK(15) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_1) PORT_CHAR('1') PORT_CHAR('!')                           // 1,7: 1
	PORT_BIT(IOP_MASK(16) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_I) PORT_CHAR('I') PORT_CHAR('i')                           // 2,0: I
	PORT_BIT(IOP_MASK(17) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_U) PORT_CHAR('U') PORT_CHAR('u')                           // 2,1: U
	PORT_BIT(IOP_MASK(18) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_Y) PORT_CHAR('Y') PORT_CHAR('y')                           // 2,2: Y
	PORT_BIT(IOP_MASK(19) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_T) PORT_CHAR('T') PORT_CHAR('t')                           // 2,3: T
	PORT_BIT(IOP_MASK(20) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_R) PORT_CHAR('R') PORT_CHAR('r')                           // 2,4: R
	PORT_BIT(IOP_MASK(21) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_E) PORT_CHAR('E') PORT_CHAR('e')                           // 2,5: E
	PORT_BIT(IOP_MASK(22) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_W) PORT_CHAR('W') PORT_CHAR('w')                           // 2,6: W
	PORT_BIT(IOP_MASK(23) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_Q) PORT_CHAR('Q') PORT_CHAR('q')                           // 2,7: Q
	PORT_BIT(IOP_MASK(24) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_K) PORT_CHAR('K') PORT_CHAR('k')                           // 3,0: K
	PORT_BIT(IOP_MASK(25) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_J) PORT_CHAR('J') PORT_CHAR('j')                           // 3,1: J
	PORT_BIT(IOP_MASK(26) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_H) PORT_CHAR('H') PORT_CHAR('h')                           // 3,2: H
	PORT_BIT(IOP_MASK(27) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_G) PORT_CHAR('G') PORT_CHAR('g')                           // 3,3: G
	PORT_BIT(IOP_MASK(28) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F) PORT_CHAR('F') PORT_CHAR('f')                           // 3,4: F
	PORT_BIT(IOP_MASK(29) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_D) PORT_CHAR('D') PORT_CHAR('d')                           // 3,5: D
	PORT_BIT(IOP_MASK(30) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_S) PORT_CHAR('S') PORT_CHAR('s')                           // 3,6: S
	PORT_BIT(IOP_MASK(31) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_A) PORT_CHAR('A') PORT_CHAR('a')                           // 3,7: A

