summaryrefslogtreecommitdiffstatshomepage
path: root/src/mame/drivers/flicker.cpp
blob: 5c41e3acdc7042da69469d09636242b60b705555 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// license:BSD-3-Clause
// copyright-holders:Robbbert
/***********************************************************************************

  PINBALL
  Flicker was originally an EM machine, and Bally asked Nutting Associates
  to create a solid-state prototype.

  Seems to be the first ever microprocessor-controlled pinball machine.

  2012-08-23 Made working [Robbbert]

  Inputs from US Patent 4093232
  Some clues from PinMAME

  Note: If F3 pressed, or you start the system, it will remember any credits from
        last time. However, you still need to insert a coin before the start button
        will work.

************************************************************************************/

#include "machine/genpin.h"
#include "cpu/i4004/i4004.h"
#include "flicker.lh"

class flicker_state : public genpin_class
{
public:
	flicker_state(const machine_config &mconfig, device_type type, const char *tag)
		: genpin_class(mconfig, type, tag)
		, m_maincpu(*this, "maincpu")
		, m_testport(*this, "TEST")
		, m_coinport(*this, "COIN")
		, m_switch(*this, "SWITCH")
	{ }

	DECLARE_WRITE8_MEMBER(port00_w);
	DECLARE_WRITE8_MEMBER(port01_w);
	DECLARE_WRITE8_MEMBER(port10_w);
	DECLARE_READ8_MEMBER(port02_r);
private:
	UINT8 m_out_data;
	required_device<i4004_cpu_device> m_maincpu;
	required_ioport m_testport;
	required_ioport m_coinport;
	required_ioport_array<7> m_switch;
};


static ADDRESS_MAP_START( flicker_rom, AS_PROGRAM, 8, flicker_state )
	AM_RANGE(0x0000, 0x03FF) AM_ROM
ADDRESS_MAP_END

static ADDRESS_MAP_START(flicker_map, AS_DATA, 8, flicker_state )
	AM_RANGE(0x0000, 0x00FF) AM_RAM AM_SHARE("nvram")
ADDRESS_MAP_END

static ADDRESS_MAP_START( flicker_io, AS_IO, 8, flicker_state )
	AM_RANGE(0x0000, 0x0000) AM_WRITE(port00_w)
	AM_RANGE(0x0001, 0x0001) AM_WRITE(port01_w)
	AM_RANGE(0x0002, 0x0002) AM_READ(port02_r)
	AM_RANGE(0x0010, 0x0010) AM_WRITE(port10_w)
ADDRESS_MAP_END

static INPUT_PORTS_START( flicker )
	PORT_START("TEST")
	PORT_BIT(0x0002, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("Door Slam") PORT_CODE(KEYCODE_HOME)
	PORT_BIT(0x0800, IP_ACTIVE_HIGH, IPT_TILT)
	PORT_BIT(0x1000, IP_ACTIVE_HIGH, IPT_START)
	PORT_BIT(0x8000, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("Test")

	PORT_START("COIN")
	// The coin slot would be connected to one of six lines via a wire jumper on a terminal strip
	PORT_BIT(0x0001, IP_ACTIVE_HIGH, IPT_COIN1)
	PORT_DIPNAME( 0x07e0, 0x0020, DEF_STR( Coinage ) )
	PORT_DIPSETTING(      0x0020, DEF_STR( 1C_1C ) )
	PORT_DIPSETTING(      0x0040, DEF_STR( 1C_2C ) )
	PORT_DIPSETTING(      0x0080, DEF_STR( 1C_3C ) )
	PORT_DIPSETTING(      0x0100, DEF_STR( 1C_4C ) )
	PORT_DIPSETTING(      0x0200, DEF_STR( 1C_5C ) )
	PORT_DIPSETTING(      0x0400, DEF_STR( 1C_6C ) )