	PORT_START("KEY1")
	PORT_BIT(IOP_MASK(0) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_M) PORT_CHAR('M') PORT_CHAR('m')                            // 4,0: M
	PORT_BIT(IOP_MASK(1) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_N) PORT_CHAR('N') PORT_CHAR('n')                            // 4,1: N
	PORT_BIT(IOP_MASK(2) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_B) PORT_CHAR('B') PORT_CHAR('b')                            // 4,2: B
	PORT_BIT(IOP_MASK(3) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_V) PORT_CHAR('V') PORT_CHAR('v')                            // 4,3: V
	PORT_BIT(IOP_MASK(4) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_C) PORT_CHAR('C') PORT_CHAR('c')                            // 4,4: C
	PORT_BIT(IOP_MASK(5) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_X) PORT_CHAR('X') PORT_CHAR('x')                            // 4,5: X
	PORT_BIT(IOP_MASK(6) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_Z) PORT_CHAR('Z') PORT_CHAR('z')                            // 4,6: Z
	PORT_BIT(IOP_MASK(7) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_SPACE) PORT_CHAR(' ')                                       // 4,7: Space
	PORT_BIT(IOP_MASK(8) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_COMMA) PORT_CHAR(',') PORT_CHAR('<')                        // 5,0: ,
	PORT_BIT(IOP_MASK(9) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_STOP) PORT_CHAR('.') PORT_CHAR('>')                         // 5,1: .
	PORT_BIT(IOP_MASK(10) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_SLASH) PORT_CHAR('/') PORT_CHAR('?')                       // 5,2: / ?
	PORT_BIT(IOP_MASK(11) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("PAUSE STEP")                                                      // 5,3: PAUSE / STEP
	PORT_BIT(IOP_MASK(12) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("RUN")                                                             // 5,4: RUN
	PORT_BIT(IOP_MASK(13) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_PLUS_PAD) PORT_NAME("KP +")                                // 5,5: KP +
	PORT_BIT(IOP_MASK(14) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_MINUS_PAD) PORT_NAME("KP -")                               // 5,6: KP -
	PORT_BIT(IOP_MASK(15) , IP_ACTIVE_HIGH , IPT_UNUSED)                                                                                // 5,7: N/U
	PORT_BIT(IOP_MASK(16) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_L) PORT_CHAR('L') PORT_CHAR('l')                           // 6,0: L
	PORT_BIT(IOP_MASK(17) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_COLON) PORT_CHAR(';') PORT_CHAR(':')                       // 6,1: ;
	PORT_BIT(IOP_MASK(18) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_QUOTE) PORT_CHAR('\'') PORT_CHAR('"')                      // 6,2: ' "
	PORT_BIT(IOP_MASK(19) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_ENTER) PORT_CHAR(13) PORT_NAME("END LINE")                 // 6,3: END LINE
	PORT_BIT(IOP_MASK(20) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("LIST P LST")                                                      // 6,4: LIST / P LST
	PORT_BIT(IOP_MASK(21) , IP_ACTIVE_HIGH , IPT_UNUSED)                                                                                // 6,5: N/U
	PORT_BIT(IOP_MASK(22) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_ASTERISK) PORT_NAME("KP *")                                // 6,6: KP *
	PORT_BIT(IOP_MASK(23) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_SLASH_PAD) PORT_NAME("KP /")                               // 6,7: KP /
	PORT_BIT(IOP_MASK(24) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_O) PORT_CHAR('O') PORT_CHAR('o')                           // 7,0: O
	PORT_BIT(IOP_MASK(25) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_P) PORT_CHAR('P') PORT_CHAR('p')                           // 7,1: P
	PORT_BIT(IOP_MASK(26) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_OPENBRACE) PORT_CHAR('(') PORT_CHAR('[')                   // 7,2: ( [
	PORT_BIT(IOP_MASK(27) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_CLOSEBRACE) PORT_CHAR(')') PORT_CHAR(']')                  // 7,3: ) ]
	PORT_BIT(IOP_MASK(28) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("CONT TR/NORM")                                                    // 7,4: CONT / TR/NORM
	PORT_BIT(IOP_MASK(29) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("E TEST")                                                          // 7,5: KP E / TEST
	PORT_BIT(IOP_MASK(30) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME(") INIT")                                                          // 7,6: KP ) / INIT
	PORT_BIT(IOP_MASK(31) , IP_ACTIVE_HIGH , IPT_UNUSED)                                                                                // 7,7: N/U

	PORT_START("KEY2")
	PORT_BIT(IOP_MASK(0) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_9) PORT_CHAR('9')                                           // 8,0: 9
	PORT_BIT(IOP_MASK(1) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_0) PORT_CHAR('0')                                           // 8,1: 0
	PORT_BIT(IOP_MASK(2) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_MINUS) PORT_CHAR('-') PORT_CHAR('_')                        // 8,2: - _
	PORT_BIT(IOP_MASK(3) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_EQUALS) PORT_CHAR('=') PORT_CHAR('+')                       // 8,3: = +
	PORT_BIT(IOP_MASK(4) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_TILDE) PORT_CHAR('\\') PORT_CHAR('|')                       // 8,4: \ |
	PORT_BIT(IOP_MASK(5) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_BACKSPACE) PORT_CHAR(8)                                     // 8,5: BS
	PORT_BIT(IOP_MASK(6) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("( RESET")                                                          // 8,6: KP ( / RESET
	PORT_BIT(IOP_MASK(7) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("^ RESLT")                                                          // 8,7: KP ^ / RESLT
	PORT_BIT(IOP_MASK(8) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F7) PORT_CHAR(UCHAR_MAMEKEY(F7)) PORT_NAME("k7 k14")        // 9,0: k7 / k14
	PORT_BIT(IOP_MASK(9) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("-LINE CLEAR")                                                      // 9,1: -LINE / CLEAR
	PORT_BIT(IOP_MASK(10) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_UP) PORT_CHAR(UCHAR_MAMEKEY(UP)) PORT_NAME("Up Home")      // 9,2: Up / Home
	PORT_BIT(IOP_MASK(11) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_DOWN) PORT_CHAR(UCHAR_MAMEKEY(DOWN)) PORT_NAME("Down A/G") // 9,3: Down / A/G
	PORT_BIT(IOP_MASK(12) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_LEFT) PORT_CHAR(UCHAR_MAMEKEY(LEFT)) PORT_NAME("Left I/R") // 9,4: LEFT / I/R
	PORT_BIT(IOP_MASK(13) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_RIGHT) PORT_CHAR(UCHAR_MAMEKEY(RIGHT)) PORT_NAME("Right -CHAR") // 9,5: RIGHT / -CHAR
	PORT_BIT(IOP_MASK(14) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_PGDN) PORT_NAME("ROLL")                                    // 9,6: ROLL
	PORT_BIT(IOP_MASK(15) , IP_ACTIVE_HIGH , IPT_UNUSED)                                                                                // 9,7: n/u

	PORT_START("MODKEYS")
	PORT_BIT(IOP_MASK(0) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_LSHIFT) PORT_CHAR(UCHAR_SHIFT_1)                // Shift
	PORT_BIT(IOP_MASK(1) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_CAPSLOCK) PORT_TOGGLE PORT_NAME("Shift lock")   // Shift lock
	PORT_BIT(IOP_MASK(2) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_LCONTROL) PORT_CHAR(UCHAR_SHIFT_2)              // Control
INPUT_PORTS_END

ROM_START(hp86b)
	ROM_REGION(0x6000 , "cpu" , 0)
	ROM_LOAD("romsys1.bin" , 0x0000 , 0x2000 , CRC(bfa473b8) SHA1(cc420742a5f03c466484a5063e0abcbc084bf298))
	ROM_LOAD("romsys2.bin" , 0x2000 , 0x2000 , CRC(2bc3ba4b) SHA1(760bef9c482f562677f80b18d6163a19ee7aea1c))
	ROM_LOAD("romsys3.bin" , 0x4000 , 0x2000 , CRC(86bf3b8b) SHA1(209c91b9b972ab514c600752e2e4af68f984612e))

	ROM_REGION(0x1a4000 , "rombank" , 0)
	ROM_LOAD("rom000.bin" , 0x0000 , 0x2000 , CRC(c3ca5c54) SHA1(2b291607de101c7206bfae9520a18f1009929e9b))
	ROM_LOAD("rom001.bin" , 0x2000 , 0x2000 , CRC(59a1616c) SHA1(e0fe840f9740bdb455fe1872869671f8712b7cff))
	ROM_LOAD("rom320.bin" , 0x1a0000 , 0x2000 , CRC(c921e2e4) SHA1(e37ac61364830cfa214e6d1b9942cc1cde6ad01f))
	ROM_LOAD("rom321.bin" , 0x1a2000 , 0x2000 , CRC(e6e5cc91) SHA1(67711de228cc48a78d04b13f0a1c91dc26f7e87c))

	ROM_REGION(0x500 , "chargen" , 0)
	ROM_LOAD("chrgen.bin" , 0 , 0x500 , CRC(e90fad22) SHA1(6b2ecef96906ead99cd688e54c507611747c8687))
ROM_END