	PORT_START("SWITCH.0")
	PORT_BIT(0x0001, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("Left Lane Target") PORT_CODE(KEYCODE_W)
	PORT_BIT(0x0002, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("/B Target") PORT_CODE(KEYCODE_E)
	PORT_BIT(0x0004, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("Left Lane 1000") PORT_CODE(KEYCODE_R)
	PORT_BIT(0x0008, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("/A Target") PORT_CODE(KEYCODE_Y)
	PORT_START("SWITCH.1")
	PORT_BIT(0x0001, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("Right Lane Target") PORT_CODE(KEYCODE_U)
	PORT_BIT(0x0002, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("/C Target") PORT_CODE(KEYCODE_I)
	PORT_BIT(0x0004, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("Right Lane 1000") PORT_CODE(KEYCODE_O)
	PORT_BIT(0x0008, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("/D Target") PORT_CODE(KEYCODE_A)
	PORT_START("SWITCH.2")
	PORT_BIT(0x0001, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("Spinner") PORT_CODE(KEYCODE_S)
	PORT_START("SWITCH.3")
	PORT_BIT(0x0001, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("10's Target") PORT_CODE(KEYCODE_D)
	PORT_BIT(0x0002, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("100's Target") PORT_CODE(KEYCODE_F)
	PORT_BIT(0x0004, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("Pot Bumper") PORT_CODE(KEYCODE_G)
	PORT_BIT(0x0008, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("3000 Hole") PORT_CODE(KEYCODE_H)
	PORT_START("SWITCH.4")
	PORT_BIT(0x0001, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("1000 Bonus") PORT_CODE(KEYCODE_J)
	PORT_BIT(0x0004, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("500 Target") PORT_CODE(KEYCODE_K)
	PORT_BIT(0x0008, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("Out Hole") PORT_CODE(KEYCODE_X)
	PORT_START("SWITCH.5")
	PORT_BIT(0x0001, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("Left 500 Out") PORT_CODE(KEYCODE_L)
	PORT_BIT(0x0002, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("Left Bumper") PORT_CODE(KEYCODE_Z)
	PORT_BIT(0x0004, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("Right 500 Out") PORT_CODE(KEYCODE_C)
	PORT_BIT(0x0008, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("Right Bumper") PORT_CODE(KEYCODE_V)
	PORT_START("SWITCH.6")
	PORT_BIT(0x0001, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("A Target") PORT_CODE(KEYCODE_B)
	PORT_BIT(0x0002, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("B target") PORT_CODE(KEYCODE_N)
	PORT_BIT(0x0004, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("C target") PORT_CODE(KEYCODE_M)
	PORT_BIT(0x0008, IP_ACTIVE_HIGH, IPT_OTHER) PORT_NAME("D Target") PORT_CODE(KEYCODE_COMMA)
INPUT_PORTS_END

READ8_MEMBER( flicker_state::port02_r )
{
	offset = m_maincpu->state_int(I4004_RAM) & 0x0f; // we need the full address

	if (offset < 7)
		return m_switch[offset]->read();

	return 0;
}

WRITE8_MEMBER( flicker_state::port00_w )
{
	static const UINT8 patterns[16] = { 0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07, 0x7f, 0x6f, 0, 0, 0, 0, 0, 0 };
	offset = m_maincpu->state_int(I4004_RAM); // we need the full address
	machine().output().set_digit_value(offset, patterns[data]);
}

WRITE8_MEMBER( flicker_state::port01_w )
{
// The output lines operate the various lamps (44 of them)
	offset = m_maincpu->state_int(I4004_RAM) & 0x0f; // we need the full address

	UINT16 test_port = m_testport->read() & 0xf81e;
	UINT16 coin_port = m_coinport->read() & 0x07e0;

	if (BIT(m_coinport->read(), 0) )
		test_port |= coin_port;

	m_maincpu->set_test(BIT(test_port, offset));
}

WRITE8_MEMBER( flicker_state::port10_w )
{
/* Outputs depend on data:
    1 = tens chime
    2 = hundreds chime
    3 = thousands chime
    4 = left bumper
    5 = right bumper
    6 = pot bumper
    7 = out hole
    8 = 3000 hole
    9 = knocker
    A = coin counter
    B = coin acceptor

The coin outputs (A and B) don't activate

A large amount of data is continuously flowing through here, even when there is no
sound to produce. We need to change this to just one pulse per actual sound. */

	if (!data && offset == m_out_data)
		m_out_data = 0;
	else
	{
		offset = m_maincpu->state_int(I4004_RAM) & 0x0f; // we need the full address
		if (data != offset)
		{
			if (data != m_out_data)
			{
				m_out_data = data;
				switch (data)
				{
					case 0x01:
						m_samples->start(1, 1);
						break;
					case 0x02:
						m_samples->start(2, 2);
						break;
					case 0x03:
						m_samples->start(3, 3);
						break;
					case 0x04:
					case 0x05:
					case 0x06:
						m_samples->start(0, 0);
						break;
					case 0x07:
					case 0x08:
						m_samples->start(5, 5);
						break;
					case 0x09:
						m_samples->start(0, 6);
						break;
					default:
						break;
				}
			}
		}
	}
}


static MACHINE_CONFIG_START( flicker, flicker_state )
	/* basic machine hardware */
	MCFG_CPU_ADD("maincpu", I4004, XTAL_5MHz / 8)
	MCFG_CPU_PROGRAM_MAP(flicker_rom)
	MCFG_CPU_DATA_MAP(flicker_map)
	MCFG_CPU_IO_MAP(flicker_io)
	MCFG_NVRAM_ADD_0FILL("nvram")

	/* Video */
	MCFG_DEFAULT_LAYOUT(layout_flicker)

	/* Sound */
	MCFG_FRAGMENT_ADD( genpin_audio )
MACHINE_CONFIG_END


ROM_START(flicker)
	ROM_REGION(0x10000, "maincpu", 0)
	ROM_LOAD("flicker.rom", 0x0000, 0x0400, CRC(c692e586) SHA1(5cabb28a074d18b589b5b8f700c57e1610071c68))
ROM_END

//   YEAR    GAME     PARENT  MACHINE   INPUT    CLASS           INIT      ORIENTATION   COMPANY                            DESCRIPTION           FLAGS
GAME(1974,  flicker,  0,      flicker,  flicker, driver_device,  0,        ROT0,        "Dave Nutting Associates / Bally", "Flicker (prototype)", MACHINE_MECHANICAL )