// ****************
//  hp86_int_state
// ****************
class hp86_int_state : public hp86_state
{
public:
	hp86_int_state(const machine_config &mconfig, device_type type, const char *tag);

protected:
	virtual void rombank_mem_map(address_map &map) override;
	virtual void unmap_optroms(address_space &space) override;
};

hp86_int_state::hp86_int_state(const machine_config &mconfig, device_type type, const char *tag)
	: hp86_state(mconfig , type , tag , true)
{
}

void hp86_int_state::rombank_mem_map(address_map &map)
{
	hp86_state::rombank_mem_map(map);
	// rom030 (language)
	map(0x30000, 0x31fff).rom();
}

void hp86_int_state::unmap_optroms(address_space &space)
{
	LOG("hp86_int_state::unmap_optroms\n");
	// OptROMs are in rombanks [02..17] & [19..CF] & [D2..FF]
	space.unmap_read(HP80_OPTROM_SIZE * 2 , HP80_OPTROM_SIZE * 0x18 - 1);
	space.unmap_read(HP80_OPTROM_SIZE * 0x19 , HP80_OPTROM_SIZE * 0xd0 - 1);
	space.unmap_read(HP80_OPTROM_SIZE * 0xd2 , HP80_OPTROM_SIZE * 0x100 - 1);
}

static INPUT_PORTS_START(hp86_int)
	// Keyboard is arranged in a matrix of 11 rows and 8 columns. In addition there are 2 keys with
	// dedicated input lines: SHIFT & CONTROL.
	// A key on row "r"=[0..10] and column "c"=[0..7] is mapped to bit "b" of KEY"n" input, where
	// n = r / 4
	// b = (r % 4) * 8 + c
	PORT_START("KEY0")
	PORT_BIT(IOP_MASK(0) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_K) PORT_CHAR('K') PORT_CHAR('k')                            // 0,0: K
	PORT_BIT(IOP_MASK(1) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_M) PORT_CHAR('M') PORT_CHAR('m')                            // 0,1: M
	PORT_BIT(IOP_MASK(2) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_N) PORT_CHAR('N') PORT_CHAR('n')                            // 0,2: N
	PORT_BIT(IOP_MASK(3) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_B) PORT_CHAR('B') PORT_CHAR('b')                            // 0,3: B
	PORT_BIT(IOP_MASK(4) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_V) PORT_CHAR('V') PORT_CHAR('v')                            // 0,4: V
	PORT_BIT(IOP_MASK(5) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_Z) PORT_CHAR('Z') PORT_CHAR('z')                            // 0,5: Z
	PORT_BIT(IOP_MASK(6) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_X) PORT_CHAR('X') PORT_CHAR('x')                            // 0,6: X
	PORT_BIT(IOP_MASK(7) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_C) PORT_CHAR('C') PORT_CHAR('c')                            // 0,7: C
	PORT_BIT(IOP_MASK(8) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_9) PORT_CHAR('9') PORT_CHAR('(')                            // 1,0: 9
	PORT_BIT(IOP_MASK(9) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F5) PORT_CHAR(UCHAR_MAMEKEY(F5)) PORT_NAME("k5 k12")        // 1,1: k5 / k12
	PORT_BIT(IOP_MASK(10) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F4) PORT_CHAR(UCHAR_MAMEKEY(F4)) PORT_NAME("k4 k11")       // 1,2: k4 / k11
	PORT_BIT(IOP_MASK(11) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F3) PORT_CHAR(UCHAR_MAMEKEY(F3)) PORT_NAME("k3 k10")       // 1,3: k3 / k10
	PORT_BIT(IOP_MASK(12) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F2) PORT_CHAR(UCHAR_MAMEKEY(F2)) PORT_NAME("k2 k9")        // 1,4: k2 / k9
	PORT_BIT(IOP_MASK(13) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_CAPSLOCK) PORT_NAME("Caps")                                // 1,5: Caps
	PORT_BIT(IOP_MASK(14) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("LABEL KEY")                                                       // 1,6: LABEL KEY
	PORT_BIT(IOP_MASK(15) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F1) PORT_CHAR(UCHAR_MAMEKEY(F1)) PORT_NAME("k1 k8")        // 1,7: k1 / k8
	PORT_BIT(IOP_MASK(16) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_I) PORT_CHAR('I') PORT_CHAR('i')                           // 2,0: I
	PORT_BIT(IOP_MASK(17) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_J) PORT_CHAR('J') PORT_CHAR('j')                           // 2,1: J
	PORT_BIT(IOP_MASK(18) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_H) PORT_CHAR('H') PORT_CHAR('h')                           // 2,2: H
	PORT_BIT(IOP_MASK(19) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_G) PORT_CHAR('G') PORT_CHAR('g')                           // 2,3: G
	PORT_BIT(IOP_MASK(20) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F) PORT_CHAR('F') PORT_CHAR('f')                           // 2,4: F
	PORT_BIT(IOP_MASK(21) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_A) PORT_CHAR('A') PORT_CHAR('a')                           // 2,5: A
	PORT_BIT(IOP_MASK(22) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_S) PORT_CHAR('S') PORT_CHAR('s')                           // 2,6: S
	PORT_BIT(IOP_MASK(23) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_D) PORT_CHAR('D') PORT_CHAR('d')                           // 2,7: D
	PORT_BIT(IOP_MASK(24) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_8) PORT_CHAR('8') PORT_CHAR('*')                           // 3,0: 8
	PORT_BIT(IOP_MASK(25) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_U) PORT_CHAR('U') PORT_CHAR('u')                           // 3,1: U
	PORT_BIT(IOP_MASK(26) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_Y) PORT_CHAR('Y') PORT_CHAR('y')                           // 3,2: Y
	PORT_BIT(IOP_MASK(27) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_T) PORT_CHAR('T') PORT_CHAR('t')                           // 3,3: T
	PORT_BIT(IOP_MASK(28) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_R) PORT_CHAR('R') PORT_CHAR('r')                           // 3,4: R
	PORT_BIT(IOP_MASK(29) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_Q) PORT_CHAR('Q') PORT_CHAR('q')                           // 3,5: Q
	PORT_BIT(IOP_MASK(30) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_W) PORT_CHAR('W') PORT_CHAR('w')                           // 3,6: W
	PORT_BIT(IOP_MASK(31) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_E) PORT_CHAR('E') PORT_CHAR('e')                           // 3,7: E

	PORT_START("KEY1")
	PORT_BIT(IOP_MASK(0) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_0) PORT_CHAR('0') PORT_CHAR(')')                            // 4,0: 0
	PORT_BIT(IOP_MASK(1) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_EQUALS) PORT_CHAR('=') PORT_CHAR('+')                       // 4,1: = +
	PORT_BIT(IOP_MASK(2) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_TILDE) PORT_CHAR('\\') PORT_CHAR('|')                       // 4,2: \ |
	PORT_BIT(IOP_MASK(3) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_BACKSPACE) PORT_CHAR(8)                                     // 4,3: BS
	PORT_BIT(IOP_MASK(4) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("E TEST")                                                           // 4,4: KP E / TEST
	PORT_BIT(IOP_MASK(5) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("^ RESLT")                                                          // 4,5: KP ^ / RESLT
	PORT_BIT(IOP_MASK(6) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME(") INIT")                                                           // 4,6: KP ) / INIT
	PORT_BIT(IOP_MASK(7) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("( RESET")                                                          // 4,7: KP ( / RESET
	PORT_BIT(IOP_MASK(8) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_P) PORT_CHAR('P') PORT_CHAR('p')                            // 5,0: P
	PORT_BIT(IOP_MASK(9) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_COLON) PORT_CHAR(';') PORT_CHAR(':')                        // 5,1: ; :
	PORT_BIT(IOP_MASK(10) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_QUOTE) PORT_CHAR('\'') PORT_CHAR('"')                      // 5,2: ' "
	PORT_BIT(IOP_MASK(11) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_ENTER) PORT_CHAR(13) PORT_NAME("END LINE")                 // 5,3: END LINE
	PORT_BIT(IOP_MASK(12) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_4_PAD)                                                     // 5,4: KP 4
	PORT_BIT(IOP_MASK(13) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_ASTERISK) PORT_NAME("KP *")                                // 5,5: KP *
	PORT_BIT(IOP_MASK(14) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_6_PAD) PORT_CHAR('^')                                      // 5,6: KP 6
	PORT_BIT(IOP_MASK(15) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_5_PAD) PORT_CHAR('%')                                      // 5,7: KP 5
	PORT_BIT(IOP_MASK(16) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_L) PORT_CHAR('L') PORT_CHAR('l')                           // 6,0: L
	PORT_BIT(IOP_MASK(17) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_STOP) PORT_CHAR('.') PORT_CHAR('>')                        // 6,1: .
	PORT_BIT(IOP_MASK(18) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_SLASH) PORT_CHAR('/') PORT_CHAR('?')                       // 6,2: / ?
	PORT_BIT(IOP_MASK(19) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("LIST P LST")                                                      // 6,3: LIST / P LST
	PORT_BIT(IOP_MASK(20) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_1_PAD)                                                     // 6,4: KP 1
	PORT_BIT(IOP_MASK(21) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_MINUS_PAD) PORT_NAME("KP -")                               // 6,5: KP -
	PORT_BIT(IOP_MASK(22) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_3_PAD)                                                     // 6,6: KP 3
	PORT_BIT(IOP_MASK(23) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_2_PAD)                                                     // 6,7: KP 2
	PORT_BIT(IOP_MASK(24) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_O) PORT_CHAR('O') PORT_CHAR('o')                           // 7,0: O
	PORT_BIT(IOP_MASK(25) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_7) PORT_CHAR('7') PORT_CHAR('&')                           // 7,1: 7
	PORT_BIT(IOP_MASK(26) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_6) PORT_CHAR('6') PORT_CHAR('^')                           // 7,2: 6
	PORT_BIT(IOP_MASK(27) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_5) PORT_CHAR('5') PORT_CHAR('%')                           // 7,3: 5
	PORT_BIT(IOP_MASK(28) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_4) PORT_CHAR('4') PORT_CHAR('$')                           // 7,4: 4
	PORT_BIT(IOP_MASK(29) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_1) PORT_CHAR('1') PORT_CHAR('!')                           // 7,5: 1
	PORT_BIT(IOP_MASK(30) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_2) PORT_CHAR('2') PORT_CHAR('@')                           // 7,6: 2
	PORT_BIT(IOP_MASK(31) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_3) PORT_CHAR('3') PORT_CHAR('#')                           // 7,7: 3

	PORT_START("KEY2")
	PORT_BIT(IOP_MASK(0) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_MINUS) PORT_CHAR('-') PORT_CHAR('_')                        // 8,0: - _
	PORT_BIT(IOP_MASK(1) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_OPENBRACE) PORT_CHAR('(') PORT_CHAR('[')                    // 8,1: ( [
	PORT_BIT(IOP_MASK(2) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_CLOSEBRACE) PORT_CHAR(')') PORT_CHAR(']')                   // 8,2: ) ]
	PORT_BIT(IOP_MASK(3) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("CONT TR/NORM")                                                     // 8,3: CONT / TR/NORM
	PORT_BIT(IOP_MASK(4) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_7_PAD)                                                      // 8,4: KP 7
	PORT_BIT(IOP_MASK(5) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_SLASH_PAD) PORT_NAME("KP /")                                // 8,5: KP /
	PORT_BIT(IOP_MASK(6) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_9_PAD)                                                      // 8,6: KP 9
	PORT_BIT(IOP_MASK(7) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_8_PAD)                                                      // 8,7: KP 8
	PORT_BIT(IOP_MASK(8) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_COMMA) PORT_CHAR(',') PORT_CHAR('<')                        // 9,0: ,
	PORT_BIT(IOP_MASK(9) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_SPACE) PORT_CHAR(' ')                                       // 9,1: Space
	PORT_BIT(IOP_MASK(10) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("PAUSE STEP")                                                      // 9,2: PAUSE / STEP
	PORT_BIT(IOP_MASK(11) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("RUN")                                                             // 9,3: RUN
	PORT_BIT(IOP_MASK(12) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_0_PAD)                                                     // 9,4: KP 0
	PORT_BIT(IOP_MASK(13) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_PLUS_PAD) PORT_NAME("KP +")                                // 9,5: KP +
	PORT_BIT(IOP_MASK(14) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_COMMA_PAD)                                                 // 9,6: KP ,
	PORT_BIT(IOP_MASK(15) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CHAR('.') PORT_CHAR('>') PORT_NAME("KP .")                              // 9,7: KP .
	PORT_BIT(IOP_MASK(16) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F6) PORT_CHAR(UCHAR_MAMEKEY(F6)) PORT_NAME("k6 k13")       // 10,0: k6 / k13
	PORT_BIT(IOP_MASK(17) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F7) PORT_CHAR(UCHAR_MAMEKEY(F7)) PORT_NAME("k7 k14")       // 10,1: k7 / k14
	PORT_BIT(IOP_MASK(18) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_NAME("-LINE CLEAR")                                                     // 10,2: -LINE / CLEAR
	PORT_BIT(IOP_MASK(19) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_UP) PORT_CHAR(UCHAR_MAMEKEY(UP)) PORT_NAME("Up Home")      // 10,3: Up / Home
	PORT_BIT(IOP_MASK(20) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_DOWN) PORT_CHAR(UCHAR_MAMEKEY(DOWN)) PORT_NAME("Down A/G") // 10,4: Down / A/G
	PORT_BIT(IOP_MASK(21) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_PGDN) PORT_NAME("ROLL")                                    // 10,5: ROLL
	PORT_BIT(IOP_MASK(22) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_RIGHT) PORT_CHAR(UCHAR_MAMEKEY(RIGHT)) PORT_NAME("Right -CHAR") // 10,6: RIGHT / -CHAR
	PORT_BIT(IOP_MASK(23) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_LEFT) PORT_CHAR(UCHAR_MAMEKEY(LEFT)) PORT_NAME("Left I/R") // 10,7: LEFT / I/R

	PORT_START("MODKEYS")
	PORT_BIT(IOP_MASK(0) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_LSHIFT) PORT_CHAR(UCHAR_SHIFT_1)                // Shift
	PORT_BIT(IOP_MASK(2) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_LCONTROL) PORT_CHAR(UCHAR_SHIFT_2)              // Control
INPUT_PORTS_END

static INPUT_PORTS_START(hp86_001)
	PORT_INCLUDE(hp86_int)

	PORT_START("LANGUAGE")
	PORT_DIPNAME(0x3f , 0 , "Language")
	PORT_DIPLOCATION("S2:7,6,5,4,3,2")
	PORT_DIPSETTING(0x00 , "English")
	PORT_DIPSETTING(0x01 , "Swedish/Finnish")
	PORT_DIPSETTING(0x02 , "Norwegian/Danish")
	PORT_DIPSETTING(0x06 , "Spanish")
INPUT_PORTS_END

static INPUT_PORTS_START(hp86_004)
	PORT_INCLUDE(hp86_int)

	PORT_START("LANGUAGE")
	PORT_DIPNAME(0x3f , 0 , "Language")
	PORT_DIPLOCATION("S2:7,6,5,4,3,2")
	PORT_DIPSETTING(0x00 , "English")
	PORT_DIPSETTING(0x04 , "German")
	PORT_DIPSETTING(0x08 , "French")
	PORT_DIPSETTING(0x09 , "Italian")
	PORT_DIPSETTING(0x0a , "Dutch")
	PORT_DIPSETTING(0x14 , "Swiss German")
	PORT_DIPSETTING(0x15 , "Swiss French")
INPUT_PORTS_END

ROM_START(hp86b_001)
	ROM_REGION(0x6000 , "cpu" , 0)
	ROM_LOAD("romsys1.bin" , 0x0000 , 0x2000 , CRC(bfa473b8) SHA1(cc420742a5f03c466484a5063e0abcbc084bf298))
	ROM_LOAD("romsys2.bin" , 0x2000 , 0x2000 , CRC(2bc3ba4b) SHA1(760bef9c482f562677f80b18d6163a19ee7aea1c))
	ROM_LOAD("romsys3.bin" , 0x4000 , 0x2000 , CRC(86bf3b8b) SHA1(209c91b9b972ab514c600752e2e4af68f984612e))

	ROM_REGION(0x1a4000 , "rombank" , 0)
	ROM_LOAD("rom000.bin" , 0x0000 , 0x2000 , CRC(c3ca5c54) SHA1(2b291607de101c7206bfae9520a18f1009929e9b))
	ROM_LOAD("rom001.bin" , 0x2000 , 0x2000 , CRC(59a1616c) SHA1(e0fe840f9740bdb455fe1872869671f8712b7cff))
	ROM_LOAD("rom030.bin" , 0x30000 , 0x2000 , CRC(14507bc0) SHA1(67ca5a15019bd7b2bfbf53bb8cfbe2ca20a6239c))
	ROM_LOAD("rom320.bin" , 0x1a0000 , 0x2000 , CRC(c921e2e4) SHA1(e37ac61364830cfa214e6d1b9942cc1cde6ad01f))
	ROM_LOAD("rom321.bin" , 0x1a2000 , 0x2000 , CRC(e6e5cc91) SHA1(67711de228cc48a78d04b13f0a1c91dc26f7e87c))

	ROM_REGION(0x500 , "chargen" , 0)
	ROM_LOAD("chrgen.bin" , 0 , 0x500 , CRC(a3d891c2) SHA1(df7c262b585e9394251640d0775474a76c199905))
ROM_END

ROM_START(hp86b_004)
	ROM_REGION(0x6000 , "cpu" , 0)
	ROM_LOAD("romsys1.bin" , 0x0000 , 0x2000 , CRC(bfa473b8) SHA1(cc420742a5f03c466484a5063e0abcbc084bf298))
	ROM_LOAD("romsys2.bin" , 0x2000 , 0x2000 , CRC(2bc3ba4b) SHA1(760bef9c482f562677f80b18d6163a19ee7aea1c))
	ROM_LOAD("romsys3.bin" , 0x4000 , 0x2000 , CRC(86bf3b8b) SHA1(209c91b9b972ab514c600752e2e4af68f984612e))

	ROM_REGION(0x1a4000 , "rombank" , 0)
	ROM_LOAD("rom000.bin" , 0x0000 , 0x2000 , CRC(c3ca5c54) SHA1(2b291607de101c7206bfae9520a18f1009929e9b))
	ROM_LOAD("rom001.bin" , 0x2000 , 0x2000 , CRC(59a1616c) SHA1(e0fe840f9740bdb455fe1872869671f8712b7cff))
	ROM_LOAD("rom030.bin" , 0x30000 , 0x2000 , CRC(14507bc0) SHA1(67ca5a15019bd7b2bfbf53bb8cfbe2ca20a6239c))
	ROM_LOAD("rom320.bin" , 0x1a0000 , 0x2000 , CRC(c921e2e4) SHA1(e37ac61364830cfa214e6d1b9942cc1cde6ad01f))
	ROM_LOAD("rom321.bin" , 0x1a2000 , 0x2000 , CRC(e6e5cc91) SHA1(67711de228cc48a78d04b13f0a1c91dc26f7e87c))

	ROM_REGION(0x500 , "chargen" , 0)
	ROM_LOAD("chrgen.bin" , 0 , 0x500 , CRC(c7d04292) SHA1(b86ed801ee9f7a57b259374b8a9810572cb03230))
ROM_END

COMP( 1980, hp85,      0,     0, hp85, hp85,     hp85_state,     empty_init, "HP", "HP 85", 0)
COMP( 1983, hp86b,     0,     0, hp86, hp86,     hp86_state,     empty_init, "HP", "HP 86B",0)
COMP( 1983, hp86b_001, hp86b, 0, hp86, hp86_001, hp86_int_state, empty_init, "HP", "HP 86B Opt 001",0)
COMP( 1983, hp86b_004, hp86b, 0, hp86, hp86_004, hp86_int_state, empty_init, "HP", "HP 86B Opt 004",0)